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NOTES FOR USERS OF MECHANICS AT
A-LEVEL

This book, a oompamon to Core Maths for A-level, covers all the work necessary
for the Py of the A-level syllaby f most Examining Boards
where Mechanics is combined with Pure Mathematics, Statistics etc. It also
provides fully for an A/S course in Mechanics.

The aim of the book is to provide a sound but simple treatment of mechanics as
an experimental science whose ‘laws’ are based on deductive and experimental
evidence. These basic principles are then used as models for real-life situations.
The various simplifying assumptions that are needed to form a suitable model
are introduced at an early stage and used wherever appropriate throughout the
book so that modelling becomes an integral part of the work, along with the
appreciation that ‘answers’ to real problems can only be estimates. As a result,
the degree of accuracy to which the answers to real situations are given varies
according to the context; the reader should be prepared to decide upon the
appropriate accuracy. Later on, the concept of testing and improving models is
introduced.

No previous knowledge of the subject is required and we have arranged the topics
carefully so that when pure mathematics is needed it s unlikely to be beyond the
level then reached in a parallel Pure Mathematics course.

‘There are many worked examples and, as each topic is introduced, exercises are
provided that always begin with straightforward questions which can be solved
from an understanding of the basic techniques. Towards the end of some
exercises, questions are set (indicated by an asterisk) that are a little more
demanding and, as the topic develops, further exercises contain questions that
require more thought.

At intervals through the book there are consolidation sections which contain a
summary of the work covered in the preceding chapters and an exercise
‘mainly comprising specimen and past examination questions. It is not intended
that these questions be used immediately after a topic has been studied; they
are of more value if used for revision later on, when confidence and some
sophistication of style have been acquired

vil



‘We are grateful to the following examination boards for permission to reproduce
questions from their past examination papers and specimen papers. Specimen
questions are indicated by the suffix s and it should be noted that they have
not been subjected to the rigorous checking and moderation procedure by the
Boards that their examination questions undergo. (Any answers included have
not been provided by the examining boards; they are the responsibility of the
authors and may not necessarily constitute the only possible solutions. )

University of London Examinations and Assessment council (ULEAC)
Northern Examinations and Assessment Board (NEAB, SMP)
University of Cambridge Local Examinations Syndicate (UCLES, MEI)
The Associated Examining Board (AEB)

Welsh Joint Education Committee (WJEC)

University of Oxford Delegacy of Local Examinations (OUDLE)

L. Bostock
19% S. Chandler
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USEFUL INFORMATION

ABBREVIATIONS
is equal to = giving, gives or implies
is equivalent to +ve  positive

~ is approximately equal to —ve negative

25f  corrected to 2 significant figures 3dp  corrected to 3 decimal places
A taking clockwise moments about an axis through A

B)  taking anticlockwise moments about an axis through B

NOTATION USED IN DIAGRAMS

Force £

Velocity ——>——  Dimensions =——

‘Where components and resultant are shown in one diagram the resultant is
denoted by a larger arrow-head eg.  —P—

THE VALUE OF g

‘Throughout this book, unless a different instruction is given, the acceleration due
to gravity is taken as 9.8 metres per second per second, i.c. g = 9.8
ACCURACY OF ANSWERS

Practical problems rarely have exact answers. Where numerical answers are
given they are usually corrected to two or three significant figures or decimal
places, depending on their context.

Answers found from graphs may not even be reliable beyond the first significant
figure.



CHAPTER 1
MOTION

DISTANCE, SPEED AND TIME
Mechanics is the study of how and why objects move in various ways, or do not
move at all

Everyone is familiar with time, distance and speed and we begin this book by
recalling the relationships between these quantities.

If an object is travelling with constant speed, the distance it covers is given by
distance = speed x time

distance
hy =
ence speed me
Note also that
_ ‘total distance
merage " total time

‘When these formulae are used the three quantities must be measured in units that

are consistent,

e.g. if distance is measured in kilometres and time is measured in hours then
speed must be measured in kilometres per hour (km/h),

or if distance is measured in metres and time is measured in seconds then speed
must be measured in metres per second (m/s).

DISTANCE-TIME GRAPHS

Suppose that an object is moving in a straight line and that its distances from a
fixed point on the line are recorded at various times. By plotting corresponding
values, a distance-time graph can be drawn to illustrate the motion of the object.

1



2 Chapter 1
Consider this situation.

A cyclist travelling along a straight road, covers the 18 km between two points A
and B in 14 hours and the next 35 km, from B to C, in 2! hours. The graph
illustrating this journey is given below.

7 T 3
“Tié (i)

A useful property can be deduced from the graph.

The cyclist’s speed from A to B is given by distance + time,

ie. 18+ 1L kmh = 12km/h

The gradient of the graph for the section from A to Bis 12+ 1 =
Also, the cyclist’s speed from B to Ciis 35+ 2} km/h = 14 km/h

and the gradient of the graph for the section BC is (39 - 25)+ 1= 14
These two results are examples of the general fact that

the gradient of the distance—time graph gives the speed

Curved Distance-Time Graphs

In practice there are many situations where the speed of a moving object is not
constant. In such cases the graph of distance plotted against time is not a straight
line but a curve.

As an example, consider the distance, d metres, of a car from a set of traffic lights
as the car pulls away from the fights.
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This table shows the values of d after ¢ seconds.

clo 234
dl o REE

The corresponding distance-time graph is:

£

T Distance from traffc Tgths tmetres). |

-3

Time (seconds)

“This time the speed of the car cannot be found immediately from the gradient of
the graph as the graph is not a straight line. What we can do however is to find
the average speed over a chosen interval of time.
Consider, for example, the mouan during the third second
(ie.from =2 to 1=
From the values in the uhlc. the average speed during this second is

'3“ 8 mis = 10ms

The gmd)cnl of the line joining the points on the graph where r=2 and
t=3 isalso 10.

So the gradient of a line joining two points on a curved distance-time graph gives
the average speed in that time interval. (A linc joining two points on a curve is
called a chord.)
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Now suppose that we want to find the speed of the car ar the instant
when (=25,

We can choose a shorter interval of time, say from (=22 to =28
and find the gradient of this chord which is closer to the curve than the first one
was. This value gives a better approximation to the speed in the region
of 1=25 and an even better approximation is given by using a yet shorter
time interval.

As the ends of the chord get closer to each other the chord becomes nearer and
nearer to the tangent to the curve at the point where 7= 2.5 so we deduce that
the speed at the instant when 1= 2.5 is given by the gradient of the tangent to
the curve at this value of 7.

TR S g

In general

the speed at a particular value of £ is given by
the gradient of the tangent to the distance-time graph
at the point where f has that value

Now that this property is established there is no need to find a succession of
average speeds by drawing a number of chords; we can go straight to drawing
the tangent at the required point. A this stage this is done by judging the
position of the tangent visually, so the result can only be a rough
approximation to the speed.
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EXERCISE 1a

S

Depth of bucket below A (metres) |

TR ]
Tire (econds)

The graph illustrates the motion of a bucket being lowered into a well from the
top, A, down g the water level, B, filled with water and drawn up again.

(a) What is the depth of the water level below A?

Find

(b) the speed of the bucket as it descends from A to B

(c) the speed of the bucket as it ascends from B back to A

(d) the time taken to fll the bucket

(¢) the average speed for the whole operation including the filling of the bucket.

. A cyclist rides at 5 m/s along a straight road for 25 minutes. She the
dismounts and pushes the bicycle for S minutes at 1.7 m/s. Draw a distance-time
graph and find the average speed for the whole journey.

. A goods wagon is shunted 60 m forward in 12 scconds, then 24 m back in
8 seconds and finally 44 m forward in 11 seconds.

(a) Draw the distance-time graph.
(b) Write down the speed in each of the three sections of the motion.
(c) Find the average speed for

(i) the first 20 seconds

(ii) the whole journey.
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In an experiment to measure the viscosity of a lubricant, a ball-bearing was
allowed to fall through the lubricant contained in a cylinder. The distance,

d centimetres, of the ball-bearing from the bottom of the cylinder was measured
after ( seconds, for a series of values of ¢ and the results illustrated by this
distance-time graph.

Dok (centpoctey

e conds

L]
(a) After how long do you think the ball-bearing wil reach the bottom?
(b) Find the average speed during (i) the third second (i) the fifth second
(¢) Estimate the specd when (i) 1=2.5 (ii) 1=4.

A particle P is moving in a straight line from a point A. This table gives the
distance, s metres, of P from A after ¢ seconds.

i(scconds) | 0| 1|23 |4 |5[6]|7]8
s(mees) | 0 [02] 08| 18[32] 507208128
Plot the points and draw a distance-time graph. Hence
(a) find the average speed over the first 4 seconds
(b) estimate the speed when (i) 1=4.5 (ii) 1=6
(¢) find for how long the distance of P from A is less than 6 m.

A point of light moving in a straight line on the sereen of an oscilloscope is at
a distance s millimetres from O at a time ¢ seconds where s = ——

Draw a distance-time graph for values of 1 from 0 to § and use it to find

(a) the speed, in mm/s, when 1=2.5

(b)  the time when the point of light is 8 mm from O

(¢)  the average speed of the light during the five scconds.
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SPEED-TIME GRAPHS

This graph illustrates the motion of a dog chasing a rabbit. The dog starts off
enthusiastically, then tires a little and finally gives up hope.

AN
bt Tiok ) | |
In the early stages of the chase the dog’s speed is increasing; we say that the dog is
accelerating . Acceleration tells us by how much the speed increases in one unit of
time and it is measured in a unit of speed per unit of time, ¢.g. m/s per second,
which is written m/s*. When a speed is going down, the rate at which it decreases
is known as deceleration or retardation .
The following observations can be made from the graph.
(i) In the first section of the motion the dog’s speed increases steadily from zero
to 12 m/s in 40 seconds, i.. the dog aooelemles at £ m/s’=03m/s?.
The gradient of the graph for this section is - = 0. 3
For the next 20 seconds the dog's speed increases sleadl]y from 12 m/s to
16 m/s, ie. the dog accelerates at % m/s’ = 0.2 m/s2.
0.2

In this section the gradient of the graph is & =

Finally, in slowing down slmdlly from 16 m/s to rest in 32 seconds, the dog
decelerates at % m/s? = 0.5 m/s?

The cornesponding grad:cn( is—&=-05

Each section of the motion illustrates the following general facts.

The gradient of the speed-time graph gives the acceleration;
a negative gradient indicates deceleration.
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(ii) For the first 40 seconds

the average speed is (04 12) mfs = 6 m/s,
the distance covered is therefore 6 x 40 m = 240 m,

the arca under the graph (a triangle) x 40 x 12 = 240
(using measurements from the scales on the axes).

For the next 20 seconds

the average speed is (12 +16) m/s = 14 ms,
the distance covered is therefore 14 x 20 m = 280 m,

the area under the graph (a trapezium ) is (12 -+ 16) x 20 = 280

For the final 32 seconds

the average speed is (16+0) mjs = 8 ms,

the distance covered is therefore 8 x 32 m = 256 m,
the area under the graph is £ x 32 x 16 = 256

In cach section the arca under the graph represents the distance covered in
that section, illustrating this general fact.

The area under a speed—time graph gives the distance covered.

Curved Speed-Time Graphs

In the example above the speed changes steadily in each section of the motion so
the graph for each section is a straight line. The gradient of that line gives the
acceleration during that section of motion and it follows that this acceleration
is constant within that interval of time.

On the other hand, the graph of the motion of an object whose speed changes
in a variable way is a curve, so there is no section where the gradient of a
straight-linc graph can be used to find the acceleration.

A different approach is therefore needed to find the acceleration in this case.
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Finding the Acceleration

This graph shows the speed of a roller-coaster as it goes from the top of the first
climb to the top of the next rise.

Because the graph of its speed is not made up of straight lines, the acceleration of
the roller-coaster at a particular instant cannot be found immediately. However,
by using the gradient of a chord joining two points on the graph we can find the
average acceleration over that part of the motion.

For example the average acceleration, in m/s’, between the instants
when 1=2 and =8 is given by the gradient of PQ,
iie. the average acceleration is 2 mjs? ~ 2.1 m/s.

When the ends of a chord are brought closer together, the average acceleration
gives a better approximation to the actual acceleration within the time interval.
Ultimately, when the ends of the chord coincide, the chord becomes a tangent
to the curve at a point where ¢ has a particular value, i.e.

the acceleration at a particular value of ¢ is given by
the gradient of the tangent to the
at the point where ¢ has that valve

Drawing a tangent to a curve is, as we mentioned on page 4, a matter of visual
judgement, so an aw:lemtion found in this way is only an approximation.
Note that, to the right of =8, the gradient of any tangent is negative
verifying that the rollcr-was(cr is slowing duwn ie. decelerating.
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Finding the Distance Covered

We have seen that if a speed-time graph consists of one or more straight lines,
i.e. for each part of the motion the acceleration is constant, the area under the
graph gives the distance covered. We showed this, for each separate section of
the graph, by using the average speed which, for a straight-line graph, is the
speed half-way through the time interval.

‘When the graph is curved, however, the average speed cannot be found directly in
this way, but the method can be adapted to give a good approximation.

If we regard the curve as a series of short straight lines, under each of these lines
we have a trapezium whose area can be found.

Thnie

Looking at one of these lines, it is clear that the area undemneath it is

ximately equal to the area under the corresponding part of the curve.
So the sum of the areas beneath all the short lines gives an approximate value
for the area under the whole curve.
By making each line successively shorter, so that it gets closer to the curve, the
approximation becomes so good that we can now say, whatever the shape of
the graph,

the distance covered in an interval of time
is given by the area under the speed—time graph for that interval

When dividing a graph into sections to find an approximation to its arca, the
arithmetic is simpler if trips of cqual width are used.
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Example 1b
‘This graph represents the motion of a cyelist during the first five seconds of a ride.

Trin T
Tk ) | it

(a) Find an approximate value for the acceleration after 1 second.
(b) For what period of time did the cyclist decelerate?

(c) Find an approximate value for the distance travelled by the cyclist in the five
seconds. s this value an under or over estimate?

(d) At which time(s) was the acceleration zero?

(a) To find the acceleration after | second, we draw the tangent at A where 1= 1

The gradient of this tangent is approximately (3.7~ 1.2
the acceleration after | second is about 1.3 m/s?.

125

(B) When the cyclst declerate, his speed goes down.
The cyclist decelerates during the third second (from =2 to 1=3).

(€) s he mtion spams 5 i makes seme (0 diide he cur i e sipscch of widh 1 it
of cach strip is approximately cqual 10 that of a trapezium,

The area of each strip is approximately (sum of parallel sides) x |
the total area under the curve is given approximately by

1(0424) + 1(2443) + }(3+26) + 1(26+33) + 1(33+439)
= 1325
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Therefore the area under the curve is approximately 13 square units.
2 sgnificant fgures is suficint for an approximation
The
“This value is less than the actual value for two reasons:
(i) we have rounded the calculated value down
(ii)  the area of all but one of the trapeziums is a little less than the
corresponding arca under the curve

ance covered is approximately 13 metres.

(d) The acceleration is zero when the tangent o the curve is horizontal,

The acceleration is zero when =2 and =3,

EXERCISE 1b

| Specitciphy

it | |
H W0 T 3
Time (minutés) - | i

‘This speed-time graph shows the journey of a train as it moves off from the
platform at a station. Find
(a) the acceleration during the first 2 minutes, in mph per minute
(b) the greatest speed of the train
(c) the time for which the train travels at constant speed between its periods of
acceleration
(d)  the acceleration during the tenth minute.
. The speed of a motor eycle increases steadily from 12 m/s to 20 m/s in
10 scconds. The rider then immediately brakes and brings the vehicle steadily to
rest in 8 seconds. Draw the graph of speed against time for this journey and find
(a) the acceleration
(b) " the deceleration
(¢) the distance travelled.



Motion 13

3. This graph shows the speed of a bus as it travels between two stops.

FT

(a) Over what period of time is the bus

(i) accelerating (ii) decelerating (iii) travelling at constant speed?
(b) Find (i) the acceleration (ii) the deceleration.
(c

Find the distance between the two bus stops.
4. A train travelling at 36 m/s starts up an inclined section of track and loses

speed steadily at 0.4 m/s>. How long will it be before the speed drops to 30 m/s
and how far up the incline will the train have travelled by then?

5. This graph shows the speed of a ball that is rolled across a lawn.

Spped ()

TR
* Time

(a

Write down the speed of the ball after

(i) 2 seconds (i) 7 seconds.

(b) I the ball accelerating or decelerating when 1 =37
(
(d) Find an approximation for the total distance travelled by the ball.

Find an approximation for the deceleration during the fifth second.
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A balloon was released into the air on a calm day.  Its speed in metres per
sccond was noted at | second intervals after release and the results are given in
the table.
W) [0 |1 |2 |3 |e |5 |s |7 |8
vms) J0 7 [t i3 4 (i3 [0 [7 Jo
Draw the specd-time graph illustrating this data and use it to find
(@) the acceleration of the balloon after (i) 15 (ii) 65
(b} the time when the acceleration was zero
() the distance travelled by the balloon.
() State, with reasons, whether your answer to (c) is an under- or over-cstimate.

A rocket is fired and its specd 1 minutes after firing is v km/minute. This graph
shows the corresponding values of  and v during the first 4 seconds of the flight.
Find

(a) the acceleration, in km/minute?, 3 minutes after firing

(b) the distance covered in the first 3 minutes

(c) the distance covered in the third minute.

i i

¥
Tie hiuted

Each question from 8 to 13 is followed by several suggested answers. Some of
the questions concern distance-time graphs and others involve speed-time graphs.
Read them carefully and choose the correet answer, giving your reasons for
rejecting the other answers if you can.
‘This graph shows the motion of g
an object that starts at O and H
A has a constant speed £
B isatrestwhen (=4 §
€ starts with zero speed

- o ®
D travels a distance of 6 m. [ S el
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9. A girl throws a ball straight up into the air
and catches it on its way down again. This
graph represents the motion of the ball.

A The ball goes up with constant speed i
B The acceleration increases as the ball falls

€ The ball is not moving when =3
D

The distance that the ball rises is negative.

. A bullet is fired into a block of wood. This graph illustrates the motion of
the bullet inside the block.

o

o or 0z o3 o

A The average speed is 40 m/s
B The bullet has a constant deceleration
€ The bullet stops after 0.4 seconds
D

‘The bullet penetrates a distance of 16 m into the block.

Use this graph to answer questions 11 and 12.

Distance (m)

1o

1. The average speed over the 3 seconds of motion is
A Umjs B Im/s C 3m/s

12. The speed when =2 is about
A 05m/s B 15m/s C 2m/s

)



H

This graph of part of a car journey shows that
A the car comes to rest when 1= 5

the car changes direction after 3 seconds

the acceleration when ¢=2 is about | m/s

caw=

the speed increases for 3 seconds.

MOTION IN A STRAIGHT LINE

If a particle is moving in a straight line it can be moving in either direction along
the line. Rather than try to describe these directions in words in every case, we
can distinguish between them by giving a positive sign to one of the directions;
the other direction is then negative.

DISPLACEMENT

Consider a model engine which starts from a point O and moves in the direction
A along the straight section of track as shown in the diagram.

+ve direction
3

When the engine reaches B, it has travelled a distance of 50 cm and it is also
50 cm from O. However, if the engine then reverses its direction and moves
20 cm back towards O, i.e. to point C,

the total distance that the engine has travelled is 70 cm

but the distance of the engine from O is 30 cm (to the right).
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If the engine now continues moving towards O and carries on to point D,
ond O,
the total distance that it has travelled is 140 cm
but the distance of the engine from O is 40 cm (to the left).

1f we specify the direction from O to A as the positive direction then
the distance from O in the direction from O to A is called the displacement.

Hence, from O, the displacement of B is 50 cm
the displacement of C is 30 cm
the displacement of D is ~40 cm

Displacement is a quantity which has both magnitude (size ) and direction.
‘Quantities

of this type are vectors.

Distance, on the other hand, only has size — the direction doesn’t matter.
Distance is a scalar quantity.

Example 1c

Starting from floor 4, a lift stops first at floor 11, then at floor 1 and finally at
floor 6. The distance between each floor and the next is 4 m.
Taking the upward direction as positive write down, for each of the stops,

(a) the displacement, s metres, of the lift operator from floor 4
(b) the distance the lift operator has travelled since first leaving floor 4.

At floor 11 the displacement is +7 x4m =28 m
the distance travelled is 28 m
At floor 1 the displacement is 3 x
the distance travelled is 17 x «tm 68 m

At floor 6 the displacement is +2x 4m =8 m
the distance travelled is 22 x 4m =88 m
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EXERCISE 1c

Which of the following quantities are vector and which are scalar?

(a) 5 km due south (¢) A temperature of 25°C

(b) 6 miles (f) A force of 8 units vertically downwards
() Aspeed of 4m/s (8) A mass of 6 kg

(d) 200 miles north-east (h) A time of 7 seconds.

A spider is at a point A on a smooth wall, 1.2 m above the floor. This graph

pl
represents the motion of the spider as it tries (unsuccessfully!) to climb vertically
up the wall.

Taking the upward direction as positive,

(a) write down the displacement of the spider from A after
50 seconds

(ii) 80 seconds

(iii) 175 seconds

(b) find (i) the maximum displacement of the spider from A
(ii) ~the total distance the spider travels

(c) find the average speed over the 175 s.
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A fly is free to move to and fro inside a narrow straight glass tube, closed at
both ends. The table below gives the displacement of the fly from the centre of
the tube at each instant when it reverses direction. Assuming that the fly moves
all the time with a constant speed, illustrate the motion of the fly by drawing a
graph of displacement against time.

Time (s) O[22 Ss|6 ][9]
Displacement from O (m) | 0 | 4 | -2 0 | 6| —4] -8

VELOCITY

Ifwe say that an object is moving with a certain speed in a particular direction, we
are giving the velociry of the object, i.c. velocity is a vector quantity.
Speed is the magnitude of velocity.

Suppose that a body is moving with a uniform velocity, i.e. a constant velocity.
This means not only that the body has a constant speed, but also that its
direction is constant, i.e. that it is moving one way along a straight line.

In order to define which way the body is moving, we specify a velocity in one
direction along the line as positive; a velocity in the opposite direction is then
negative.

+ve dircction

v <
< g

Consider a pamcle P moving with a constant speed of 5 m/s along the line
shown in the di

3 after 1 s aier 25

e direction

IF P starts from O and moves to the right, which is the chosen positive direction,
then its velocity is +5 m/s.

After 1 second the displacement of P from O is +5 m

and after 2 seconds it is +10 m,

and so on.

The displacement s increasing at a rate of +5 mys.
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Now if P starts from A and moves to the left with the same speed, its velocity
is =5 m/s.
sher2s st ts A
[ R B N S S R S O}
<G—or
The initial displacement of P from O is +11 m
and after 1 second the displacement is 6 m.
The displacement has decreased by 5 m, ie. it has increased by —5 m.
Similarly, after 2 scconds the displacement is 1 m and has increased by —10 m.
The displacement is increasing at a rate of —5 m/s
ie velocity is the rate at which the displacement increases

“+ve direction

ACCELERATION

So far we have associated acceleration only with changing speed. Now that we
have defined velocity, however, we must describe acceleration more carefully,
ie. acceleration is the rate at which relocity is increasing

So if the velocity of a particle moving in a straight line increases steadily from
3m/s to 11 m/s in 4 seconds, the acceleration is +2 m/s.

O the other hand, if the velocity goes down from 14 m/s to 5 m/s in 3 seconds
(the velocity has increased by —9 m/s ) the acceleration is —3 m/s2.

EXERCISE 1d
. Decide whether cach of the following statements is correct or incorrect,
If you think it is incorrect, give your reason.
(a) A car driving due north at 40 mph has a constant velocity.
(b) A toy train runs round a circular track with constant velocity 2 m/s.
(¢) A plane flies in a straight path from London to Neweastle so its velocity is
constant,

. A particle is moving along the straight line shown in the diagram. It passes
through A, travels to B, then moves from B to C, from C to D and finally from
Dtk

ca 3 E .0 )
TT 01 2 35 456 7 89wz T

ety
“This table gives the value of ¢ at each point, Blc|D

where { is the number of seconds that have
elapsed since the particle first passed through A. S8 ]as|9
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Find the velocity of the particle, constant in each section, in travelling from
(1) AtoB (b)) BtoC (o) CloD (d) DtoE.

(Remember to give magnitude and direction.)

‘The velocity of a particle changes steadily from —5 m/s to =21 m/s in 4 seconds.
What is the acceleration?

A particle moving in a straight line with a constant acceleration has a velocity

um/s at one instant and 1 seconds later the velocity is v m/s. Find the
acceleration of the particle if

(a) u=8, 2, t=3 (b) u=4,

~1, ¢

A body maving ntally t $ m/s has  consant scceeraton of a m/st. After
6 seconds its velocity is v m/s. vif
(@) a=3 (b) a=-2 1C) a=0.

DISPLACEMENT-TIME GRAPHS

For an object P movmg in a straight line, a displacement-time gaph shows how
the distance of P in a specified direction from a fixed point varies with time.

Consider an object P which moves in a straight line, travelling through points O,
A, B and C on the line and covering each section at a constant
This table gives the displacement, s centimietres, of each of these pom|s from O,
and the time, 1 seconds after leaving O, when P is at each point.
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For the section from O to A,
P has travelled a distance of 10 cm in the positive direction in 5 seconds,
ie. the velocity is 2 cm/s and the gradient of the graph is 2.

For the section from A to B,
P has travelled a distance of 4 cm in the negative direction in 2 seconds,
ie. the velocity is —2 cm/s and the gradient of the graph is —2.

For the section from B to C,
P has travelled a distance of 15 cm in the negative direction in § seconds,
iie. the velocity is —3 cm/s and the gradient of the graph is —

In each case the gradient of the displacement-time graph represents the velocity.
The average velocity is the constant velocity that would produce the final increase
in displacement in the total time interval, ¢.g
the average velocity from O to Bis &2 cm/s = & em/s
(this is equal to the gradient of the chord OB)
the average velocity from A to C is 3 cmjs = -4 cm/s
(this is equal to the gradient of the chord AC)
the average velocity from O to C is 22 em/s = — cm/s
(this is equal to the gradient of the chord OC).
Note that in moving from O to C, the total distance that P has moved is
(10+4+15)cm, ie 29 cm.
So P's average speed is 29+ 12cmjs, ie. 24 cm/s (2sf), showing that
the average speed is different from the average velocity.

For a curved displacement-time graph also, the average velocity over a time
interval is given by the gradient of the chord corresponding to that interval.

the same reasoning as we used for a distance-time graph shows that the
gradient of the tangent to the curve at a particular value of ¢, represents the
velocity at that instant.

4 <t e
=~ velocity from 1, 0
gradient gives average.

o eocity lom o1,
~——_ gradicnt of tangent

s ‘gives velocily at f,
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In general, for any type of motion over a given interval of time,

av speed = distance covered in the time interval
creee the time interval
: increase in di over the time interval
the time interval
ﬂlevdouﬂyltanymmsuwuumdlry
the gradient of the time graph at ling point
Examples 1e
1 Ap.mkrmmnm.unulpn line, starting from a fixed point O on that
line. The displacement-time graph for its motion over the first six seconds is given

below.

(a) Find the average velocity from

@1=0 to r=2 (i) r=4 to r=6 (il) 1=0 to r=6.
(b) Estimate the velocity of P at the instant when

M) t=2 (i) r=35

(a)  Average velocity is represented by the gradient of a chord.

(i) average vlocity = 2= cmjs = 126
(ii) average velocity = %cm/s = —8cmfs
(ili) average velocity = =8 cmys, ic. zero

6-0
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(b)  Velocity is represented by the gradient of a tangent.

(i) velocity at A = ”’ 133

emfs, ie. 10 em/s (2 sf)

(ii) velocity at B =~

'i‘” cmfs, ie. —11cm/s (2 sf)
z.Amommorxamuw-mm:mAmrnumwmuu
S0 that, at time f seconds its displacement, s metres, from O is given by
s=(t-1)(1~5). When :_o the particle is at point A.
Draw a displacement-time graph for values of f from 0 to 6.
(a) At what times does the particle pass through O?
(b) What is the average speed over the 6-second time interval?
(c) What is the average velocity over the 6-second time interval?
(d) At what time is the velocity zero?

Using s= (1~ 1) (= 5) for values of ¢ from 0 to 6 gives
i(seconds) | 0 | 1| 2] 3| 4|56
s(metres) | 5 | 0 | -3]|-a]-3[0]s

]

(@) When the particle s at O its displacement from O is zero, ie. s=0.
particle passes through O when =1 and 1=

(b) Putarta st A where 1= +5, P then conrs 010 0 nd coies byond O for & uther 4
(0 B where s = ~4. Then P goes back (0 O, ie. 4 m back, and a further S m t0 A.

d:x

R R T R R R R
total distance covered _ S+4+4+5
terval 6

average speed = = 3mfs.
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(c) The average velocity is given by the gradient of the chord joining the points

where =0 and 1 =6, i.c. the average velocity is =0

s
6-0
() The velocity is zer0 when the gradient of the tangent is zcro, i.c. when the tangent is paralll to
the time axis.
‘The velocity is zero when 1= 3.

EXERCISE 1e

. A boy is practising kicking a football straight towards a wall. For each kick
he observes how far the ball rebounds. This graph shows, for one kick, the
displacement towards the wall of the ball from the boy.

(a) Use the graph to estimate the velocity of the football
(i) after half a second (i) whenr=3  (iii) whenr=5.
(b) (i) State the velocity when 1= 1.3.
(ii) Explain why the graph has a ‘point’ at this time.
(¢) At what time does the football pass the boy when rebounding?
particle P is moving along a straight line. The displacement of P from O, a

fixed point on the line, after  seconds s s metres. The table gives some
corresponding values of s and 1.

f(seconds) | O | 1 | 2|3 | 4| 5| 6

s(metres) | 0 | 3| 4] 3]0 |-5|-12
Draw a displacement-time graph and use it to answer the following questions.
(a) Find the average velocity from

() (=0 t0 1=2 (i)
(i) 1=0 to =4 (iv)

(b) Find the average speed for each of the time intervals in part (a).
(c) What do you think the velocity is when =07
(d) At what time is the velocity zero?
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3. Ais a fixed point on a straight line and P is moving on the line. The
displacement, s metres, of P from A after 7 seconds is given by s =5t~ £%.
(a) Copy and complete the following table.
o123 4]

s ol Tl

(b) Choose suitable scales and draw a displacement-time graph and use it to
answer the following questions.

(¢) At what time is the velocity zero?
(d) Estimate the velocity when 1= 5.

(¢) Find, for the 6-second journey,
(i) the average velocity  (ii) the average speed.

»

‘This graph illustrates the motion of a ball bouncing vertically.

(a) State the times at which the graph shows that the velocity of the ball is zero.
(‘Think carefully before you answer.)

(b) Find the average speed during
(i) the first second
(ii) the first full bounce (i.e. from =1 to 1=25)
(i) the second full bounce.

(¢) Find the average velocity during each of the time intervals specified in
part (b).

(d) What is the average velocity over the first 3 seconds.
(¢) Estimate the velocity of the ball after (i) 0.5s (i) 15s.
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VELOCITY-TIME GRAPHS

For an object P travelling in a straight line, a vdoqu -time graph shows how the
speed of P in a particular direction varics with ti

‘This graph shows the variation in the velocity of P dunng 2 20-second period of
‘motion, starting from a point O on the straight line.

During the first 5 seconds the velocity increases steadily from zero to 15 m/s so
the acceleration in this section is 3 m/s? and the gradient of this section of the
graph s 3.

For the next 2.5 seconds the velocity is constant, i.e. the acceleration is zero, and
the gradient the graph is also zero.

‘Then the velocity decreases until after another 7.5 seconds the graph crosses the
time axis. This shows that the velocity has reduced to zero and that P has
‘momentarily come to rest.

For this section the acceleration is — 4% m/s and the gradient is —2. Note
lha( zlxhaug)\ the velocity is decmasn& it is still positive, so P is still moving

When =15 the velocity is zero and immediately after that the velocity
becomes negative, ic. P stops going forward and begins to move in the
opposite diretion with an accleration of ~ % my/s* (the gradient i ~2).
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For the last 2.5 seconds the velocity is becoming less negative, i.e. it is increasing.
The acceleration is 255 m/s* = 2m/s* and the gradient is 2. Again note
that the velocity is sull negative so P is still moving backwards until,
when =20, P comes to rest.

Each section demonstrates that, for motion with constant acceleration, the
gradient of the velocity-time graph represents the acceleration.

Now consider the distance moved by P in each section, lemmnbenng that P
moves forward for 15 seconds and then moves in the reverse directior

Using  average velocity x time ~ gives the following results.

Time interval (s) | 0-5 | S-75 | 75-15 | 15-17.5 | 17.5-20
Distance moved (m) | 37.5 | 3715 | 5625 | 625 | 625
Direction moved | fwrd | fwrd | fwrd | bkwrd | bkwrd

As P moves 131.25 m forward and then 12.5 m back, the displacement of P
from O at the end of the 20 seconds is 118.75 m.

Now we can see that the distance moved in each section is represented by the area
between that section of the graph and the time axis. If we take any area that is
below this axis as negative, then the displacement of an object moving with
constant acceleration is represented by the area between the velocity-time
graph and the time axis.

‘When the acceleration of a moving object is not constant the velocity-time graph
is curved. However the arguments we used earlier can be applied again to show
that, for a general velocity-time graph:
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Themngemhaﬁmovunnnxmumlnnpmumdhyﬂugndmrof
chord. A negative

negative gradient gives a negative acceleration,
indicating that the velocity is decreasing.
The tion at a given instant i by the gradient of the tangent to

the curve at that particular point on the curve.

‘The displacement reprsumdbyﬂlelmbetwmnmemunﬂhemm
regions below that axis being negaf
Anawnmmnmﬂrsnuunbefm
by dividing it into trapezium-shaped strips.

EXERCISE 1f

!
|
The graph shows the velocity of a car as it moves along a straight road, starting
from a lay-by at a point A.
Find
(a) the acceleration during the first 4 seconds
(b)  the deceleration during the final 10 seconds
(c) the distance travelled
(i) while accelerating
ii) at constant speed

(iii)  while decelerating.
Explain why the displacement of the car from A at the end of the S2-second
journey is equal to the total distance travelled from A.

. A train is brought to rest from a velocity of 24 m/s with a constant

acceleration of —0.8 m/s?. Draw a velocity-time graph and find the distance
covered by the train while it is decelerating.
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3. A particle is moving in a straight line with a velocity of 10 m/s when it is
given an acceleration of 2 m/s? for 8 seconds. Draw a velocity-time graph for
the cight-second time interval and use it to find

(a) the time when the direction of motion of the particle is reversed
(b) the increase in displacement during the 8 seconds
(c) the total distance travelled in this time.

4. The velocity of a runner was recorded at different times and the resulting.
velocity-time graph is given below.

(a) Explain what is happening between
() OandA (i) Aand B

(b) Estimate the length of the race explaining whether your answer is more or
less than the actual length.

A girl is taking part in an ‘It’'s a Knock Out’ game. Starting from her team’s
base, she has to run forwards t0 a row of buckets of water, pick one up and run
back, trying not to spill any water, to a large cylinder which is at a distance
behind the base. Her turn ends when she pours the water into the cylinder. This
is the graph of her velocity plotted against time.
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(a) At what time does the
(i) pick up the bucket (i) empty the bucket?
(b) Estimate the acceleration of the girl when =3 and when 1= 125
(c) At what times is the acceleration zero?
(d) Explain what happens after about 6 secconds.

Exch quesion from (09 i flloned by several sggesed answer. State which
is the correct ai

. The diagram shows the displacement-time
graph for a particle moving in a straight line. 1o
HE
i |
N S s)
The average velocity for the interval _d
from 1=0 10 (=5 is
A0 B 6m/s C -Ims D 2m/s
. The diagram shows the displacement-time
graph for a particle moving in a straight line. 2
The distance covered by the particle in the 8 o
interval from =0 to 1=5 is !
A 2m B Sm C I15m D Sm
. The diagram shows the velocity -time
graph for a particle moving in a straight
line. The sum of the two shaded areas
represents.
A the increase in displacement of the =
particle K
B the average velocity of the particle s Time.
C the distance moved by the particle

D the average speed of the particle.

. A particle moving in a straight linc with a constant acceleration of 3 m/s? has
an initial velocity of —1 m/s. Its velocity 2 seconds later is
A Sm/s B 6m/s C 4m/s D -Tmjs
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CONSTANT ACCELERATION

MOTION WITH CONSTANT ACCELERATION

In Chapter 1 a number of relationships were observed linking the acceleration
and velocity of a moving body with the displacement after any time interval.

In the particular case when the acceleration is uniform (i.c. constant) these
relationships can be expressed as simple formulae which are known as the
equations of motion with constant acceleration.

Consider first the velocity-time graph of an object moving for ¢ seconds with
constant acceleration a units.

Velocity

Time

Suppose that at the beginning of the time interval the velocity is u units and at the
end it is v unis.

The velocity increases by a units each second so after ¢ seconds the increase in
velocity is ar units.

v=u+at m

This formula can be used in solving a problem on motion with uniform
acceleration, provided that three out of the four quantities u, v, a and f are
known, so that the fourth quantity can be calculated. If this is not the case
we need another relationship; this can be found if we consider the
displacement, s units, of the object from its starting point after 7 seconds.

32
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‘The area under the velocity-time graph represents the displacement. This i the
amofa!.mpmnmandls Hutv)xt

5= Yt 2]

Now we have a formula to use in those problems where three out of the four
quantities u, v, s and ¢ are known.

There are however other possibilities. We could, for example, be given
information on the values of u, a and ¢ and have to find the displacement.
Neither of the formulac found above link these four quantities but we can use
them to deduce another relationship if we eliminate v.

From[l] v=u+ar

Substituting in [2] gives s =4 (u+u+at)t

ie. s = ut + ta Bl
In a similar way eliminating u gives

“

From (1] t=

Substituting in [2] gives s = 1

ie. &)
With these formulae established, we are in a position to tackle, by calculation, any
problem on motion with constant acceleration.

Each formula contains four quantities, but not the fifth, from u, v, a, sand ¢ so it
is easy to identify the one to use by noting which quantity is nof involved.

However always remember that, as we have already seen, many problems can be
solved quickly and easily from a velocity~time graph using only the two basic
facts that the gradient gives the acceleration and the area under the graph
gives the displacement. Solution by graphical methods should not be neglected
because calculation is now an alternative. In fact, even when using the
formulae, a velocity-time sketch graph often makes the solution clearer.
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Choosing the Positive Direction

Displacement, velocity and acceleration are all vectors and therefore have a
direction as well as a mngm(ude Because we are considering only motion
where the acceleration is constant (its direction is constant as well as its
magnitude), it follows that all the motion takes place along a straight line.
The object can, however, move cither way along the line, so it is necessary to
decide which is the positive direction; the opposite direction is then negative.

A good way to start is to make a list of the given information, and what is
required, using the standard notation for initial and final velocities,
displacement and time, giving each value its correct sign. Most motion
problems are made clearer if a simple diagram is drawn, using different arrow
heads to indicate different quantities. In this book we use:

for velocity, for acceleration, for a length
and, later on, —>— for a force.
Examples 2a

. A particle starts from a point A with velocity 3 m/s and moves with a constant
acceleration of 4 m/s? along a straight line AB. It reaches B with a velocity
of Sm/s.

Find (a) the displacement of B from A (b) the time taken from A to B.
— >

Given: w =3, v=5 a=1}
(a) Required: s
¢is not involved so the formula to use is
-3 = 2A4)s
s=16

‘The displacement of B from A is 16 m.

(b) Required: 1 (s is not involved).
‘The formula linking u, v, a and 1is v=u-+at

= 3ade
=4

The time taken from A to B is 4 seconds.
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Note that, as the value of s was found in part (a), in part (b) we could have used
the formula linking u, v, sand 1, ie. s=1(u+v)t, giving 16=1(3+5)
and hence 1= =4, Remember though that if you use a calculated value
there is always the risk that it is not correct, making anything found from it
wrong as well. Whenever possible it is best to use given values.

An alternative method of solution makes use of the velocity-time graph sketched
from the given information.

. ‘The gradient gives the acceleration.

5-3 _ .-y

Gradient = =1

3 oo =4 = thetimeis 4 scconds.

“The area gives the displacement.
Area = §(3+5)x1 = }(8)(4) =

e s=16 = the displacement is 16 m.

. A cyclist starts riding 1 siraght abeep I wids . veloky of 8 m/s. At the
m long, the velocity is 4 m/s. Assuming a constant

ion, find its nlm

Given: u =8 v=4 5=96
Required: a
The formula without  in itis +? —u? = as

= 2a(9%)
48

= a

92 4
The aceeleration is —§ m/s.

Remember that a negative acceleration s called a deceleration (or a retardation)
and it indicates that velocity is decreasing.

A sketch of the velocity-time graph shows N
that this is the case. 4
.
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3. The driver of a train begins the approach to a station by applying the brakes to

»

produce a steady deceleration of 0.2 m/s* and brings the train to rest at the
platform in 1 minute 30 seconds.

(a) Find the speed of the train in kilometres/hour at the moment when the brakes
were applied,
(b)  the distance then travelled before stopping.
Velacity

Working in metres and seconds we have:
02, v=0, =9
Required: (2) u  (b) s

Given: a =

(a) Using v =utar gves
0 u+(~02)(9%)

I u=18

The speed of the train was 18 m/s,

i 8 60x60km/h = 64.8 kmh.
1000

(b) Using s = w—tar® gives
5 = (0)(90) - §(~02)(%) = 810
“This is the displacement of the station from the point where the brakes were applied.
. the distance of the train from the station was 810 m.

In a situation where more than one object is involved, or where one object moves
in different ways in various sections of the motion, it may be necessary to use
‘link’ quantities. These are unknown quantities that occur in the motion of
more than one object or in more than one section. Whether the problem is
tackled by using formulae or by referring to a graph, these quantities enable
two incomplete pieces of information to be merged to produce a result.

At the same instant two children, who are standing 24 m apart, begin to cycle
directly towards each other. James starts from rest at a point A, riding with a
constant acceleration of 2 m/s? and William rides with a constant speed of 2 m/s.
Find how long it is before they meet.
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All quantities will be measured using metres and seconds.

James and Willim start together so they meet ater riding for the same tme

For James

iven: u = Involved: ~ time, ¢
=2 stance,

Using s = w+ial gives s =322 = g =2

For William

Given: constant velocity, 2 Involved: time, 1
istance, 51
Using  distance = velocity x time gives n=2u

‘The sum of the distances they run is 24 m, ic. s + 5 = 24
P42 =2 =5 P4u-24=0
S (6 (1-4) =0
= r=-6or 1=4
Only a posiive value for 1 has any meaning

The boys meet after 4 scconds.

Note that in this problem the link quantity is r. Neither of the two separate
equations gives an actual value of anything, but each gives a different distance
ini terms of . These expressions added are equal to the known total distance.

. A particle A starts from rest at a point O and moves on a straight line with
constant acceleration 2 m/s?. At the same instant another particie B, 12 m behind
0, is moving with velocity 5 m/s and has a constant acceleration of 3 m/s*.

How far from O are the particles when B overtakes A?

A and B travel for different distances. We will choose s 10 represeat the shorter distance, ic. the
distance that A travels; B then travels a distance (s + 12). A and B move for the same time.

For A
Given:  u =0, a=2 Involved: ~ distance, 5, and time, 1
s = ut+tar® = s =40 m
For B
Given:  u=5 a=3 Involved: ~ distance, (s + 12), and time,

“

= ut+}a’® = s4+12 = St 3(3)7 v}
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Although we want the distance we will eliminate s first and find 1, because ¢ appears to powers | and 2
and is diffult to ciminate
@) gves 12=5r+47 = A4100-24 =0

= (+12)(1-2) =0

= t=2o0r =12

Using the positive value of ¢ in [1] gives s =
B overtakes A at a distance 4 m from O.

EXERCISE 2a

In questions 1 to 10 an object is moving with constant acceleration a m/s? along
a straight line. The velocity at the initial point O is u m/s and 1 seconds after
passing through O the velocity is v m/s. The displacement from O at this time is
sm. For each question select the appropriate formula.

u =10, a find 1.
1=10, s find v.
a =5, u find v.
w=16 v find 5.
=7 find a.
=7 u find a.
u=s, find 5.
a = u find 1.
V=3 find s.
v=1 5, a =3 find u.

‘The remaining questions can be solved either by calculation from formulac or by
reference to a velocity-time graph.

. The driver of a car travelling on a motorway at 70 mph suddenly sees that

the traffic is stationary at an estimated distance of 60 m ahead. He immediately
applies the brakes which cause a deceleration of 6 m/s?. Can a collision be
avoided? (70 mph ~ 32 m/s )

. A bowls player projects the jack along the green with a speed of 4 m/s. It

comes 1o rest ‘short’ at a distance of 25 m. What is the retardation caused by the
surface of the green? With what speed should the jack be projected to reach a
length of 30 m?

. A particle is moving in a straight line with a constant acceleration of 2 m/s?.
red

If it was initially at rest find the distance cover
(a) in the first four seconds  (b) in the fourth second of its motion.
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A particle moving in a straight line with a constant acceleration of —3 m/s?,
has an initial velocity at point A of 10.5 m/s.

(a) Show that the times when the displacement from A is 15 m are given
by 12 -7:410=0 and find these times.

(b) Find the times when the displacement from A is ~15 m.

. A acing ca s tavelling at 130 mph when te drver socs 8 broken-down car

on the track 5 of a mile ahead. Slamming the brakes on he achieves
Taximum dewleration of 24.5 mph per sccond. How far short of the broken-
down car docs he stop?

A body movmg in a straight line with constant acceleration takes 3 seconds
and § seconds to cover two successive distances of 1 m. Find the acceleration.
(Hint: use distances of 1 m and 2 m from the start of e motion.)

. The displacements from a fixed point O, of an object moving in a straight

line with constant acceleration, are 10 and 14 metres at times of 2 and 4 seconds
respectively after leaving O. Find

(a) the initial velocity  (b) the acceleration
(c) the time interval between leaving O and returning to O.

. A particle starts from a point O with an initial velocity of 2 m/s and travels

along a straight line with constant acceleration 2 m/s?. Two seconds later
another particle starts from rest at O and travels along the same line with an
acceleration of 6 m/s>. Find how far from O the second particle overtakes the
first.

Starting from rest at one set of traffic lights, a car accelerates from rest o a
velocity of 12 m/s. It maintains this speed for 42 seconds, untl it decelerates to
rest at the next st of red lights 60 scconds after leaving the first set. If the
acceleration and deceleration are equal, find the distance between the two sets of
lights.

A stolen car, travelling at a constant speed of 40 m/s, passes a police car
parked in a lay-by. The police car sets off three seconds later, accelerating
uniformly at 8 m/s®. How long does the police car take to intercept the stolen
vehicle and how far from the lay-by does this happen?

. A particle P, moving along a straight line with constant acceleration 0.3 m/s?,

passes a point A on the line with a velocity of 20 m/s. At the instant when P
passes A, a second particle Q is 20 m behind A and moving with velocity 30 m/s.
Prove that, unless the motion of P and/or Q changes, the particles will collide.

A bus pulls away from a stop with an acceleration of 1.5 m/s? which is
‘maintained until the speed reaches 12 m/s. At the same instant a girl who is 5 m
away from the bus stop starts to run after the bus at a constant 7 m/s. Will the
girl catch the bus?
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FREE FALL MOTION UNDER GRAVITY

In the early days of the study of moving objects it was thought that if two objects
with different masses were dropped, the heavier one would fall faster than the
lighter.  This idea was proved to be false by Galileo in a famous series of
experiments; it is alleged that he dropped various objects from the top of the
leaning tower of Pisa and timed their descents by the Cathedral clock opposite.
Whether this anecdote is fact or fiction, the experiments showed that, regardless
of their mass, all objects which gave rise to negligible air resistance had the same
acceleration vertically downward when falling freely.

This acceleration due to gravitational attraction is represented by the letter g. Its
value varies marginally in different parts of the world but it is acceptable to take
9.8 m/s? as a good approximation. In some circumstances 10 m/s? is good
enough.

An object falling completely freely travels in a vertical line, so problems on its
motion can be solved by using the equations for uniform acceleration in a
straight line.

For bodies that are dropped, the downward direction is usually taken as positive,
i.e. we take the positive value of g for the acceleration.

If, on the other hand, a ball is thrown vertically upwards, the upward direction
could be chosen as positive; in this case the acceleration is —g.

Examples 2b

Take the value of g as 9.8 unless otherwise instructed.

A brick is dropped from a scaffold board and hits the ground 3 seconds later.
Find the height of the scaffold board.

Anything that is ‘dropped from a stationary base is not thrown but released from rest, ic. i
velocity is zero.

‘Taking the downward direction as positi

zzz773 |
! Known: u =0 Required: 5
! a=98
P s
H Using s = w+}ar gives
| 5= 04+4(98)(3Y)

WW 5=
v The height of the scaffold is 44.1 m.
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2. A boy throws a ball vertically upwards from a seven-metre-high roof.
(a) 16, after 2 seconds, he catches the ball on its way down again, with what speed

was it thrown?

(b) What is the velocity of the ball when it is caught?
(c) If the boy fails to catch the ball with what speed will it hit the ground?

‘Taking the upward direction as positive:

(a)

Known: ¢ Required:
a
s
Using s = w+tar’ gives
0 = 2ut§(-98)(4)
u=98

The ball was thrown with a speed of 9.8 m/s.

Known: 2 Required: v
-98
0

Using vi—tar’ gives
w-4(-98)(4)
-98

‘The ball is falling at 9.8 m/s when caught.

The ground is 7 m below the point of projection so the final
displacement of the ball is ~7 m.
Working from the time when the ball was thrown we have:

Known: u =98 Required: v
s=-7
a=-98

Using ¥ o-
v - (93)z 2A-98)(=7)

= 96.04 +137.2 = 233.24

g v=1527..

The ball hits the ground at 15.3 m/s (3 sf).
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Note that in parts (a) and (b) we have shown that & partice thrown upwards
with a velocity u, returns to the same level with a velocity with equal
speed in the downward direction.

One clay pigeon, A, is fired vertically upwards with a speed of 40 m/s and

1 second later another one, B, is projected from the same point with the same
velocity. Taking the acceleration due to gravity as 10 m/s?, find

(2) the time that elapses before they collide

(b) the height above the point of projection at which they meet.
When B has ben in the air for # seconds, A has been in the air for (1+ 1) seconds. (In a case like this,
using ¢ for the shorter time interval aod (1+1) for the longer one, rather than ¢ foc the first

and (1~ 1) for the second, avoids the algebraic mistakes that can occur when minus signs are
involved.)

Taking the upward direction as positive we have:

For A For B
Known: Known:
Required: s Required: s

(a) Using s = ur+jar’ gives:
ForA s =40(t+1) + §(~10)(1+1)
ForB s = 40r+4(-10)

40(0+1) = S(e+ 1) = 400 - 5
= 40-10-5 =10
= 1=35

The projectiles collide 3.5 s after B is fired.

(b) As A and B are at the same height when they collide we can find s for cither of them.
Considering B,
= 40(35) - 5(3.5) = 78.75
A and B collide 78.8 m above the point of projection (3 sf).
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A missile is fired vertically upwards with speed 47 m/s. Find, to 3 significant
figures, the time that elapses before the missile returns to the firing position if it is
projected from a point on

(a) 2 seashore where £ can be taken as 9.819

(b) a high mountain where g can be taken as 9.783

e T"
47 s

7.

We know that the missile will return with a speed of 47 m/s downwards. Taking the upward dircction a5
postive, we have in ither case,

Known: u = 47 Required: ¢

= -4
the value of g
(@) Using v =u+tar with a = —9.819 gives
47 = 4T+(=9819) = (= 9573...
The time of flight of the missile is 9.57 s (3 sf)
(b) Againusing v = u-tar butwith a = -9.783 gives
47 = 4T4(-9T83) = (= 9608...
‘The time of fight of the missile is 9.61 s (3 sf).

A youth is playing with a ball in a garden surrounded by a wall 2.5 m high and
kicks the ball vertically up from 2 height of 0.4 m with a speed of 14 m/s. For how
long is the ball above the height of the wall?
Give answers corrected to 2 significant figures.

We will measure displacement upward from a point 0.4 m above the

A wround
res0n Known: = 14 Required: ¢
N = a -9.8
5 21
Using 5= u+tart gives
21 = li- 497
= 3 -0.7
im0 - 20043 =0
04, 1 is found from this quadratic equation by using the formula.
. m*“ﬁ# = 2,698 or 0.159

The ball is at the height of the top of the wall at two different times. Therefore

it takes 0.159 seconds o reach the top of the wall when going up, and returns to
that height 2.698 scconds from the start. So the ball is above the wall for 2.5 s,

corrected to 2 significant figures.
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EXERCISE 2b

Unless another instruction is given, take g as 9.8 and give answers corrected to

2 significant figures.

A stone dropped from the top of a cliff takes § seconds to reach the beach.

(2) Find the height of the cliff.

(b) With what velocity would the stone have to be thrown vertically downward
from the top of the clif, to land on the beach after 4 seconds?

A partice i projected vertically upwardfrom ground leve with » speed of

24.5m/s.

(a) the greatest height reached

(b)  the time that elapses before the particle returns to the ground.

. A slate falls from the roof of a high-rise building. Find how far it falls

(a) in the first second
(b) in the first two seconds

(c) during the third second.

A ball is thrown vertically upward and is caught at the same height 3 seconds
later. Find

(a) the distance it rose

(b) the speed with which it was thrown.

. A brick is dropped down a disused well, 50 m decp.

(a) For how long does it fall?
(b) With what speed does it hit the bottom?

A boudrsips fom th top of  preipis and full vertialy downwards on
to a plain 200 m beloy

(a) Find, to 3 significant figures, the speed of the boulder when it hits the plain
if the precipice is
(i) in a polar region whm. to four significant figures, the acceleration
due to gravity is 9.830 m,
() in a repion near 1o the cquator where the acceleration due to gravity
is 9.781 m/s? (4 )
(b) Can you find a possible explanation for the difference in the values of g at
the two locations (you may need 10 refer to an encyclopedia).

A parachutist is descending vertically at a steady speed of 2 m/s when his
watch strap breaks and the watch falls. If the watch hits the ground 3 seconds
later at what height was the parachutist when he dropped it?
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A mine inspector has run into trouble 30 m down an open vertical shaft. To
summon help he fires a distress flare straight up the shaft. In order for the flare
10 be scen, it must reach at least 10 m above the ground level. What is the least
speed with which it must be fired?

. A ball is thrown vertically, with a speed of 7 m/s from a balcony 14 m above

the ground. Find how long it takes to reach the ground if it is thrown
(a) downwards (b) upwards.

Find also the speed with which it reaches the ground in each of these cases.

A stone is dropped from the top of a building and at the same instant

another stone is thrown vertically upward from the ground below at a speed of
15 m/s. If the stones pass each other after 1.2 seconds find the height of the
building.

. A youth playing in a yard surrounded by a 3 metre-high wall kicks a football
m/s.

vertically upward with initial speed 15 m,
(a) What is the greatest height reached by the ball?
(b) For how long can it be seen by someone on the other side of the wall?

A small ball is released from rest at a point 1.6 m above the floor. When it
hits the floor its speed is halved by the impact. How high does it bounce?

. A stone is dropped from the top of a building to the ground. During the

last second of its fall it moves through a distance which is 4 of the height of the
building. How high is the building?

A competitor is attempting a dive from a springboard that is 6 m above the
water. He leaves the springboard with an upward velocity of 7 m/s. Taking the
value of g as 10, find the speed at which the diver enters the water and the time
for which he is in the air.

‘The defenders of Castle Dracula dropped large rocks from the battlements
on to an attacking army. If the height of the battlements above the ground was
35 cubits find, in cubits per second, the speed at which the rocks that missed their
targets hit the ground. Take the value of g as 20 cubits per second per second.
(A cubit is an ancient measure of length based on a man's forearm and is
approximately half a metre.)




CHAPTER 3

VECTORS

DEFINING A VECTOR

A vector quantity is one for which direction is important as well as magnitude
(iie. size). We have already met, in Chapter 1, some important vector quantitics.
Displacement is a distance measured in a particular direction, e.g.

*10 miles due north” is a vector,
whereas ‘10 miles” is a distance with no specified direction so is not a vector.
A quantity that possesses magnitude only is a scalar quantity.
Distance is the magnitude of displacement.

Velocity includes both speed and direction of motion, so

*150 km/h on a bearing of 154°" is a velocity and s a vector,
whereas ‘a speed of 150 km/h' is a scalar.
Speed is the magnitude of velocity.

Acceleration is the rate at which velocity is increasing so it follows that
acceleration  depends on both the speed and direction of motion,
ie. acceleration is a vector.

(Note that there is no different word for the magnitude of acceleration. )

Force is another quantity which plays an important part in the study of
‘mechanics. Clearly if a force pushes an object we nced to know both the size
of the push and also which way it is acting, ie. force is a vector.

Force is measured in newtons (N).

VECTOR REPRESENTATION

Any vector can be represented by a section of a line (called a line segment). The
direction of the line gives the direction of the vector and the length of the line
represents the magnitude of the vector.

.
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If the line is labelled AB,

the vector it represents is written AB. = B 5
The order of the letter indicates the direction of /
the vector. | A
(The vector BA is represented by the same line A

but in the opposite direction.)
Alternatively a single lower case letter in the middle of the line can be used.
In this case there must be an arrow on the line to show the direction of the
vector.
In print the letter is set in bold type, e.g. a.

For hand-written work use a or a. —

‘The magnitude of a is written as a

Related Vectors

Two vectors are equal if they have equal magnitudes
and the same direction. a /
b

We write a=b

If the direction of b is reversed then  and b arc
equal and opposite. \ \
We wiite a= b

If two vectors have the same direction
but different magnitudes then one can be

expressed as a multiple of the other, e.g. " ;

b=2a and q=3p \\
In general, if a and b are parallel then

a=kb where k is a constant of proportion and is scalar.

For example, if AB represents a vector P,
then 4p is represented by Ac

where AC=1AB

and 2p is reprcsemod by AD

where AB is extended so that AD = 2AB.
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ADDITION OF VECTORS

Consider what happens if a hiker starts from the corer A of a field, walks for
30m beside the hedge along one side to B and then 40 m along the side
perpendicular 1o the first, to C. The hiker could have reached the same point
C by walking directly across the field (assuming this to be allowed!).

So combining the two displacements AB and BC gives the same final result as
the single displacement AC.
‘This is what is meant by adding vectors and we can write
AB +BC = AC
or ath=c
AC is called the resultant of AB and BC.

Note that, in this context, + means toglhcr with or “followed by’
and = means ‘is equivalent to’

Noleal&!hakmeAweungoloCulh:rdImlyorviathe
vectors AB and BC. The first point and last point are the same in both cases.
Triangle ABC is known as a triangle of vectors and when we use it to add vectors
we are using the triangle law.

Using the Triangle Law

Given two vectors & and b, represented by line segments OA and OF, we can
draw diagrams to represent various combinations of a and b.
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Now a+b means a followed by b. We can represent this by drawing AC
equal and parallel to OB. Then OC represents a+b,
ic.

o d A
Note that we could equally well have drawn b followed by a.

To represent a—b we can draw a followed by —b.

Alternatively we can draw —b followed by a.

5 8
2 2

Any number of vectors can be added by the same process, eg. a+b+e+d

‘means a followed by b followed by ¢ followed by d and can be represented by

O_A', E,FC‘ and CD as shown.
s 8

A ¢

b

From the diagram we see that OD is equivalent to OA + AB + BC + CD
ie. OD = a+b+c+d
So OB is the resultant of a, b, ¢ and d

Note that the arrow we use for marking a resultant vector is larger than those
used for the vectors being added.
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. In a triangle ABC, M is the midpoint of AC. AB =2 and BC =

clmmmtm-.b.mmmaum ¥
T ¢ OA, OB and OC as shown, sket
diagram to illustrate -+b+:

B
24 b+ € means a followed by b ollowed by € s0 we draw OA followed by a fine AD, equal and paralll
10 OB, followed by a line DE, equal and paralel to OC.

A

OF represents 8+ b+e¢.

Find, interms of aand b, (a) AC  (®) CA () AM  (4) MB.
In the dingram, AC i equivalent to AB followed by BC.

(a) AC = AB+BC

® TK

» (©) AM = 4AC
Ha+d)
(d) In triangle MAB,
b

d MB = MA+AB =

ME =
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PQRST is a polygon in which PQ
(a) Find the vector represented by PS.
(b) Describe the line that represents (p-+q+7+3).

(a) From the diagram we sce that S is
eqmvakm to PQ + QR + RS
+atr

(b) P+@+r+s is represented by PT

{(p+atres) is represenied by § of FT

$(Pp+q+r+s) is represented by PW  where PW =

4A P,anmfmmmmnAthx’abm
AR =9b — 4a. Show that P, Q and R are collinear.

Collinear means ‘i the same straight line’. For P, Q and R 10 be collinear, PQ and QR (or PR) must
be parallel.

PG = PA+AQ = ~2a+3b

QR = QA +AR = -3b+(%—dn)
= —4a+6b

Hence QR = 270

ie. QRis parallel to PQ

P, Q and R are collincar.
6b — 4

5. In the triangle OAB, OA =3a, OB=3b, 0Q=}0A and OP =}OB.
AP and BQ meet at R.
(a) Express PA and QB each in terms of 2 and b.

(b) Given that QR =4QB and PR =APA, find two expressions for OR in
terms of a, b, & and k by considering
() AOQR (i) AOPR.

(c) By equating these two expressions find the value of k and hence find the ratio
in which R divides QB.



PO+0K = }BO+0A = -b+3a
QB = Q0+ 0B = JAC+0B = —a+3b
() () OR =0Q+QR = 0Q+kQB
= 2+4k(3p

)
(i) OR = OB +PR = b+h(3a—b)

b+h(3a—b)
= (1-k)a+3kb = Ya+(1-hb

©

‘These vectors can be equal only if they are identical, .. the coeicieats of both 8 and b must be equal.
ie.  1-k=3h and 3k = 1-h
1k = 3(1-3k) = 8k =2

QR = QB and RB = }QB
R divides QB in the ratio 1:3.

EXERCISE 3a

Express, in terms of a and b, the vector represcated by
(@) AB (b) BA.
A

2. Given the vectors p, q and r as shown,
draw diagrams to illustrate

(@) ptr (b) a-p (c) r-q
@ pta-r (@ r




=
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Find the vector represented by
@ PG () QR (o) PR
Give your answers in terms of p, q and ¥.

In the diagram, OA =a, OB =b and C is the 9
midpoint of AB.  Express cach of the following vectors v
in terms of 2 and b. o

(@) AB (b)) AC (c) BC —<

In a quadrilateral ABCD, AB=a, BC=b, and CD=c. Expressin
terms of a, band ¢,

@ AC (b) BD () DB () DA

Draw diagrams to illustrate each vector equation.

(a) AB=2PQ (b) AB-CB=AC (c) AB+ BC =3AD

In triangle ABC, D bisccts BC. Prove that BA + AC = 2DC.

In a regular hexagon PQRSTU, T s
QR represents a vector a and
UR represents a vector 2b.

Express in terms of a and b the vectors v "
represented by 0
@ P ® ST @ qf L

In triangle ABC, P and Q are the midpoints of AB and BC respectively. Us
vectors to prove the midpoint theorem, 6. that PQ s paralle to BC and hal its
length.

Given a pentagon ABCDE, R
(a) express as a single vector
(i) AB+BC+CD
(i) BC+AB
(i) AB-AE \ {
(b) find two ways in which AD can be expressed as a sum or difference of a
number of tors..
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11. In the diagram, A, B and C are collinear. Find the value of k.

A

of C
b

12. In the triangle ABC, AB =2a, AC =2b, Eand F are the midpoints of
AC and AB. BE and CF meet at G.

s

(a) Express BE and CF each in terms of a and b.

(b) EG=hEB and FG=KFC. By referring to triangles AFG and AEG,
express AG as a sum of vectors in two different ways and hence find the
values of 4 and k.

(c) In what ratio does G divide BE?

RESULTANTS AND COMPONENTS

At this stage in the book the work begins to require some knowledge of
trigonometry. Any readers who have not yet acquired this skill should postpone
going further with this chapter until they have studied the basics of trigonometry.

When two (or more) vectors are added, the single equivalent vector is called the
resultant vector. The vectors that are combined are called components.

Consider the example of a heavy crate being pulled along by two ropes. The unit
in which the forces in the ropes are measured is the newton (N).
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Although the ropes are pulling in different directions, the crate moves in only one
direction. This is the direction of the resultant of the tensions (i.c. the pulling
forces) in the ropes. By drawing a triangle of vectors we can find both the
‘magnitude and the direction of the resultant force. (Remember that we use a
larger arrow for the resultant. )
c
Resulant force

A< 0N
SN~
B
Note that a triangle of vectors does not necessarily give the positions of the
components or the resultant. In this case, for example, each of the components
acts on the crate so the equivalent resultant force also acts on the crate.

C 7

40

The magnitude and direction of the resultant force can be found by calculation.

In AABC: AC' = AB’ +BC’ 5o AC represents 50 N o
and ““f =3 (tan =) ~ 30N
= A = 37° (nearest degree) NTB

Hence the resultant force is of magnitude 50 N acting at an angle of 37° to AB.
The calculation is easy because the components are at right angles.

“This example can be extended to a general case ¢
where two vectors AB B and BC are perpendicular.

If the magnitudes of AB and BC are pand g, the o' 7, '
magnitude of the resultant vector AC is given by > B
V(P +4). M

An alternative method is to draw, to scale, AB followed by BC and then
join the starting point to the finishing point. The magnitude and direction of the
resultant can then be measured from the drawing.

Scale drawing can be used also to find the resultant of any two or more vectors;

this avoids the trigonometric calculations involved when the vectors are not
perpendicular to each other.
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Examples 3b

by calculation, the resultant of two velocities if one is 7 km/h south west
and the other is 12 km/h south east.

A sketch s drawn starting with a fine represeating one velocity followed by a line representing the otber
one.

AB represents 7 km/h south west.
BC represents 12 km/h south east.

AC represents the resultant velocity. A
In AABC,  AC? = AB?+BC? = 193 y
g AC = 139(3sf) B
tan A = BC/AB=% = 1714
A = 60° (to the nearest degree) 2
the bearing of AC is 225° ~ 60° = 165°
The resultant velocity is 13.9 km/h on a bearing of 165°. ¢

A light aircraft is fiying in still air at 180 km/h on a bearing of 052°. A steady
wind suddenly springs up, blowing due south at 70 kmy/h. Find, by scale drawing,
the velocity of the aircraft over the ground.

To find the resultant velocity we add the velocites of the plane and the wind.

Scale: 1 cm to 20 km/h

z
2

Measuring from the drawing gives the resultant velocity as
148 km/h on a bearing of 074°.

An alternative method of solution would be 10 use the cosine rule followed by the sine rule.
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3. ln 2 test of strength, a team of four competitors lnmplx o move a large sack
of stones, cach one pulling a rope attached to the sack. The magnitude of the force
exerted by each competitor is shown in the diagram. it vans foree acting
on the sack.

We can find the resultant by drawing lines representing, (o scak, the forces taken i order aod then
joining the first point 0 the last.

Using a scale of 1 em 1o 50 N, the forces are represented by AB, BC, CD and
DE. The resultant is then represented by AE.

The resultant is a force of 220 N inclined at 108° to the force of 200 N.

If one of two components is given and the resultant is known, the other
component can be found by adapting this method.
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4. The pilot of a light plane with a speed of 160km/h when the air is still has to
fly from a base B to an airfield A that is on a bearing of 130° from B. The pilot
learns that a wind is blowing at 40km/h due east.

(a) On what bearing should he set his course in order to fly directly to the

(b) What is the speed of the plane over the ground?
(¢) If the distance AB is 240 km, how long does the flight take?

“The resulant velocty of the plane i n the dirsction BA but we do not know is magnitde.
T diection i which the plane snat et ot kpown bt 1he agpifde o 160 h.
The velocityof the wind is Known in magtude and diection.

Draw a skeich saring with a line BC (0 represent

the wind velocity. From B draw  line on & 8l

bearing of 130° 1o represent the resultant velocity;

the length of this i is unknown.

From C a line represnting the basi velociy of

the plane, i. 160Kkm/h, must be drawn 10 complete

a trangle BCD where D is a point on the resultant

velocity. This trangle gives the direction of CD and

the lengih of BD. (To do this accurately we would
compas and, with centre C, draw (0 scale an

arc of radius 160 1o cut the line representing the

resultant velocity.)

A scale drawing can now be made based on this sketch.

e spac is it here the scale s f e 10 40k, bt i practicea lrger sl shoid be
used o allow greater accurucy of measu

Scale: 1em to 40km/h

(a) The course to be set is 139° (3 ).
(b) The speed over the ground (BD) is 189km/h (3 sf).
(¢) 240km at 189km/h takes 1 hour 16 minutes.
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EXERCISE 3b

In questions 1 10 10, find the resultant of the given vectors. Use cither
calculation o scale drawing and remember always to give both the magnitude
and the direction of the resul

. A displacement of 12 km south followed by a displacement of 5 km east.

A displacement of 5 km east followed by a displacement of 12 km south.

Is there any difference between your answer to this question and the answer to
question 17

A velocity of 24 m/s north and a velocity of 7 m/s east.

A force of 12 N west and a force of 16 N south.

Displacements of 10 m east and 12 m north east.

Two velocities, one of 4 m/s south and the other 5 m/s on a bearing 120°,

. The two forces shown in the diagram (the direction of the ToN

resultant force can be given as an inclination to either of the  go
given forces ).

s
Z "i‘“" The two velocities shown in the diagram.

Displacements of 10 m cast, 14 m north and 21 m on a bearing of 260°.

A man leaves his home by car and travels § km on a road running due cast.
The driver then turns left and travels 2 km due north to a junction where he joins
a road that goes north west, and drives a further 2 km. Find, from a scale
drawing, his displacement from home by then.

. An aireraft, flying with an engine speed of 400 km/h, is set on a course due

north, in a wind of speed 60 km/h from the south west. At what speed and in
what direction is the aircraft covering the ground?

On an orienteering exercise a woman starts from base and walks 500 m on a
bearing of 138" and then 750 m on a bearing of 080°. What is her displacement
from base? What bearing should she set to return to base?

In questions 13 and 14, a river running from north to south is flowing at 3 km/h.

. A girl who can swim at 4 km/h is aiming directly across the river from east

to west. Find the actual direction of her course across the river and the speed at
which she passes over the river bed.
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4. Another girl, who also swims at 4 km/h, notices that her friend is not
‘moving straight across the river and works out how to go directly across. Draw
a sketch of the way she does it and find the speed at which she crosses.

15. A plane leaves an airfield P, flying in a wind of 50 km/h blowing in a
direction 048°. The plane arrives at an airficld Q, 400 km due cast of P, 2 hours
later. By making an accurate scale drawing find the plane’s engine speed and the
bearing the pilot set for the flight.

16. A fisherman wants to row from one
side, P, of the harbour to the other, Q.
He can row at mph when the water
is still. There is a tide running out of

the harbour at 4 mph. P
(a) If he steers the boat in the direction PQ, ﬁ_“ ap T;Z

in which direction will he actually move
over the sea bed?

(

=z

Find the direction in which he must steer in order to cross over directly.

FINDING THE COMPONENTS OF A VECTOR

We have seen that two vectors can be combined into a single resultant vector.
Nuwwemllexamxmllwnvcxscpmm.lc the replacing one vector by an
equivalent pair of vectors. This process is called resolving a vector into
components.

Snpposc for example that a vector of magnitude 10 m east is to be replaced by
two components, one of them due south and the other north east.

In the diagram, AC represents the given vector. 0
AB represents the component due south and

BC represents the component north east.

The directions of these components are known but
their magnitudes are not.

However, the lengths of the lines AB and BC, and
hence the magnitudes of the components, can be
found.

AABC s an isosceles right-angled mangk, lhmfore AB=AC=10.
Also Pythagoras’ theorem gives BC’ = = BC=141 (3sf)

B

Therefore the required components are 10 m due south and 14.1 m north east.
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Perpendicular Components

A vector can be resolved into an infinite variety of components in different

directions but the most useful components, and the casiest to find, are a
icular pair.

Consider, for example, a plane taking off at an angle of 30° to the runway at

150 km/h.

The horizontal and vertical components of the velocity can be found by using
trigonometry, i.e.

the horizontal component is given by PQ = 150 cos 30° = 130 (3 sf)
and the vertical component is given by QR = 150 sin 30° = 75.

Calculating the components of a vector plays a very important part in solving
mechanics problems so it is important that they can be written down
mmdmly in the form above.

Any reader who, up to now, would first have written down % = s W°

should practice going straight to the form PQ = 150 cos 30°; otherwise a
great deal of time will be wasted.

Examples 3¢
. A skier ascends at a constant speed of 5 m/s in a chair lift inclined at 27° to the
horizontal.
(a) Find the horizontal and vertical components of her velocity.

(b) What difference s there between the components found in part () and the
horizontal and vertical components of the velocity of the chair as it returns to
base at the same speed?



() c
Smis
x s
AB =5 cos 27°
", the horizontal component is 4.46 m/s (3 sf).
BC = §sin 27°

. the vertical component is 227 m/s (3 sf).

(b) As the chair descends, each velocity component has the same magnitude, but
is in the opposite direction, from that in part (a)

“This can be indicated by a minus sign,
iie. the horizontal component is —4.46 m/s
and the vertical component is —2.27 m/s.

2. A force of 98 N is pressing vertically downward on the inclined face of a wedge.
1f the angle of inclination of the wedge is 40° find the components of the force
parallel to, and perpendicular to, the face of the wedge.

The required components, although not horizontal and vertical in this case, are perpendicular and can
again be found from a right-angled triangle

I3

PQ = 98sin40° = 62.99...
QR = 98 cos 40° = 75.07...
Therefore, to 3 significant figures,

the component parallel to the face is 63.0 N
and the component perpendicular to the face is 75.1 N.
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EXERCISE 3c

. For each triangle write down an expression for the required side directly as a
product of AB and a trig ratio of the given angle.

T
f =h

In each question from 2 to 7 find the horizontal and vertical components of the

given veetor, indicating the direction of each component by an arrow on a diagram.

V

6 —p——o
W0
120 ki
7 oy
40 mis

In each question from § to 15 find the components parallel to and perpendicular
10 the inclined line.

8.
208 'S mis

g
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15.

. A stone is thrown up at an angle of 20° to the vertical with an initial velocity

of 35 m/s. What are the initial horizontal and vertical components of the
velocity of the stone?

. A train s travelling at 125 mph on a railway line that runs N 24°E and the

direction of a canal is due cast. Find the components, parallel and perpendicular
to the canal, of the velocity of the train.

A boulder is falling vertically downward towards a hillside inclined at 23° to
the horizontal. Its velocity just before impact is 176 m/s. Find the components
of this velocity, parallel and perpendicular to the surface of the hillside.

The diagram shows a rectangular field with dimensions 120 m by 88 m. A boy
pulls a truck directly from A to C with a force of 100 N. Find the components
of this force parallel and perpendicular to AB.

120m
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CARTESIAN UNIT VECTOR NOTATION

A vector which has a magnitude of 1 is called a unit vector, irrespective of its
direction.

There is, however, a set of special unit vectors cach of which has a direction along
one of the Cartesian axes of coordinates.

A unit vector in the direction of Ox is denoted by i, and §
a unit vector in the direction of Oy is denoted by j. ‘o .

Avector 2i+5j is made up of

2 units in the positive direction of the x-axis
together with

5 units in the positive direction of the y-axis,
ic. AB represents the vector 2i + 5§

Similarly 2i -5} is made up of

2 units in the positive direction of Ox
together with

5 units in the negative dircction of Oy |
ic. PQ represents the vector 2i - 5 |

Any vector in the xy plane can be given in terms of a multiple of i together with
a multiple of j.

For this reason i and j are called Cartesian base vectors.
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OPERATIONS ON CARTESIAN VECTORS

Modulus

In this diagram AB = 3i+4

The length of ABis /(3 +4) = 5

This is the magnitude, or modulus, of 3i +4j
We denote the modulus of the vector by [31 + 4|

ie. Pi+di| =5

Further, tanA=% = A =53 (nearest degree)
50 3i+4j is a vector with magnitude 5 units at 53° to AC.
‘This direction can also be described as being at 53° to the direction of i.

Addition and Subtraction

We know that the resultant, i. the sum, of two vectors AB and BC, is given
by drawing AB followed by BC and joining A to C.

If AB and BC arc given in i j form, they can be drawn in the xy plane and
their sum ‘read’ from the graph. .
For example, if AB =2i+5j and BC
AB +BC isseentobe 9i+j whichis

(2+7)i+(5-4)

In general,
(ai+bj) + (pi+4i) = (a+pli + (b+q)j
i.e. we add the coefficients of i and add the coefficients of j.
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Now suppose that we want to subtract Ti—4j from 2i+ 5j.

I I

i

We draw 2i+ 5§ (ﬁ) followed by a vector equal to 7i —4j but in the
opposite direction, i.c. ~7i+4j (BC).

The resultant this time is seen to be —5i+9j which is
2-T)i + (5-[-4)i
In general,
(ai+bj) - (pi+qh) = (a—pi + (b-q)
‘This time we subtract the coefficients of i and of j.

Examples 3d

Taking i as a unit vector due east and j as a unit vector due north, express in
the form ai+5) a vector of magnitude 24 units on a bearing of 220°.

AB = 24 cos 40° = 18.4(3s)
BC = 245in40° = 154 (3sf)
AC = AB+BC

= —18.4§+(-1541)

The required vector is —15.41 — 18.4f
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2. A vector V is in the direction of the vector 12i — 5] and its magnitude is 39.
Find V in the form ai + bj.

Vis parallel to 12§ - 5}
Vo= k(12— 5)) = 12ki- Sk
v

12k — Skj| 5
= VI(I2kY +( = 5k)°]

= V(169k%) = 13k ey
si
But V] =39 éﬁ
L k=39 k=3

=

V = 36i - 15§
EXERCISE 3d
1. Express each given vector in the form ai + bj
@ 4] T @ [
|
Ry JiEE 1
7 )
[l Bl
® ¥ e [T HT
= i i
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Vectors.
Find the modulus of each vector given in question 1.

Taking i as a unit vector due cast and j as a unit vector due north, express in
the form al + b,

(a) a vector of magnitude 14 units on a bearing 060°

(b) a vector of magnitude 20 units on a bearing 180°

(¢) a velocity of 7 units south west

(d) a displacement of 400 units in the direction of 31 + 4j.

In each question from 4 to 6, find (a) a+b (b) a-b
and illustrate the results in a diagram.

a=6i+j, b=3i-5
a=i b=
a=-2-j b

In questions 7to 11, p=4i—3j, q=-121+5), r=i-}

Find (a) |p] (b) |al (c) [r, giving the answer as a square root.
Find a vector in the dircction of p and with magnitude 30 units.
Find (a) the resultant of qand r (b) |q-+1]

Find two vectors, each with a magnitude twice that of p and parallel to p
(remember that parallel vectors can be in the same or opposite directions).
Find a vector v such that

(a) |vj=35 and vis in the direction of q+ Sr
(b) vis parallel to p—q and is half the size of p
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FORCE

THE CONCEPT OF FORCE

So far in this book we have been dealing mainly with motion ( kinematics ). Now
we must consider how motion of different kinds is caused (dynamics).

Force is such an everyday quantity that we all have an intuitive idea of what it is.
‘We know that to move a heavy cabinet across a room we push it; to raise a
bucket of cement from ground level to roof height, a builder pulls it up.
Pushes and pulls are both forces and these simple situations illustrate that
force is needed to make an object start to move.

On the other hand, a runaway shopping trolley can be stopped cither by getting
in front of it and exerting a push, or by holding it from behind and pulling. So a
force can also cause a moving object to begin to stop.

Now consider what happens when someone who is holding a stone lets it drop.
The stone begins to move downwards. What makes it move? Something must
be pulling it down. That something is the weight of the stone; weight is the name
we give to the force that atiracts each object 1o the earth, i.. the force due to
gravity.

A book resting on a horizontal surface, on the other hand, does not fall down, so
a force must be preventing it from falling. This is the force exerted by the surface
to hold the book up. As the book does not move we deduce that this force
(upward) and the weight of the book (downward ) must balance.

When an object does not move, we say that the object, and the forces that act on
it, are in equilibrium.

Conventions

Mechanics is a complex subject and it is impossible to deal with all aspects of the
topic at the beginning. So certain simplifications have to be made in order to deal
with one idea at a time. You will see that, although some of these
approximations are t0o ideal to be factual, they are reasonably close to reality
and make it possible for a student to absorb the principles of mechanics
without being hampered by too many details at this stage.

70
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A small object is regarded as existing at a point and is called a particle.

An object whose mass is small is considered to be of negligible weight. It is called

light and its mass is ignored. Such an object may be a particle or it can be a fine

string, wire or rod. (Note that ‘small’ is a comparative term, e.g. a person could

be thought of as a ‘small object and treated as a weightless particle in relation to

the Forth Bridge, but certainly not in relation to a chair.)

A flat shape whose thickness is small is regarded as being two-dimensional and is

called a lamina.

Any object attached rigidly to the earth is called fixed and is considered to be
immoveable, hence forces that act on a fixed object are disregarded.

TYPES OF FORCE
Forces of Attraction

Gravitational attraction is the most important force of this type and almost the
only one we shall meet in this book. The gravitational attraction of the earth on
an object (also referred to as a body ) is called the weight of the object and its acts
vertically downward on the object. It is almost always given the symbol W.
The effect of weight can be seen when an object falls and also it can be felt when
an object is held, i.e. the weight of an object acts on it at all times whether the
object is moving or not.

(There are other forces of attraction such as those between a magnet and an iron

object.)

Contact Forces

Consider again a book resting in contact with a horizontal surface. The force
excrted upward on the book by the surface is a contact force called a normal
reaction. A normal reaction acts in a direction that is perpendicular to the
surface of contact and away from that surface. So in this case the normal
reaction acts vertically upward on the book.

The two forces acting on the book,
ie. the normal reaction, R, and the weight, W,
are shown in the diagram.
w
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Now suppose that a small push P is applied horizontally to the book. If the book
and the surface do not have a slippery covering, it s quite likely that the book will
not move. Why not? There must be another force, equal and opposite to the
push, balancing it. This is a frictional force. Friction can occur only when
objects are in rough contact, so it is another example of a contact force.

A frictional force acts on a body along the surface of contact and in a direction
which opposes the potential movement of that body.

‘This diagram shows all the forces acting on the s
book.

W

Itis very rare for there to be no friction at all between an object and a surface but
there can be so little that its effect can be discounted. In this case the contact is
said to be smooth.

Forces of Attachment

Consider a mass, hangmg by a string from a fixed point. The <
‘mass does not move so its weight acting downward must be
balanced by an upward force.

‘This force is the fension in the string; it is a force of attachment.

Note that a string can never push and it can pull only if it is taut.
For a simple attachment, a string cannot be taut at one end and
slack at the other, so a taut string exerts an inward pull at each
end on the object which is attached at that end.

Another way in which objects can be attached to each other is by means of a
hinge or pivot. So the force exerted by a lungc is another force of attachment.
One difference between it and the tension in a string is that a hinge can push
as well as pull; another is that the direction of a hinge force is not usually
known whereas the tension in a string acts along the string.

‘We may meet other forces occasionally, such as wind force, the driving force of
a vehicle etc., but the vast majority of the forces involved at this level belong to
the three types described above, ie. gravitational attraction, contact and
attachment.
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DRAWING DIAGRAMS

When considering any situation concerning the action of forces on a body the

first, and vital, step is to draw a clear, uncomplicated diagram of the forces

acting on the ol

Some useful points to remember are:

@ Unless the object is light, its weight acts vertically downwards.

® If the body is in contact with another surface, a normal reaction always acts
on the body. In addition, unless the contact is smooth, there may be a
frictional force.

® Ifthe body is attached to another by a string or hinge, a force acts on the body
at the point of attachment.

“There is a common misconception that, allthe time an object is moving, there has

to be a force in the direction of motion. This is not true. One of the types of

force described earlier in the chapter may be acting in the direction of motion

but if none of them is, do not fall into the trap of introducing an ‘extra’ force.

‘Two or more objects may be linked, or may be in contact with each other. When

considering one of these objects, make sure that you draw only those forces that

act on that separate part and do not include forces which apply to another part of

the system. This applies particularly in problems where two objects are attached

to each other; if they are connected by a string, one object is affected only by the

tension at the end of a string to which it is attached - the tension at the other end

acts on the other object.

Finally, do not draw too small a diagram and make the force lines long enough
to be seen clearly.

Examples 4a

Each of the ollowing exampls decribes 2 stumion 154 shovws bow & working
diagram can be dra

1. A small block is sliding down a smooth inclined plane.

&

7

{The normal resction i pependiculr o the plane which i the
surface of cont
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2. A load is being pulled along a rough horizontal floor by a rope inclined at 50° to
the floor.

“The frictionat force acts along the plane in the direction opposite 1o the motion of the load.

w

A uniform Iadder rests with its foot on rough ground and the top against a
‘mass of a uniform body is evealy distributed, so the weight of a
uniform ladder acts through the midpoint. )

&

7.
W
At the fool, the normal reaction is perpendicular to the ground. The frictional force acts along the
ground and towards the wall because, if the ladder moved, its foot would slip away from the wall
At the top of the ladder the normal reaction is perpendicalar to the wall and there is no frction. The
weight of the ladder acts through the centre of gravity (the point of balance of the ladder).
4. A uniform beam is hinged at one end to a wall to which it is inclined at 60°. It
is held in this position by a horizontal chain attached to the other end.

The direction of the force that the hinge exerts on the beam is not known at this stage 50 we cannot
mark it at any specific angle.
(Later o we will see how 1o determine this angle.)
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5. A truck is attached by a rope to an electric-powered engine which is being driven
along a horizontal smooth track.

Coudring he euck, the only (o sting as the m‘m ofth ruk, the vertical normal i
‘Note tha he riving
rmontemumu-mmunm|mnummummmm..vuu.mxmrnm.d

Acting on the engine alone we have the weight,the normal reaction, th driving (orce and the tension in
the rope which acts towards the centre of the rope (ic. it is & a..; on the engine).

6. A particle is fastened to one end of a light string. The other end of the string is
held and the particle is whirled round in a circle in a vertical plane.

i

/

/

W
“The only forces acting on the partcle are ts weight and the tension in the string. There s no force in the
direction of motion of the particle.
EXERCISE 4a

In each question from 1 to 6, copy the diagram and draw the forces acting on the
given object in the specified situation. Take any rod, ladder etc. as being uniform.

1 ’ 2 ﬁ
A block at rest on a smooth A plank resting on two supports,
horizontal surface one at each end.



~
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A rod hinged to a wall and held in a A small block at rest on a rough
horizontal position by a string inclined plane.

A light string fixed at one end has a A small picture supported by two
particle tied to the other end being cords.

pulled aside by a horizontal force.

For the remaining questions draw a diagram of the specified object and mark on
the diagram all the forces acting on the object.

A ladder with its foot on rough ground is leaning against a rough wall.

. A particle is attached to one end of a light string whose other end is fixed to a

point A. The particle is
(a) hanging at rest

(b) rotating in a horizontal circle below A

(¢) held at 30° to the vertical by a horizontal force.

A stone that has been thrown vertically up into the air when it is
(a) going up (b) coming down.
A rod of length | m is hmged at one end to a wall. It is held in a horizontal

position by a string joining the point of the rod that is 0.8 m from the wall, t0 @
point on the wall 1 m verscally above A.

A shelf AB is supported by two vertical strings, one at each end. A vase is
placed on the shelf, a quarter of the way along the shelf from A. Draw scparate
diagrams to show the forces acting on

(a) the shelf (b) the vase.
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Two bricks are placed, one on top of the other, on a horizontal surface.

Draw separate diagrams to show the forces acting on

(a) the top brick

(b) the lower brick.

. A beam is hinged at one end A to a wall and is held horizontal by a rope attached

to the other end B and to a point on the wall above A. The rope is at 45° o the
wall. A crate hangs from B. Draw separate diagrams to show the forces acting on

(a) the beam
(b) the crate.

. The diagram shows a rough plank resting on a cylinder and with one end of
d.

the plank on rough groun

Draw diagrams to show:
(a) the forces acting on the plank,
(b) the forces acting on the cylinder.

. A person standing on the edge of a flat roof lowers a package over the edge,

by a rope, for a colleague to collect. Draw diagrams to

() the forces acting on the package

(b) the forces acting on the person on the roof (use a pinman to represent the
person).

FINDING THE RESULTANT OF COPLANAR FORCES

It is quite common, as we have seen from the examples above, for an object to be
under the action of several coplanar forces (i.e. all in one plane) in different
directions. To investigate the overall effect of these forces we need to be able
to find their resultant.
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In Chapter 3 we saw that the magnitude and direction of the resultant of two
perpendicular forces was easy to find. For more than two forces, however,
scale drawing and measurement was used. As this method gives only a rough
result we are now going to consider a way to calculate the resultant of any set
of coplanar forces.

To do this we choose two i directions and find the f all
the forces in these directions ie. we resolve each force in these directions.
Components in a chosen direction are positive while those in the opposite
direction are negative.

By collecting each set of components we can now replace the original set of forces
by an equivalent pair of forces in perpendicular directions.

Note that defining a direction as, say, ‘along an inclined plane’ is ambiguous
because it could mean cither up or down the planc. A simple way to clarify
the definition is to add an arrow in the correct direction.

Consider, for cxample, a particle resting on a rough plane inclined to the
horizontal at 30°. The forces acting on the particle arc shown in the diagram.

As the normal reaction and the frictional force are perpendicular to each other, it
is sensible to resolve each force in these two directions, i.. along () and
perpendicular (') to the plane, iie.

| Friction | Reaction |  Weight
Component | —F | 0| Wsin30°
Component \ | 0 | R | -Weos30®

Now we can collect the components of force down and perpendicular to the
plane and to indicate these operations we write:

Resolving .~ gives  Wsin30°—F U]
Resolving "\ gives  R— W cos 30° [¥]
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Calculating the Resultant

If the expression [1] on p. 78 is represented by X and expression [2] by ¥, we have

X = Wsn30°-F )y
Y = R—Wcos 30°
‘The magnitude of the resultant, R, of X and Y is x
V(X +1?) N
and R makes an angle « with the plane where A
tana = Y/X X
In a case where each of the forces is given in the form ai+ bj the forces are
already expressed as components in the directions of i and j and it remains
only to find X, Y and R.

v

Examples 4b

A uniform ladder of weight W rests with its top against & rough wall and its foot
on rough ground which slopes down from the base of the wall at 10° to the
horizontal. Resolve, horizontally and vertically, each of the forces acting on the
Indder.

Drawing the components of Ry and F; on separate small diagrains can help.

A Rrcosie Fsinior

o Fuom 107
Resolving — gives Ry~ F cos 10° + Ry sin 10°
Resolving | gives  Fi— W+ Fysin 10° + Ry cos 10°
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2. l-.udmem.gumdeum-emlumumumurmm 3+Si, T, —4i+10,
and i+3 FEach force is measured in newtons.
nmm..ghm«nmmmnmmmmn
Let the resultant be Xi+ Yj

Xi+¥j = 3i+30) + (=) + (~4i+11§) + 5i + (i+3)
G445+ + (5-7+11+3)

i+ 12)
514 120] = V(254 144) = {
ana = 2 =24 I A "[
a = 67° (nearest degree) |
The resultant is 13 N at 67° to i =y

3. Find the resultant of the forces of 4, 6, 2 and 3 newtons shown in the diagram.

3%

Let the resultant have components X and ¥ newtons in the
directions shown.

oy %
Resolving the forces along Ox and Oy we have:
Resolving — X = 4+ 6cos 60° - 2 cos 60° (remember that cos 60" = § )
443-1=
Resolving 1 6 sin 60° — 3+2 sin 60°
= 8x08660-3 = 3.928
If the resultant force is R newtons
R = J(X}+Y?) = /(6 +3928)
=717 @sh) 28 i
and  wna =L = 39 _ 65 |
X6 3
= @ =33 (nearest degree)

Therefore the resultant force is 7.17 N at 33° to the force of 4 N.
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Sometimes the directions of a group of forces are given with reference to the
sides, diagonals etc. of a polygon; the magnitudes of the forces are given
separately.

It is important to realise that, in such cases, the forces are not necessarily
represented by the lengths or positions of the lines in the polygon.

. ABCDEF is 1 regular hexagon. Four forces act on a particle. "The forces are of
magnitudes 3N, 4 N, 2 N and 6 N and they act in the directions of the sides AB,
AC, EA and AF respectively.

Find the magnitude of the resultant force and the angle it makes with AB.

g B 3

Let the resultant have components X newtons and Y newtons, parallel and
perpendicular to AB as shown.

Resolving — X = 3+4 cos 30° — 6 cos 60°

3434643 = 3464

Resolving |

= 45in 30° - 2 4 6 sin 60°
=2-2+519 = 5.19

If R newtons is the resultant force then, correct to 3 significant figures,
R = X'+ ¥ = 12427 =
R=y®
Y _ 519

nd =L -32%
a ana = ¢ = o ¥

The resultant force is /39 N at 56° to AB (nearest degree).



EXERCISE 4b

In each question from 1 t0 6, find the magnitude of the resultant of the given
vectors and give the angle between the resultant and the direction of the positive

x-axis.
1 on
N
9) N
3N
2 SN
N
an
3N AN
3.
10N
N
B3

ABCD is a square

In each question from 7 to 10,

(a) illustrate the vectors by a sketch
(b) express, in the form ai+ bj,

3N
4 2 .

B

G, D

An®

ABCDEFGH is a regular octagon.

the resultant of the given vectors

(¢) find the magnitude of the resultant and give the angle that the resultant

makes with the vector i.

7. Four forces, measured in newlons, represented by
4i-3j, i+6j, -2i+5j, and 3i
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Velocities, in metres per second, represented by
M-T), -3i+8), 243 8 and i+)

Displacements, measured in metres, represented by
=6i+J, 20-5), i+4) and 3i+2j

Forces, in newtons, represented by
2+2, i-Th —6i+]

. ABCD is a rectangle in which AB=4 mand BC=3m. A force of

‘magnitude 3 N acts along AB towards B. Another force of magnitude 4 N acts
along AC towards C and a third force, 3 N, acts along AD towards D. Find the
‘magnitude of the resultant of these forces and find the angle the resultant makes
with AD.

A surveyor starts from a point O and walks 200 m due north. He then turns
clockwise through 120° and walks 100 m after which he walks 300 m due west.
What is his resultant displacement from 0?

. Three boys are pulling a heavy trolley by means of three ropes. The boy in

the middic is exerting a pull of 100 N. The other two boys, whose ropes both
make an angle of 30° with the centre rope, are pulling with forces of 80 N and
140 N. What is the resultant pull on the trolley and at what angle is it inclined
to the centre rope?

. Starting from O, a point P traces out consecutive displacement vectors of

2A+3), —i+4), Ti-5 and 1+3)
What is the final displacement of P from O?

. A river is flowing due east at a speed of 3 m/s. A boy in a rowing boat

who can row at § m/s in still water, starts from a point O on the south 'vank and
steers the boat at right angles to the bank. The boat is also being blown by the
wind at 4 m/s south-west. Taking axes Ox and Oy in the directions east and
north respectively find the velocity of the boat in the form pi+¢j and hence
find its resultant speed.

¥

72 72N
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A small boat is travelling through the water with an engine speed of 8 km/h.

It is being steered due cast but there is a current running south at 2 km/h and
wind is blowing the boat south-west at 4 km/h. Find the resultant velocity of the
boat.

. Velocities of magnitudes 5 m/s, 7 m/s, 4 m/s and 6 m/s act in the directions

north-cast, north, south-cast and west respectively. Taking i and j as unit vectors
cast and north respectively,

(a) draw a sketch showing the separate velocities

(b) find, in the form ai+bj, the resultant velocity

(c) find the bearing of the resultant velocity

(d) find the resultant speed.

ABC is an equilateral triangle and D is the midpoint of BC. Forces of
magnitudes 8 N, 6 N and 12 N act along AB, AC and DA respectively (the order

of the letters gives the direction of the force). Find the magnitude of the
resultant force and the angle between the resultant and DA.



CONSOLIDATION A

SUMMARY

Motion

For motion with constant speed:
distance = speed x time
total distance
average speed = ———
e total tme
Velocity is the rate of increase of displacement.
Acceleration is the rate of increase of velocity.
Using a displacement-time graph
The velocity at a particular time, , is given by the gradient of the tangent to the
graph at that value of 1.
Using a velocity~time graph

‘The acceleration at a particular time, ¢, is given by the gradient of the tangent to
the graph at that value of .

‘The displacement after time  is given by the area under the graph for that time
interval.

For motion with constant acceleration
Using the notation

= initial velocity v = final velocity a = acoeleration
+=time interval and s = displacement

the equations of motion are:

v=uta
L
s =q(ut+v)t
s =u+ja* and s = vi—tar?
V- = 2as
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Vectors

A quantity that has both magnitude and direction is a vector.
A vector can be represented by a line segment.
The magnitude of the vector is represented by the length of the line and the
direction of the vector by the direction of the line.
Two parallel vectors with the same magnitude are:

equal if they are in the same direction

equal and opposite if they are in opposite directions.
If two vectors a and b are parallel then a =kb.
When, starting from a point A, lines representing vectors in magnitude and
direction are drawn consecutively, the line starting at A that completes the
polygon represents the resultant vector; all the other vectors are components.
The resultant of two perpendicular vectors, p and q

is of magnitude v/(7* +¢)

‘makes an angle « with the vector p where tan a = p/q
‘The resultant of a set of wplanar vectors can be calculated by resolving all forces
in two perpendicular directions.
Vectors of unit magnitude in the directions of Ox and Oy are denoted
respectively by i and j.
A vector in the xy plane whose components in the directions Ox and Oy are a
and b respectively, can be written ai + bj.
The magnitude of the vector ai+bj is denoted by |ai+bj| and is of
value v/(a® + ).

Types of Force

Contact forces occur when solid objects are in contact. A pair of equal and
opposite forces act, one on each of the objects, perpendicular to the surface of
contact.

Forces of attachment act when two objects are connected by, for mmpl&, a
string or a hinge. Two equal and opposite forces act, one on each of the
objects; in the case of a string the forces are an inward pull at uch end of the
string; the directions of the forces at a hinge are, in general, not

‘The earth exerts a force of attraction on any body outside its surfaxx. This force
is the weight of the object. The acceleration produced by the weight of an object
is denoted by g; the approximate value of this acceleration at the surface of the
earth is 9.8 m/s’.
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MISCELLANEOUS EXERCISE A

Each question from 1 to 4 is followed by several suggested responses. Choose the
correct response.

1f ABCD is a quadrilateral whose sides represent vectors, AB is equivalent to
A CA+CB B CD ¢ AC-BC

AB and PQ are two vectors such that AB = 2PQ.
A ABis paraliel to PQ.

B PQis twice as long as AB.

C A, B, Pand Q must be collinear.

Two forces Fy and Fy have a resultant Fs. If Fy =
then F is
A Titi B -3i-7j C i

3 and Fy=Si+4j

When a number of particles, all of different weights, are dropped, the
acceleration of each particle

A s constant but different for each particle, depending on its weight.
B s constant and the same for each particle.
C increases as the particle falls.
Two forces (3i+2) N and (—5i+j)N actata point. Find the
magnitude of the resultant of these forces and determine the angle which the
resultant makes with the unit vector i. (AEB)
O s the origin, and the positions of two points A and B are given by

= i+7j and OB = Si+5j.
Show that the vectors OA and OB have equal magnitudes.
Points C and D are in positions given by

= 20K and OD = OA + OB.
Express OC and OD in terms of i and J, and draw a diagram showing the
positions of A, B, C and
Three forces (3i+5§) N, (4i+ 1)) N, (2+J)N actat a point. Given
that i and j are perpendicular unit vectors find
(a) the resultant of the forces in the form ai + bj
(b) the magnitude of this resultant

(c) the cosine of the angle that the resultant makes with the unit vector i.
(AEB)
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8. The diagonals of the plane quadrilateral ABCD intersect at O, and X, Y are

the midpoints of the diagonals AC, BD respectively. Show that

(a) BA+BC = 2BX

(b) BA +BC +DA+DC = 4¥X

(c) 2AB+2BC+2CA = 0
If  OA+ OB +0C+0D = 40M, find the location of M. (AEB)

9. A hovercraft travelling horizontally in a straight line starts from rest and
accelerates uniformly during the first 6 minutes of its journey when it covers
2 km. Then it moves at constant velocity until it experiences a constant
retardation which brings it 10 rest in a further distance of 4 km
(a) Sketch the velocity-time graph and find the maximum velocity, i
attained by the hovereraft
(b) Determine the time taken during the retardation.

(c) Given that the total journey time is 42 minutes, determine the distance
travelled at constant velocity. (AEB)

km/h

0. At time £=0 a particle is projected vertically upwards from a point O
with speed 19.6 m/s and, two seconds later, a second particle is projected
vertically upwards from O with the same speed. Assuming that the only force
acting is that due to gravity, express the heights above O of both particles in
terms of 7 and hence, or otherwise, find the value of 1 when they collide.
Find the speeds of the particles at the instant of collision. (WIEC)

1. A railway train is moving along a straight level track with a speed of 10 m/s
when the driver sights a signal which is at green. As soon as the signal is sighted
the train starts to accelerate. Given that the acceleration has a constant value of
/' m/s?, show that the distance in metres moved by the train during the nth
second after the signal is sighted is

(107’5},,/)

Find the value of / given that the train travels 25 m during the 8th second after
the signal is sighted. (NEAB)

2. A train has a maximum speed of 144 km/h which it can achieve at an
acceleration of 0.25m/s%. With its brakes fully applied, the train has a
deceleration of 0.5m/s’. Two stations are 8km apart. The train stops at both
stations.

(a) What is the shortest time for the train to travel between these two stations?

(b) How is your answer to (a) changed if there is a restriction on speed,
between the two stations, of 72km/h? (UCLES),
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. An airport has a straight level runway of length 3000 metres. During take-

off, a jet aircraft, starting from rest, moves with constant acceleration along the

runway and reaches its take-off speed of 270 km/h after 40 seconds. Find

(a) the acceleration of the jet during take-off in m/s?

(b)  the fraction of the length of the runway used by the jet during its take-off.
(NEAB)

A lift travels vertically upwards from rest at floor A to rest at floor B, which

is 20 m above A, in three stages as follows. Firstly, the lift accelerates from rest
at A at 2 m/s? for 2 s; secondly, it travels at a constant speed; thirdly, it slows
down uniformly at 4 m/s?, coming to rest at B.

Sketch the velocity-time graph for this motion, and show that the journey from A
10 B takes 64 seconds. (UCLES)

A car is moving along a straight road with uniform acceleration. The car
passes a check-point A with a speed of 12 m/s and another check-point C with a
speed of 32 m/s. The distance between A and C is 1100 m.

(a) Find the time, in s, taken by the car to move from A to C.

Given that B is the midpoint of AC,

(b) find, in m/s to | decimal place, the speed with which the car passes B.
(ULEAC)

A train moves from rest at a station, Amesbury, and covers the first 1.8 km

of its journey with uniform acceleration. It then travels for 18 km at a uniform
peed, and then decelerates uniformly for the final 1.2 km to come to rest at
Birchfield. The final journey time is 20 minutes.

(a) Sketch the speed-time graph for this journey.

(b) Caleulate, in km/h, the maximum speed attained.

(¢) Caleulate, in km/h’, the final deceleration. (ULEAC)

LA momnsl travelling at 120 km/h on a motorway, passes a police speed

check point. The motorist immediately decelerates at a rate of 360 km/h*.

A police car at the speed check point starts from rest at the instant the motorist

passes it, accelerates uniformly to a speed of 130 km/h and then travels at this

speed. Given that it overtakes the motorist after 3 minutes and then decelerates,

(a) determine the distance from the speed check to the point where the police
car overtakes the motorist

(b) find the time (in minutes) during which the police car is travelling at
constant speed. (AEB)
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18. Three forces (i) N, (~5i+3i)N and ki N, whereiand jare
perpendicular unit vectors, act at a point. Express the resultant of these forces in
the form ai+ 4§ and find its magnitude in terms of k.
Given that the resultant has magnitude 5 N find the two possible values of k.
Take the larger value of k and find the tangent of the angle between the resultant
and the unit vector i. (AEB)

3

. A vehicle travelling on a straight horizontal track joining two points A and B
accelerates at a constant rate of 0.25 m/s? and decelerates at a constant rate of
I'm/s%. 1t covers a distance of 2.0 km from A to B by accelerating from rest to
a speed of v m/s and travelling at that speed until it starts to decelerate to rest.
Express in terms of v the times taken for acceleration and deceleration.

Given that the total time for the journey is 2.5 minutes find a quadratic equation
for v and determine v, explaining clearly the reason for your choice of the value
of v. (AEB)

N
S

. O i the origin; A and B are points such that OA =a and OB =b. Mis
the midpoint of AB. P is a point on OB such that OP = 2PB and Q is a point
on OM such that OQ = }QM. The line PQ is produced to meet OA at R.
Express OK in terms of a and b. (WJEC)

‘The instruction for answering questions 21 to 24 is:
if the following statement must always be true, write T, otherwise write F.

8

LU0 F=2i+3) and F=2i—3 then Fy and F; arc equal and opposite.
22. A particle of weight I is on a plane inclined at  to the horizontal. The
component of the weight parallel to the plane is I cos x.

23. The resultant of AB and BC is CA.

24, Velocity is the rate of increase of distance.

25. In AOPQ, OF

0Q respectively.

(a) By expressing the vectors PQ and MN in terms of p and g, prove that
MK = {7Q.

The lines PN and QM intersect at the point G.

(b) Express, in terms of p and g, the vectors PN and QM.

(c) Given that GN = /PN prove that
0G = 2ip+(1-4)a

(d) Given that GM = 4QM find OG in terms of y;, p and q.

(¢) Hence prove that

0Q =2q, and M and N are the midpoints of OP and

(ULEAC)
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26. A particle moving in a straight line with speed u m/s is retarded uniformly

for 16 seconds so that its speed is reduced to Ju m/s. It travels at this reduced

constant speed for a further 16 seconds. The particle is then brought to rest by

applying a constant retardation for a further & seconds. Draw a speed-time

graph and hence, or otherwise,

(a) express both retardations in terms of u

(b) show that the total distance travelled over the two periods of retardation is

(¢) find u given that the total distance travelled in the 40 scconds in which the
speed is reduced from & m/s to zero is 45 m. (AEB)

27. An underground train travels along a straight horizontal track from station A to
station B. The train accelerates uniformly from rest at A to a maximum speed of
20 m/s, then travels at this speed for 30 seconds before slowing down uniformly
to come to rest at B. The acceleration is £ m/s?, the retardation is 2f m/s® and
the time for the whole journey is 1 minute. Sketch the velocity-time graph for
the journey. Calculate

{(a) the distance between the stations A and B
(b) the value of /. (NEAB)

28. A car starts from rest at time ¢ = 0 seconds and moves with a uniform
acceleration of magnitude 2.3 m/s? along a straight horizontal road. After
7 seconds, when its speed is ¥ m/s, it immediately stops accelerating and
maintains this steady speed until it hits a brick wall when it comes instantly to
rest. The car has then travelled a distance of 77625 m in 30 s,

(a) Sketch a speed-time graph to illustrate this information.
(b) Write down an expression for ¥ in terms of 7.
(c) Show that

T8 - 60T+ 675 = 0 (ULEAC)



CHAPTER 5

NEWTON’S LAWS OF MOTION

FORCE AND MOTION

Early mathematicians, right up to the Middle Ages, were convinced that
whenever a body is moving there must be a force acting on it, ie. a force is
needed to ‘make it keep moving'.

We can see, now, that something is wrong with that hypothesis by considering,
for example, a puck skimming across the ice rink during an ice hockey match.

‘The puck is struck with a stick and sent moving (i.e. a force starts the motion ),
but what happens next? The puck continues to move although there is nothing
to push it once it has left the hockey stick.

‘This is just one example where motion exists without a force to cause it.

However, it was not until 1687 that, with the publication of Newton's Laws of
Motion, the old hypothesis was discarded and a completely new school of
thought established.

NEWTON'S FIRST LAW

“This law is the result of one of those brilliant pieces of deduction which from time
to time produce an idea so simple that it is difficult to understand why it had
eluded thinkers for so long. The law states that:

A body will continue in its state of rest, or of uniform motion in a straight line,
unless an external force is applied to it.
“This immediately explains the motion of the puck; once struck and set in motion,
it continues to move in a straight line until some other force intervenes.
%2



Newton's Laws of Motion £

Further deductions can be made from Newton’s first law.

@ If a body is at rest, or is moving with constant velocity, then there is no
resultant force acting on it and any forces that do act must balance exactly,
i.e. must be in equilibrium.

@ If the speed of a moving object is changing, there must be a resultant force
acting on it.

@ If the direction of motion of a moving object is changing, i.e. it is not moving
in a straight line, there must be a resultant force acting on it. (So there is
always a force acting on a body that is moving in a curve, even if the speed
is constant.)

Newton’s first law in effect defines what force is, i.e. force is the quantity that,
when acting on a body, changes the velocity of that body.

Now if the velocity of a body changes, there is an acceleration, 5o we can say:

1f a body has an acceleration there is a resultant force acting on it.
If a body has no acceleration there is no resultant force acting on it.
A body has no acceleration when it is at rest, or when it is moving with constant

velocity so it is clear that no force is needed to keep a body moving with constant
velocity.

Examples 5a

. A body is at rest under the action of the forces shown, all forces being measured
in newtons. Find the values of F and R,

“The body is at rest threfore there s no resulant cther horizontally or verially.
Horizontally 5-F=0 = F=5

Vettically  R-60 =0 = R =60
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2. A particle of weight 7 N, hanging at the end of a vertical light string is moving
upward with constant velocity. Find the tension in the string.
T The velocity of the particle is constant so it has no acceleration and therefore the
T resultat forc is er,

Vettically T-7=0 = T=7

7 . the tension in the string is 7 N.
3. The diagram shows the forces that act on a particle. PN N
Determine whether the resultant acceleration of the
icle s horizontal, vertical or in some other
direction, if (a) P=5 (b) P=8. SN M

(a) Horizontally the forces o not balanee as there s 1o force 1o the lfl, s0 there i a horizontal
acceleration component.
Vertcally the forces balance in pair, so there i 1o vertical acceleration.

The resultant acceleration is horizontal.

(b;

As in () there is 4 borizonta acceleration component

The vertical components of the forces of 6 N balance but the 5 N and 8 N
do not, so there s a vertical acceleration componen

“The resultant acceleration is the combination of the two components.
The resultant acceleration is neither horizontal nor vertical but is in some
other direction.

EXERCISE 5a

In cach question from 1 to 6, the diagram shows the forces, all in newtons, acting
on an object which is at rest. Find P and/or Q.
1 10 3. 5. »

2

a 2

»
H
4 2 6. 10
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P 16
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. The forces, in newtons, acting on a body are —2i + 6j, Si - 3j,

Newton's Laws of Motion £

In cach question from 7 to 12 determine whether or not the body shown in the
diagram has an acceleration. If there is an acceleration state whether it
is (i) horizontal (ii) vertical (i) neither horizontal nor vertical.

40N
9. 5N oy M-
12N 8N
0NV V20N
INA ASN 10. 16N 12 100N
1N AN AN SON
21N 0N
168 on

. The diagram shows a block in rough contact with a
horizontal surface. It is being pulled along by a 77777’%

horizontal string

(a) Make a copy of the diagram and on it mark all the forces acting on the
block.

(b) What can you say about the tension in the string compared with the
frictional force if the block
(i) is accelerating (ii) moves with constant velocity?

4§ and

4
~3i - 3j. Determine whether the body is accelerating and, if it is, state in which
direction.

. The disgram shows a plank with

one end in rough contact with the
ground and resting in smooth contact
with a post. The forces acting on the
plank are marked on the diagram.

(a,

Collect the vertical components of
the forces. V 30"

(

z

Collect the horizontal of
he forces.

(¢) Given that the plank is at rest, form equations by giving @ numerical value
to the expression you found (i) in part (a) (ii) in part (b).
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16. The diagram shows a ladder, with its foot on
rough ground, leaning against a smooth wall.
The weight of the ladder, W, acts through the
‘midpoint; a man, also of weight W, is standing on
the ladder as shown,

(a) Mark all the forces that act on the ladder,
on a copy of the diagram (represent the
man by a particle ).

S

(b) Write down two expressions involving the
forces, that you could use if you were asked
to find out whether the ladder is stationary.

17. A wind of strength P newtons is blowing a small boat on a pond. The boat,
whose weight is W’ newtons, is moving with constant velocity. Draw a diagram
and mark all the forces acting on the boat, using F for the frictional resistance of
the water and R for the supporting force exerted by the water (both in newtons).
What is the relationship between

(a) Pand F (b) Rand W?

NEWTON’'S SECOND LAW

This law defines the relationship between force, mass and acceleration. It seems

reasonable to accept that

(i) for a body of a particular mass, the bigger the force is, the bigger the
acceleration will be

(ii) the larger the mass is, the larger will be the force needed to produce a
particular acceleration.

Experimental evidence verifies that the force F is proportional both to the

acceleration @ and to the mass m.

F o ma
or F = kma where k

Nowif m=1 and a=1 then F=k, so the amount of force needed to
give a mass of 1 kg an acceleration of 1 m/s? is given by k.

If this amount of force is chosen as the unit of force we have & =

a constant

and

F = ma

The unit of force is called the newton (N) and is defined as the amount of force
that gives | kg an acceleration of 1 m/s”.
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Now we know that acceleration and force are both vector quantities and that
mass is scalar. We also know thatif p= then p and q are parallel vectors.

Therefore, from the equation F=ma we see that:

the vectors F and 2 are parallel, i.c. the direction of an acceleration is the same as
the direction of the force that produces it.

When more than one force acts on a body, F represents the resultant force.

If the force is constant the acceleration also is constant and, conversely, if the
force varies, so does the acceleration.

1f the acceleration is zero, the resultant force is zero — in other words Newton's
first law follows from the second.

To sum up:
‘The resultant force acting on a body of constant mass is equal to
the mass of the body multiplied by its acceleration.
F(N) = m(kg) x a(m]s’)
‘The resultant force and the acceleration are in the same direction.

Examples 5b

. A force of 12 N acts on a body of mass 5 kg. Find the acceleration of the body.

— S>ame
Using F = ma gives 12 = Sa
Skg 2N = a =24

‘The acceleration is 2.4 m/s* in the direction of the force.

A set of forces act on a mass of 3 kg and yv: it an acceleration of 11.4 m/s?.
Find the magnitude of the resultant of the for

I m=3 and a=114 using F=ma gives
F=3x114 = 142
‘The resultant force is of magnitude 34.2 N.

(The direction of the resultant s not asked for but it is in the direction of the
acceleration. )
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3. Forees 4i—7) and i3] act on a particle of mass 2 kg. Given that the
forces are measured in newtons, express the acceleration of the particle in the
form i+ bj and find its magnitude. Find the angle between the direetion of the
acceleration and the vector .

The resultant foree is  4i—7) + (=i +3j) = 3i-4)
Using F=ma gives 3i—4j = 2a

So, measured in m/s?, a=1Gi-4) = 15i-2
‘The magnitude of & is
158 - 24|
= V(1.8 +[-2?) = 25 158

The magnitude of the acceleration is 2.5 m/s%.

ana=2/L5 =  a=53 to the ncarest degree. -

Therefore the direction of the acceleration is at 53° to i as shown.

4. The diagram shows the forces that act on a particle of mass 5 kg, causing it to
move vertically downward with an acceleration a m/s*. Find the values of 7 and a.

There is no horizontal motion
— gives P=7=0 = P=7

The resultant force vertically downwards is (6~ 3) N =3 N

1 gives

3=5 = a=%

In some problems we arc given some facts about how an object is being made 1o
move with constant acceleration and also other information about the motion of
the object. So we use both F=ma and one of the equations of motion,
derived in Chapter 2, which contains a.
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5. A force F newtons acts on a particle of mass 3 kg.
(a) 1 the particle accelerates uniformly from 2 m/s to 8 m/s in 2 seconds, find the
value of F.

(B) If F=6 find the displacement of the particle 4 seconds after starting from
rest.

(a) For the motion of the particle we have:

w=2 v=8

= 2 and ais required.
wtar gives 8 = 2+2a

Using v

= a=3

Now using F = ma gives F = 3x3

= F=9
The force is 9 N.
(b) This time we know the force so we use Newton's Law first.
Using F =ma gives 6 =3a = a=2
Now for the motion of the particle:
=0, a=2 (=4 andsis required.
Using s = w+iar® gives s = 0+4(2)(4)
> s=16
The displacement of the particle is 16 m.
EXERCISE 5b
1. A force of 12 N acts on a body of mass 8 kg. What is the acceleration of the
body?
2. The acceleration of a particle of mass 2 kg is 14 m/s?. What is the resultant
force acting on the particle?
3. A force of 420 N acts on a block, causing an acceleration of 10.5 m/s?.

Assuming that no other force acts on the block, find its mass.

4. A force, measured in newtons, is represented by i~ 12j. I the force acts on
an object of mass 26 kg find, in the form i+ bj, the acceleration of the object.
What'is the magnitude of the acceleration?

o

Fiod, o Cartsian vectoefor, e focs which aca on an objct of mam
5 kg, producing an acceleration of 7i+2j measured in
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In each diagram the forces shown (measured in newtons) cause an object of
mass 8 kg to move with the acceleration shown. Find P and/or  in cach case.

(a) ‘W‘:T+F (b) 8 (<)
I3 él:l
i3
6 [4
2

Each diagram shows the forces acting on a body of mass 3 kg. Find the
‘magnitude and direction of the acceleration of the body in each case.

(a) 9N N (b) (c)
(O SN
uN
uN
8N

. In each diagram the mass of the body is m kilograms. Find m and P.

(a)  PNAASIN (b) 18N ©) N 2m?

2N

A body of mass 3 kg is accelerating vertically
downwards at § m/s? under the action of the 3
forces shown, all measured in newtons. 3
Find the values of P and Q.

[

A body of mass 2 kg accelerates uniformly from rest 1o 16 m/s in 4 seconds,
Find the resultant force acting on the body.

. A force of 100 N acts on a particle of mass 8 kg. If the particle is initially at

rest, find how far it travels in the first 5 seconds of its motion.

. A block of mass 6 kg s pulled along a smooth horizontal surface by a

horizontal string. If the block reaches a speed of 20 m/s in 4 seconds from rest,
find the tension in the string.
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. Forces of 21+3j and ~6i+7) act on a body of mass 10 kg. Given that

the forces are measured in newons find in the form ai + 5]
(a) the aceeleration of the body
(b the velocity of the body 2 seconds after starting from rest.

A constant force of 80 N acts for 7 seconds on a body, initially at rest,
giving it a velocity of 35 m/s. Find the mass of the body.

A force of 12 N acts on a particle of mass 60 kg causing the velocity of the
particle to increase from 3 m/s to 7 m/s. Find the distance that the particle
travels during this period

A body of mass 120 kg is moving in a straight line at 8 m/s when a force of

40 N acts in the direction of motion for 18 seconds. What is the speed of the
body at the end of this time?

WEIGHT
Consider an object of mass m kg, falling frecly under gravity with an acceleration
gm/st.

ke

W
We know that the force pmduang the acceleration is the weight, W newtons, of
the object, so using F=ma gives

ie. nbndyolmmkilognmhﬁw&gmdmmm
For example, taking the value of g as 9.8,
the weight, W newtons, of a person whose mass is 55 kg is given by
W =mg=55x98 = 539
therefore the person’s weight is 539 N.
1f the weight of a rockery stone is 1078 N, its mass, m kg, is given by
Wem = m=W_18_p
g 98
therefore the mass of the stone is 110 kg.

You can get an idea of what a newton is like if you think of the weight of a
smallish apple.
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Example 5¢

A rope with a bucket attached (o the end is used to raise water from a well. The
mass of the empty bucket is 1.2 kg and it can raise 10 kg of water when full.
‘Taking g as 9.8 find the tension in the rope when

(a) the empty bucket is lowered with an acceleration of 2 m/s?

(b)  the full bucket is raised with an acceleration of 0.3 m/s

(a) The acceleration of the bucket is downward so the
resultant force acts downwards.
The weight of the bucketis 12¢N=12x 98N
The resultant force downward is (1.2g— 7') N
Using F = ma | gives
12%98-T = 12x2
T = 12x98-12x2 2

= 9.36
128

‘The tension in the rope is 9.36 N.

The acceleration of the full bucket is upward so the

resultant force acts upwar

“Fhe weight of the full bucket is 11.2 x 9.8 N

Resultant force 1 s (T 11.2¢) N .

(

4

Using F = ma 1 gives
T-112x98 = 11.2x0.3
T = 112x03+112x98
= 12y
‘The tension in the rope is 113 N (3 sf).
Note that readers who are competent in algsbraic factorising may prefer to give the fine where T

"
is calculated o part (1) as T=12(98-2)=936 and the simiar line in part(b) as
T=112(984+03)= 11312

EXERCISE 5¢
In this exercise take the value of g on carth as 9.8.

(a) Find the weight of a body of mass 5 ke.
(b) What is the mass of a sack of potatoes of weight 147 N?
(¢) What is the weight of a tennis ball of mass 60 g?
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2. On the moon the aceeleration due to gravity is 1.2 m/s%. What answers to
question 1 would a student in a lunar school give?

3. A particle of mass 2 kg, attached to the end of a vertical T Assasst
light string, is being pulled up, with an acceleration of
5.8 m/s?, by the string. 2k

Find the tension in the string.

4. A mass of 6 kg is moving vertically at the end of a light string. Find the
tension in the string when the mass has an acceleration of

(a) 5 m/s? downwards (b) 7 m/s? upwards (c) zero.

5. The tension in a slrmg‘ which has a particle of mass m kilograms attached to
its lower end, is
Find the value of m if the particle has

(a) an acceleration of 3 m/s? upwards -

(b) an acceleration of 9 m/s? downwards

(¢) a constant velocity of 4 m/s upwards

(d) a constant velocity of 4 m/s downwards, 9.8m newtons

6. A goods lift with a mass of 750 kg can be raised and lowered by a cable. The
‘maximum load it can hold is 1000 kg.

(a) Find the tension in the cable when T ewtons
(i) raising the fully-] lmded 1ift with an tL
acceleration of } m/s*
17508 newions
T ewions
(i) lowering the empty lift with an acceleration 1o
of mjs’ &
7508 newions

(b) The tension in the cable is 14700 N when the lft, partly loaded, is being
raised at constant speed. Find the mass of the load.
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A balloon of mass 1400 kg is descending vertically with an
acceleration of 2 m/s?. Find the upward force being exerted on

the balloon by the atmosphere. = 2
14005
A block of mass 4 kg is lying on the floor of a lift that is
accelerating at S m/s?. Find the normal reaction exerted on the
block by the lift floor if the lift is
(a) goingup  (b) going down.
e

MOTION CAUSED BY SEVERAL FORCES

We have seen that if an object is moving in a particular line, we can analyse the
motion by collecting the forces in that direction. However, in the examples so far
considered in this chapter the given forces have all been either vertical or
horizontal so that collecting them was simple arithmetic. Now we must look
at more realistic situations where forces in various directions act on an object.

Examples 5d
A body of mass 3 kg
‘horizontal.

iding down a smooth plane inclined at 30° to the
(a) Find the acceleration of the mass in terms of g.
(b) Show that the normal reaction exerted by the plane on the mass s given
Wk
by ==

r
. g sin 307
o 3pcos %
3¢

The iagam shows i e forces hat actan the body. The by can more o onl one vy, i down
the plane, eration is marked in that direction. The acceleration is caused only by the
Components of ke h ac lang the plane s thes st be found and colected
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(a) The resultant force ,/ is 3g sin 30°, ie. 3g(})
Using F=ma gives (})g = 3a = a=1g

(b)) As there s no acoeleration perpendicular to the plane, the resultant of the forces in that direction
s zero

Resolving ™\ gives R-3gcos30° = 0

Note that in this example the values of sin 30° and cos 30° are used in their exact
form (using square roots). Readers who have not yet encountered these values
should now learn them as they often occur in problems where exact expressions
are required. Taking cos 30° as 0.8860, is correct only to 4 decimal places and
using it can cause difficulty in a problem where exact values are required.

Using Pythagoras’ theorem in a sketch of half an \
equilateral triangle with sides of length 2 units, shows -GS
clearly the sine and cosine of both 30° and 60, as well AN
as the tangent of each angle, and helps in remembering AN

the exact forms,

Another angle whose trig. ratios can be given exactly is 45°.
For this one a right-angled isosceles triangle shows the values.

The Form in which Answers should be Given

There i no precise value for g 5o if a numerical value of g is used in a problem all
calculations based on that value are approximations.

Further approximations are made if numerical values of trig ratios are introduced
(eg. sin S0° =0.7660 correct to 4dp), so answers based on these
approximations should be given only to 2 or 3 significant figures.

For these reasons answers are often given in an exact form, i.c. a quantity which
has no exact numerical value is left as a symbol such as g, W, m etc. The trig
ratios for angles of 30°, 45° and 60° can be expressed in exact surd form and
others may be left as, say, sin 207,

Unless other instructions arc given, answers should be presented in exact form.

When answers are required to a given degree of accuracy, take the value of g
as 9.8 m/s? unless a different value is specified.



2.

106 Chapter 5

A eyelist is riding up a hill inclined at 20° to the horizontal. His speed at the
foot of the hill is 10 m/s but after 30 seconds it has dropped to 4 m/s. The total
mass of the eyclist and his machine is 100 kg and there is a wind of strength 15 N
down the slope. Find, corrected to 3 significant figures, the constant driving force
exerted by the cyclist up the slope.

A

First we will find the acecleration of the cyclist up the slope.

For the motion up the slope:

Known u = 10 Required a
v=4
r=3
v utar gives 4= 104+ 30a

Using
R
The cyelist has an acceleration of —4 m/s?
Resolving /' gives D — 15 — 100g sin 20°
Using F=ma / gives D ~ 15 ~ 100gsin20° = 100a
ie. D = 15 + 980(0.3420) + 100(—})
= 3301,

“The cyclist's driving force is 330 N (3 sf).

EXERCISE 5d

. The diagram shows a small block of mass 2 kg being pulled up 2 plane

inclined at 30° to the horizontal. The block has an acceleration of 0.5 m/s?.

05

A
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Find an exact expression in terms of g for the tension in the string if
(a) the planc is smooth

(b) the planc is rough and exerts a frictional force of 4 N.

A truck is being pulled along a horizontal track by two cables, against
resistances totalling 1100 N, with an acceleration of 0.8 m/s. One cable is
horizontal and the other is inclined at 40° to the track. The tensions in the cables
are shown on the diagram. Taking g as 9.8 find, corrected to 3 significant figures,
(a) the mass of the truck

(b) the vertical force exerted by the track on the truck.

Ballast of mass 20 kg is dropped from a balloon that is moving horizontally
with a constant speed of 2 m/s.

(a) Mark on a diagram the forces acting on the ballast as it falls.
(b) Whatis (i) the vertical component (ii) the horizontal component
of the acceleration of the ballast?

(¢) Without doing any further calculation, sketch roughly the path of the ballast
as it falls.

‘The diagram shows a small block of mass $ kg being pulled along a rough
horizontal plane by a string inclined at 60° to the plane. There is a frictional
force of

Copy the diagram and on it mark all the forces that act on the block. 1f the
lock has an acceleration of 3 m/s?, find the tension in the string and show that

the normal reaction exerted by the plane on the block can be expressed

as (5g-33V3)N.
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65

A body of mass 6 kg is sliding down a smooth plane inclined at 30° to the
horizontal. Its speed is controlled by a rope inclined at 10° to the plane as
shown; the tension in the rope is 10 N. Given that the body starts from rest, find
how far down the plane it travels in § seconds. Taking g as 9.8, give the answer
corrected 1o 2 significant figures

NEWTON'S THIRD LAW
The statement of this law is:
Action and Reaction are Equal and Opposite
‘This means that if a body A exerts a force on a body B then B exerts an equal

force in the opposite direction on A. This is true whether the two bodies are in
contact or are some distance apart, whether they are moving or are stationary.

Consider, for example, a mass resting in a scale pan. The
scale pan is exerting an upward force on the mass and the
mass is exerting an equal force downward on the scale pan. 4

R

Now consider two particles connected by a taut string. The objects are not in
direct contact but exert equal and opposite forces on each other by means of
the equal tensions in the string which act inwards at each end.

T T

G>—<9O

This is true even if the string passes round a smooth body, such as a pulley, which
changes the direction of the string.
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‘The tensions in the two portions of the string are the same and each portion
exerts an inward pull at each end. So in each portion the tension at one end
acts on the particle and at the other end the tension acts on the pulley; all
these tensions are equal.

(If the string passes round a rough surface the tensions in the different portions
of the string are not equal, but the study of this situation is beyond the scope of
this book.)

EXERCISE 5e

For each question copy the diagram, making your copy at least twice as big, and
mark on it all the forces that are acting on each body (in questions 4 and 6 draw
small blocks to represent the people ). Use cither a different colour or a different type
ofline (c.g. broken and solid ) for the forces that act on separate objects. Ignore
forces that act on fixed surfaces — these are indicated in the usual way by hatching.

A load hangs fmm a ;775%;;5;:;7/
beam which is

whi A uniform rod with one end
supported at each end. on rough ground rests against
A mass Bhangs by an oil drum.
string from another
mass A which hangs
from a fixed point.

B, a 6. /
A mass on a table is é g[:::§>77

linked by a string toa A passengerisina A workman is standing on a
mass hanging over the ift that is being rung of a uniform ladder that
smooth edge. drawn up by a cable.  rests on rough ground and a

smooth wall.
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THE MOTION OF CONNECTED BODIES

In Chapter 4 (p. 70), a number of conventions were introduced. These, although
not completely factual, made it possible to apply the principles of mechanics to a
simplified situation giving results that were acceptable.

For the work that follows we add further conventions that provide simple
methods for solving the mechanics problems that arise in this topic.

For instance we will refer to an inextensible (or inelastic) string, i.c. a string whose
length cannot alter, whereas in reality no string is completely inextensible. We
shall also be dealing with smooth pulleys, i.. those whose bearings and rim are
completely without friction; in practice no pulley is completely smooth.

Having said this, however, solutions based on these conventions can be fairly
close to reality.

Consider two particles A and B, of masses n1, and g, connected by a light
inextensible string passing over a smooth fixed pulley and suppose that
my > my.

As the particles move, one of them moves upwards in the same way as the other
moves downwar
the upward speed of B is equal to the downward speed of A,
the upward acceleration of B is equal to the downward acceleration of A,
the distance B moves up is equal to the distance A moves down.
The way in which each particle movesis determined by the forces which act on that
particle alone, 50 to analyse the motion we consider the particles separately,

v W E 4

ms
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Examples 5f

. A light inextensible string passes over a smooth fixed pulley and caries particles

of masses 5 kg and 7 kg, one at each end. If the system is moving freely, find in
terms of g

(a) the acceleration of each particle

(b) the tension in the string

(c) the foree exerted on the pulley by the string.

The two p‘mdes M\r the same acceleration, @ m/s’, and the two parts of the string have the same
o, T

il we will find theresulant forc n e dircton of moton and e i i the cquation of
moton. Fo i, i tha diecion

T - r
$ A & B &
56 e
ForA: 1
The resultant force  is T = S5g i
Using F = ma gives T 5=
ForB: |
The resultant force ~ is g ~ T o
Using F = ma gives g -T="7Ta -
(a) Adding (1] and (2] gives 2g=12a = a=lg
The acceleration of each parti % m/st.
(b) From [1], T*ngs(ﬂ) o T %
The tension in the string is > ”‘
(¢) The string exerts a downward pull on each side of the pulley.

Therefore the resultant force exerted on the pulley by the
string is 27 downwards.

ic. % N downwards.
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. A small block of mass 6 kg rests on a table top and is connected by a light

inextensible string that passes over a smooth pulley, fixed on the edge of the table,
to another small block of mass 5 kg which is hanging freely. Find, in terms of g,
the acceleration of the system and the tension in the string if

(a) the table is smooth
(b)  the table is rough and exerts a frictional foree of 2¢ N.

We will use the equation of motion for each block in its direction of motion.

(a) R

4
L
s
For the block A — T = 6a m
For the block B | Sg-T = Sa [e)]
-+ = sg=1la = a=g
and T =6a={{g

The acceleration is g m/s? and the tension is g N.

(b) R a

T

For the block A —
For the block B |
Bl+d = la =
and T=6a+2% =g

Bl
41

The acceleration is ;g m/s? and the tension is g N.
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A particle P of mass 2m rests on a rough plane inclined at 30° to the horizontal.

‘The frictional force is equal to one-half of the normal reaction. P is attached to

one end o » lght inelasti sing which puses over  soat plly fixd at th top
and carries a particle Q of mass 3m hanging freely at the other end.

in terms of g

the normal reaction between P and the plane

(b)  the acceleration of P

(c) the firce exerted by the string on the pulley.

(a) P does not move perpendicular to the plane 50 the resultant force in this direction is zero.
For P, resolving "\ gives R 2mgcos30° = 0
= R = 2mg(y3/2) = mgy3

The normal reaction is mgy/3

(b) For P, resolving /'  gives T—4R-2mgsin30° = 2ma
ie T—4mgy3—2mg( 1) = 2ma
= T—imgy3—mg = 2ma m
For Q, resolving | gives 3mg ~T = 3ma 21
Add 1] and 2] mg(2-1y3) = Sma = Sa = Lg(4—3)
‘The acceleration is 75£ (4~ v/3)

(c) From [2] T = dmg - Ima
3mg — fgme (4—/3)
= {ymg (6+/3)

‘The string exerts two equal tensions on the pulley so the

resultant force R on the pulley is midway between these

tensions, ic. it bisects the angle of 60°.

Resolving in this direction gives R = 27 cos 30°

ie. R =20T(¢) = TV3 = V3x{mg(6+y3) T
... the string exerts a force on the pulley of {5mg (2y/3+ 1)
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Problems in Which the Motion Changes

An aspect of work on pulley systems that has not yet been considered is what .
happens when a string breaks or goes slack. This situation is covered in the
next example.

Examples 5f (continued)

. "Two particles of masses 1 kg and 3 kg are attached to the ends of a long light
inelastic string which passes over a fixed smooth pulley. The system is held with
both particles hanging at a height of 2 m above the ground, and is released from
vest. In the ensuing motion the heavier particle hits the ground and does not
rebound. Find the greatest height reached by the mass of 1 kg.

Until the 3 kg mass hits the ground, the masses move as a simple connected system.

Forthe lkgmass | T-lg = la
Forthedkgmass | 3g-T =3a

Adding gives =42 = a=1ig

For the motion of the 3 kg mass over a distance of 2 m we have and we want

the final specd », which is the speed of cach mass at the moment o
2

Using v~

Vo0 =2xigx2 = v=VE

2as gives

Once the 3 kg mass hits the ground the string becomes slack and no longer exerts any tension on the
ss. This mass therefore moves on upwards, with an initial sped of I8, under the action of
its weight alone, i.e. with an acceleration of —g upwards
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When it reaches its greatest height,
its speed is zero.
For this part of the motion: mq;

u=VE a=-g v=0

s gives

0-2¢ = 2~gk = s=1
The 1 kg mass rises a distance of | m above its position when the string went
slack. As this point was already 4 m above ground level, the greatest height
reached by the 1 kg mass is 5 m above the ground.
EXERCISE 5f

Give the answers in terms of g.

. Each diagram shows the forces, all in newtons, acting on two particles
le string which passes over a fixed smooth pulley.

connected by a light inextensil
In each case find the acceleration of the system and the tension in the string.

(a) (b) (c)
K 7/

Two particles are connected by a light inextensible string which passes over a
fixed smooth pulley. Find the acceleration of the system and the tension in the
string if the masses of the particles are

(a) Skgand 10kg  (b) 12kgand8kg () 2M and M.

Two particles of masses 8 kg and 4 kg hang one at each end of a light
inextensible string which passes over a fixed smooth pulley. Find

(a) the acceleration of the system when the particles are released from rest

(b) the distance that each particle moves during the first § seconds.
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. A particle of mass 4 kg rests on a smooth plane inclined at 60° to the

horizontal. The particle is attached to one end of a light inelastic string which
passes over a fixed smooth pulley at the top of the plane and carries a particle of
mass 2 kg at the other end. Find

(a) the acceleration of the system (b the tension in the string.

A particle of mass 5 kg rests on a smooth hecizoual table and is attached 1o
one end of a light inelastic string. The string passes over a fixed smooth pulley
at the edge of the table and a particle of mises kg hangs freely at the other end.
When the system is released from rest find

(a) the acceleration of the system ske

(b) the tension in the string.

ke

Two particles A and B rest on the smooth inclined faces of a fixed wedge.

The particles are connected by a light inextensible string that passes over a fixed
smooth pulley at the vertex of the wedge as shown in the diagram. If A and B
are each of mass 4 kg find the force exerted by the string on the pulley when the
system is moving freely.

Two particles of masses 2 kg and 6 kg arc attached one
to cach end of a long light inextensible string which passes
over a fixed smooth pulley. The system is released from
rest and the heavier particle hits the ground after 2 seconds. t
Find the height of this particle above the ground when it

was relcased, and the speed at which it hits the ground.
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The diagram shows a block A of mass 6m

resting on a smooth horizontal table. A light
inclastic string passes over a fixed smooth pulley at
one edge of the table and conneets A to a particle B
of mass 4m. Another similar string passes over a
smooth pulley fixed at the opposite edge of the
table and carries a particle C of mass 2m.
Assuming that all the moving parts are in & vertical
plane find

(a) the acceleration of the system

(b) the tension in each string.

(Draw scparate diagrams for A, B and C.)

Two particles, A of mass 4 kg and B of mass 5 kg, are
connected by a light inextensible string passing over a smooth
pulley. Initially B is | m above a fixed horizontal plane. If the
System s released from rest in this position, find

() the acceleration of cach particle o

(b) the speed of each particle when B hits the plane ae T

(c) the further time during which A continues 1o rise -
(assuming that it does not reach the pulley ). i

. Two particles P and Q are connected by a long, light inextensible string

passing over a smooth pulley. The mass of P is m, the mass of Q is 2m and the
particles are held so that each is 3 m below the pulley. The system is released
from rest and after 1 second the string breaks. Find

(a) the speed of cach particle at that instant
(b)  the further distance that P rises.

el

Sm
2100

The diagram shows a particle P lying in contact with a smooth table top 1.5 m
above the floor. A light inextensible string of length 1 m connects P to another
particle Q hanging freely over a small smooth pulley at the edge of the table.
The mass of each particle is 2 kg, and P is held at a point distant 0.5 m from the
edge of the table. When the system is released from rest find

(a) the speed of each particle when P reaches the edge of the table

(b)  the tension in the string.
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. If, in question 11, P slips over the pulley without any change in its speed,

find, for the subsequent motion,
(a) the acceleration of the system

(b) the tension in the string.

In questions 13 and 14 use g =10 and give answers corrected to 2 significant
figures.

. A particle A of mass 10m lies on a horizontal table and is connected by a

light inextensible string 1o a particle B of mass 8. The string passes over a

smooth pulley fixed at the edge of the table and B hangs freely. The table is

rough and exerts a frictional force of magnitude 2mg on A.

(a) Find the acceleration of the system.

(b) I the system is released from rest when A is 1.2 m from the pulley find, in
terms of g, the speed of the particles when A reaches the puley.

. If in question 13 the string snaps when A is 0.6 m from the edge of the table

(a) state the way in which B now moves
(b) find the speed with which A reaches the pulley.

MATHEMATICAL MODELLING

Already in this book we have encountered a variety of problems involving
‘real-lfe’ situations such as men climbing ladders, cars pulling caravans and so
on. If we had taken into account all the complications of size, irregular shape,
non-uniformity etc., a solution would have been very difficult to find.
However, so that mathematical techniques based on known physical laws
could be applied easily and directly, the effect of certain quantities was ignored
or simplified. For example, a man or a car was treated as a particle, a ladder
as a uniform rod, air resistance as negligible etc., and in doing this we were
‘making assumptions’.

The process is called mathematical modelling.

Whenever a problem is to be solved by making a mathematical model, all the
e assumptions should be stated clearly at the outset and it should be
considered whether these assumptions are reasonable in the context of the
problem. The results obtained from such a model can only be approximate
but they are accurate enough for most purposes.



Newton's Laws of Motion 18

When a practical problem has been modelled it becomes a simplified
mathematical exercise. The working diagram used in the solution no longer
need be realistic (and often umconsummg), instead of large objects such as
trees, vehicles, planks, crates etc, it can be simply made up of points
(particles ) and lines (rods). Then forces, velocities, dimensions and so on can
be marked much more clearly.

In this type of problem, where the assumptions made are usually some way from
the actual situation, it is inappropriate lo give answers to more than two

significant figures,

Examples 5g
. A tractor of mass M is pulling a trailer of mass My. The tractor exerts a
steady driving force D. Construct a mathematical model stating all assumptions
made and hence find, in terms of M, My and D,
(a) the acceleration of the trailer
(b) the tension in the tow rope.

Model the tractor and the trailer each as a small block; assume no resistance 10 motion and that the tow.
bar i light and does ot stretch.

The tractor and trailer have the same accckeration.

Considering the trailer, the only force acting — is T

Fo=ma— gives T = Ma m
Considering the tractor, the force acting — is D~ T
F=ma— gves D-T=Ma @]
(a) Add (1) and [2] D= (M+Mu
! D
The acceleration of the trailer is 0
 acccleration o th traileris -2
D
b) Fi 1 T=Mx———
(b) From (1] IXM+M|
The tension in the tow rope is 2.
MM,

Note that the results are given without a unit as no units are given in the question.
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2. A large box of mass 15 kg can be raised and lowered by a crane. The box
contains a load of mass 20 kg. Find
(i) the tension in the cable of the crane
(i) the force exerted by the load on the bottom of the box when the box is
accelerating at 2 m/s*  (a) upwards (b) downwards.
(Take g= 10 and give answers corrected to 2 significant figures. )

(@) We will model the load as a particle and the box also as a particle when it is considered alone.

T
2 m’?
T &
u "
208
159 155

Forces acting on box Forces acting on load
Resolving 1 for the load R-20g = 20x2
- R = 240
for the box T-R-15¢g = 15x2
= T =420

(i) The tension is 420 N. (i) The force on the box is 240 N.

(b) T
ey , .
"
20g | 208
15 15¢

Forces actiog on box Forces acting on load
Resolving | for the load 20g-R = 20x2
R = 160
for the box R+15g-T = 15%2
= T = 280

(i) The tensionis 280 N. (i) The force on the box is 160 N.
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EXERCISE 5g
In each question state any assumptions you make in order to form a
mathematical model that can be used to solve the problem.

A lift of mass 500 kg carrying a load of 80 kg is drawn up by a cable. The
lift first accelerates at 5 m/s? from rest to its maximum speed which is
maintained for a time, after which the lift decelerates to rest at ;g m/s’.
For each of these three stages of motion find

(a) the tension in the cable

(b) the force exerted by the load on the floor of the lift.

A car of mass | tonne is pulling a caravan of mass 800 kg along a level
straight road. There is a total resistance to the motion of 450 N; the individual
resistances on the car and caravan are in the ratio of their masses.

combination accelerates uniformly from rest to 20 m/s in 12} seconds find

(a) the tension in the tow bar

(b) the driving force exerted by the car’s engine.

If in question 2 the tow bar snaps at the instant when the speed reaches 20 m/s
and the car continues with the same driving force, find

(a) the subscquent acceleration of the car

(b) the deceleration of the caravan

(c) how long it takes for the caravan to stop.

A car of mass 800 kg exerting a driving force of 22 kN (ie. 2200 N) is
pulling a trailer tent of mass 300 kg along a level road.  If there is no resistance

to the motion of either the car or the trailer find the acceleration of the car and
the tension in the towbar.

A lft of mass 800 kg is operated by a cable as shown in the
diagram. A passenger of mass 70 kg is standing in the lift. Find,
stating what object you can use (o represent the passenger,

(i) the force excrted by the passenger on the floor of the lift
(ii) the tension in the cable

when the lift is accelerating

(a) upwards  (b) downwards at 0.5 m/s.

(Draw scparate diagrams for the [ift and for the passenger.)



CHAPTER 6
FORCES IN EQUILIBRIUM. FRICTION

CONCURRENT FORCES IN EQUILIBRIUM

A body that is at rest, or is moving with constant velocity, is in a state of
equilibrium.
‘The acceleration of a body in equilibrium is zero in any direction
therefore the resultant force in any direction is also zero.

‘The converse of this statement is not necessarily true because, although forces
with zero resultant cannot make an object move in a line they can, as we shall
see later on, cause an object to tum, e.g.

)

However a set of concurrent forces (i.e. all passing through one point ) can never
cause turning so, as at present we will deal only with concurrent forces, the
problem of turning will not arisc yet.

We saw in Chapter 3 that the resultant of a set of forces can be found by
colleeting components in cach of two perpendicular dircctions, giving

Q
» 7
. -
Y
5

Now if the resultant is zero, the collected components in each direction must
individually be zero,ie. X=0 and Y=0.
Applying this fact to a concurrent system in equilibrium, in which some forces are
unknown, provides a method for finding the unknown quantities.

122
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Examples 6a
A particle of weight 16 N is attached to one end of a light string whose other

end s fixed. The particle is pulled aside by a horizontal force until the string is at
30° to the vertical. Find the magnitudes of the horizontal force and the tension in
the string,

Let P newtons and 7 newtons be the magnitudes of the horizontal force and the tension respectively.

Resolving — gives  P—Tsin30° = 0
ie P-Tx} =0 m
Resolving | gives  Tcos30°~16 = 0

e Tx{y3-16 =0 ]
From [2] T=%=2

From 1] P=4T =12

Therefore the magnitude of the horizontal force is ‘42 N and the magnitude of
the tension is i)

A load of mass 26 kg is supported in equilibrium
by two ropes inelined at 30° and 60° to the
horizontal as shown in the diagram.

Find in terms of ¢ the tension in each rope.

We will sssume that the ropes ar light and that the load can be treatd as a paricle.
The tensions in e ropes ac in perpenicalar directions o we il seotv i tese irections.
Let the tensions in the ropes be 7 and T; newtons.

Resolving "\ Ty — 26g cos 30° = 0

Ty = 268(%) = 133

Resolving Ty - 26g sin 30° = 0

T: = 26g(3) = 13

The tensions in the ropes are 13gy/3N and 13g N.
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3. In each diagram the forces are measured in newtons and are in equilibrium.
Find the values of P and 0.

(8)  Resolving horizontally and vertically gives simple equations.

Resolving —  P—12-8cos60° = 0

= P-12-8x} =0
P=1i6

Resolving | Q-14-8sin60° = 0

= Q-14-8()=0

- Q= 14+4y3

(B) 1 we resolve perpendicular to ., the equation we et does not contain P and 5o gives the value
of Q. Similarly, to find P casil we can resolve perpendiculr to Q.

Resolving Lto P/

144+ Q cos 60° + § cos 60° — 6 cos 60° = 0
= 14+50+4(8-6) = 0
> Q=-30

Resobving L10 Q0 —
14 cos 30° +8 cos 30° + 10 cos 60° — P cos 60° = 0
(1448) () +10(3)-4P =0
- P=22/3+10
If the forces are given in the form ai+ bj then, because a and b are the

magnitudes of components in the directions of i and j, the sum of the
coellicients of i is zero and similarly for J.
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. Forces 2i-3j, 7i+4dj, —51—91. Fi+2) and i-0), arein
equilibrium. Find the values of P a
(20=30) + (Th+4)) + (=5i-9)) + (Pi+2§) + (- Q)
= (5+P)i + (-6-Q)
= 0i+0j
S+P=0 and 6-0=0 = P=-5and Q=

EXERCISE 6a

In this exercise all forces are measured in newtons.
In questions 1 to 3 the forces shown in the diagram are in equilibrium.
Find the values of P, Q and, where appropriate, the value of 0.

. (a) @ (k) ¢ (e) ”
a
o
g 7 »
/&—) w 3
c
2
(a) 10734 » (b)
A< &
o
o
L (a) W (b)
M g} "
3
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A light inextensible string is of length 50 cm.
Its fixed to a wall at one end A and a
particle of mass 4 kg is attached to the other
end B. A horizontal force applied to the
end B holds the particle in equilibrium at

a distance of 30 cm from the wall. £ 7
Find, in terms of g, the tension in the string.

Socm
7

A small block of weight 20 N is attached to two tm

light inelastic strings. The other ends of the strings

are fixed 10 two fixed points P osm
on the same level, 1 m apart. The lengths of the
strings are 0.6 m and 0.8 m. What is the angle
between the strings? By resolving in the directions
of the strings, find the tension in each string.

A small block of weight W rests on a smooth
plane inclined at 30° to the horizontal and is held in @
equilibrium by a light string inclined at 30° to the

plane.” Find, in terms of W, the tension in the string. _

A block of weight W rests in equilibrium on a
rough plane inclined at 30° to the horizontal
Find, in terms of W, the magnitude of the

" frictional force.

A small block of weight 61’ rests on a smooth plane inclined at an angle 0 to
the horizontal. Find 0 if the block is held in equilibrium by

(a) aforce 3 parallel to the plane () a horizontal force 2I.

Remember that tan 0 = 25

Write down, in the form ai + bj, cach

of the forces shown in the diagram. Given
that the forces are in equilibrium, find P
and Q.
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Four forces act on a particle keeping it in equilibrium. Find the values of p

and g if the forces are

(a) 2i+7j Si-—pj 9i+4j and gi-11j

(b) i-6j, ~8i+3) pi+qi and 3i+10j

. The resultant of the forces 78— 2j, —6i+ 5}, 3i+6j and ai+b), is
3

mi-
(a) Find the values of a and b.

(b) When a fifth force is added 1o the given forces, equilibrium is established.
Write down in terms of § and j the force that is added.

FRICTION

Frictional forces were mentioned briefly in Chapter 4 when we considered a book
lying on a table top.

A force Papplied to the book does not necessarily move it. That is because if the
contact between the book and the table is rough there is frictional resistance to
motion.

The frictional force F, acting on the book, acts along the table in a direction
opposite to the potential direction of motion. (We know from Newton's
Third Law that an equal and opposite frictional force acts on the table but
this is ignored as the table s regarded as fixed. )

If P and Fare the only forces acting horizontally on the book then, as long as it is

stationary, P and F must be equal. (It is obvious that at no stage can we

say F> P; if this were the case the book would move towards the pushing

force!).” So the amount of friction is just sufficient to prevent motion.

Now if P gradually increases eventually the book will be just on the point of

moving. A further increase in the value of P will make the book move.

‘When the book is on the point of moving, friction is said to be kimiting ; F has
reached its maximum value and the book is in limiting equilibrium.

Beyond this point the book moves, ie. P> F.
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The Coefficient of Friction

For two particular surfaces in rough contact, it can be shown experimentally that
the limiting value of the frictional force is a fixed fraction of the normal reaction
between the surfaces.

“This fraction is called the coefficient of friction and it is denoted by the Greek
letter p ( pronounced mew, in English), i.e. for limiting friction

F =R

As this is the maximum value of the frictional force, F can take any value from
2210 up (0 4R, ic.

0<F< R

Once an object begins to move, the frictional force opposing motion remains at
the constant value uR. The marginal difference between the value of u when
friction i limiting (the cocflcient of static friction ) and its value once motion
takes place (the coeflicient of dynamic friction ) is so small that at this level it
can be ignored.

The value of  depends upon the materials of whn:h me Iwo surfaces in contact
aremade - it is nof a property of one surface ~ so ideally we should always refer
to rough contact rather than to a rough plane, etc.

However, because wording of the strictly correct definition is a bit lengthy, it is
not always used and a phrase such as ‘a ladder rests against a rough wal is often
found. This should be taken to mean that there is friction between the ladder and
the wall. Similarly ‘a block moves on a smooth planc’ means that we ignore
friction between the block and the plane.

It is interesting to note that rough contact does not necessarily involve surfaces
that would ordinarily be described as rough. For instance, a highly polished
metal block placed on a highly polished flat metal sheet is extremely difficult
to move across the sheet, although each surface on its own would be called
smooth. Clearly in the context of mechanics the ordinary meanings of ‘rough’
and ‘smooth’ cannot be used; instead

‘rough’ means that there is friction at the contact;

‘smooth’ means that we ignore friction at the contact.

The properties of friction discussed so far can be summarised to give what are
known as the laws of friction.
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THE LAWS OF FRICTION

©® When the surfaces of two objects are in rough contact, and have a tendency to
move relative to cach other, equal and opposite frictional forces act, one on
each of the objects, 5o as to oppose the potential movement.

® Until jt reaches its limiting value, the magnitude of the frictional foroe Fis just
sufficient to prevent motion.

® When the limiting value is reached, F = uR, where R is the normal reaction
between the surfaces and p is the coefficient of friction for those two surfaces.

@ For all rough contacts 0 < F < uR.
@ If a contact is smooth = 0.

The Angle of Friction
When two objects are in rough contact and friction is limiting, two contact forces

act on each object; one is the normal reaction R and the other is the frictional
force pR.

4

M
“The resultant of Rand R, which is sometimes called the resultant contact force,
is shown in the diagram.
Its magnitude is /(R + [1RI') = RV(1+47)
"The angle between this resultant and the normal reaction is called the angle of
Sriction and is denoted by 4, where
F_ R
R R

tan 2 =

i tan = p
‘The tangent of the angle of friction is equal to the coefficient of friction
There are occasions when it is convenient to use the resultant contact force.
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Examples 6b

A small block of weight 32 N
horizontal force of P newtons
the block.

(a) If P=8 find the coefficient of friction s between the block and the plane.
(b) 1f p=04, find the value of P.

Iying in rough contact on a horizontal plane. A
applied to the block until it is just about to move

Resolving — 8- 4R =
Resolving 1 R-32 =
Wk 8
2 PSR T m
The coeflicient of friction is .
Resolving  — P-04xR =0

Resolving | again gives R = 32
P-04x32=0
= P=128

. A small block of weight 24 N rests in rough contact with a horizontal plane. A
light string is attached to the block and is inclined at 30° to the plane. The block is
just about to slip when the tension in the string is 12 N. Find the coefficient of
friction between the block and the plane.

Friction i limiting so F = uR.

Resolving  — 1208 30° — 4R = 0
= 12%3/2-pR = 0 = pR = 6/3
Resolving |  12sn30°+R-24 =0 = R=18
R _ 6V3 E)
R -8 "7

The coefficient of friction is % (= &)
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. A particle of weight 8 N is resting in rough contact with a plane inclined at an
angle a to the horizontal where tan a = §. The coefficient of friction between the
particle and the plane is 4. A horizontal force P newtons is applied to the particle.
When P =16 the particle is on the point of slipping up the plane.

(a) Find .
(b) Find the value of P such that the particle is just prevented from slipping down
the planc.

(a)

Resolving parallel and perpendicular to the plane involves  in only one equation.

Resolving *  16.cosa—uR—8 sinx
= 16x4~ uR - 8x3
- R
Resolving . R-16sina—8cosx

= R—-16x3 - 8x%
= R
HRIR = =

(b)

This time resolving horizontally and vertically uses P in only one cquation.

Resolving Reosa+{Rsinz—-8
= R
Resolving —  P+}Rcosa-Rsina
=

ie. P =1
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The diagram shows a plane, inclined at an angle « to the horizontal,

where tana =3, with a smooth pulley fixed at the top. A light inextensible
string passes over the pulley and connects the particle A, which is in rough contact
with the plane, to the particle B hanging freely. The mass of B is 3 kg, the mass

of Ais 2 kg and the coefficient of friction with the plane is 0.2. When the system is
released from rest find the acceleration of the particles and the tension in the string.
Take the value of g as 10 and give answers correeted (0 2 significant figures.

When the system moves, the frictional force has a constant value of 0.2R.

Using Newton’s Law, F = ma, in the direction of motion of cach particle gives

ForB | BT =13 m

ForA ,/  T-2gsina—02R = 2a e}
N R-2gcosa = 0 €]

From (3)] R =20x% = 16

n (2] T=2+20x}+02x16 = 2a+152

In1) 3a=30-(2a+152) = Sa= 148
. a=29% and T =212

To 2 sf, the acceleration is 3.0 m/s? and the tension is 21 N.

EXERCISE 6b

Give answers that are not exact corrected to 2 or 3 significant figures as
appropriate.

In cach question from 1 to 7 the particle is of weight 24 N and has rough contact

with the specified surface; t is the coefficient of friction between the particle and
the surface.

“The particle s just about to slip down a plane
inclined at 30° to the horizontal. Find the value of p.
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The particle is on a horizontal plane and is being
pulled by a horizontal string. I it is just on the 9
point of moving when the tension in the string is

8N, find the value of .

“The particle is just about to slip up a plane inclined at 30° to the horizontal,
when being pushed by a force parallel to the planc. If =1, find the
magnitude of the foree.

“The particle is on a horizontal plane and is being pulled by string inclined at
60° to the horizontal. If it is just on the point of moving when the tension in the
string is 16 N, find the value of .

The particle is supported in limiting

equilibrium on a plane inclined at 30° to the

honwnlzl by a string parallel to the plane.
=1, find the tension in the string.

‘The particle is resting on a plane inclined at an angle « to the horizontal,
where tana=4. A force of 12 N parallel to the plane is just able to prevent
the particle from slipping down the plane.  Find the value of .

‘The particle is held in limiting equilibrium, on a
planc inclined at 30° to the horizontal, by a string
inclined at 30° to the plane as shown. Given that
the value of  is }, find the tension in the string
when the particle is on the point of moving

(a) up the plane
(b) down the plane.

A small block of weight I is placed on a plane inclined at an angle 0 10 the

horizontal. The coefficient of friction between the block and the plane is .

(a) When 0=30° the block is on the point of slipping. Show that u =2

(b) If =1} and tanf=3 find, in terms of W, the magnitude of the
horizontal force needed (o prevent the block from slipping down the plane

() If p=3 and tan0=y/3 find, in terms of I, the magnitude of the
horizontal force that will be on the point of making the block slide up the
plane.
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A horizontal force P newtons is applied to a body of weight 80 N, standing in
rough contact with a horizontal plane. The coefficient of friction between the
body and the plane is }. What is the magnitude of the frictional force when
(@) P=10 (b) P=40 (c) P=50?

State in each case whether or not the body moves.

A warehouse porter is trying to push a trolley, of mass 24kg, up a plane inclined
at an angle a to the horizontal, where tan o = 5. He finds that the trolley is just
on the point of moving when the horizontal force he is exerting on the handles
reaches 200N. Stating any assumptions that are necessary, use a suitable model,
with g = 10, to find the value of the coefficient of friction between the trolley
and the plane.

. The diagram shows a particle A lying in

rough contact with a table. A light inclastic
string attached 10 A, passes over a smooth
pulley at the edge of the table and is attached
to another particle B hanging freely. The
particles are of equal mass M and the
coefficient of friction between A and the
table is 3. Find in terms of g and M, the B
acceleration of B and the tension in the string.

A and B are two particles connected by a light string that passes over a smooth
pulley at the top of a wedge as shown in the diagram. The mass of A is m and
that of B is 2m. Contact between each particle and the wedge is rough with a
coefficient of friction of §. When the system is allowed to move, find the
acceleration and the tension in the string.



CHAPTER 7

WORK AND POWER

WORK

Anyone pushing a heavy crate across a storeroom floor would be justified in
thinking that it was hard work. This is a common concept of work,
i.e. making an effort to move an object, and it is reflected in the following
definition of mechanical work.

When an object moves under the action of a constant force F, the amount of
work done by the force is given by:
the component of F in the direction of motion x distance moved.

So if a constant force F moves an object from A to B,
the amount of work done by F is (F cos 0) x (d),
ie. Fdcos0

If the force is measured in newtons and the distance in metres, the work done is
measured in joules (J).

For example, if a force of 12 N acts on a body and moves it a distance of 3 m in
the direction of the force, the amount of work done by the force is 36 J.

Note that work is done only if the force succeeds in moving the object.
A force applied to an object that remains at rest, does not do any work.

‘When several forces act on one body, the work done by each force can be found
independently of the others.

135
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Work Done Against a Particular Force
In some circumstances we are more concerned about the work that is needed to

overcome an opposing force. Consider, for example, an object that is pulled at
constant speed from A to B, a distance 5 along a rough surface.

e i —> jm]

A frictional force of magnitude F acts on the object, opposing the motion.
Because there is no acceleration, the force causing the displacement is equal and
opposite to the frictional force, i.e. it is of magnitude F and therefore the amount
of work it does is given by Fs.

This work is done to overcome friction and is called the work done against
Sriction. So we sce tha

the work done against a force is given by
the magnitude of that force  the distance moved in the oppasite direction,

Now consider a body of mass i, raised vertically through a height h.
The weight, mg, acts vertically downward and has to be overcome by an upward
force in order to raise the body.

The force needed to raise the body vertically at constant F=mg)
speed is mg upwards. The work done by this force

is mg x h. This amount of work is needed to A T
overcome the opposing force of gravity,

ie. the work done against gravity is migh.

Again we see that the work done against gravity is given by

the magnitude of the gravitational force (mg downwards)
x the distance moved in the opposite dnecuon (h upwards).

It is sometimes convenient to regard work done against a force as being negative
work done by that force. In the situation above, for example, the work done by
gravity is —mgh.
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Work Done by a Moving Vehicle

A variety of forces can act on a moving vehicle, including friction, air resistance,
the weight of the vehicle, reaction with the ground etc., but most important is the
driving force.

13
—>

‘The work done by a vehicle means _the work done by the driving force,
ie. Dxs

Examples 7a

Whenever a force is represented on a diagram by a letter, ¢.g. P, it is understood
that the force is P newtons.

. A body resting in smooth contact with a horizontal plane, moves 2.6 m along the

plae under the action of a force of 20 N. Find the work done by the force if it is
applied

(a) horizontally

(b) at 60° to the plane.

@) 25

“The whole of the forve acts in the direction of motion.
Work done =20 x 2.6 = 521

) 1N

fio)

T6m

The component of the force that acts in the direction of motion is F cos 60

Work done = (20 cos 60° x 2.6)J = (20 x4 x 2.6)J = 26
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. Sixteen erates, each of mass 250 kg, are raised 3 m by a hoist, to be placed on 3
platform. Find the work done against gravity by the hoist. State any assumptions
you have made.

e

The work done against gravity in raising one crate = (250 x g x 3)J
= 750g 1

(16 % 750g) )

12000 § = 12g kJ

The work done against gravity in raising 16 crates

(1000 3 is 1 kilojoule, i.c. 1kJ)

Assumptions are that the crates can be treated as particles, that the hoist raises
them to exactly 3m, and that no crates are stacked in successive layers.

. A small block of mass 2 kg slides, at constant speed, 4 m down the face of a plane
ined at 30° to the horizontal. Contact between the block and the plae is rough.
Giving answers in terms of g, fi
(a) the work done by

(i) the weight of the block

(i) the reaction between the block and the plane.
(b)  the work done against friction.

(a) The direction of motion is down the plane.
(i) The componen of weight down the plane is 2g5in30°N=gN
. the work done by the weight is g x$J =3gJ
(i) The reaction has no component paraliel e ane.
" no work is done by the reaction.

(b)  The accckeration of the block is zero 5o the resultant force along the planc is zero

Resolving / gives  2g sin 30° ~ F = 0

the frictional force is g N up the plane.
the work done against friction is (gx$)J = $gJ
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4. A tractor climbs, at a steady speed of 5 m/s,
up a slope inclined at an angle a to the
horizontal. The mass of the tractor is g
1400 kg and sin @ = . By modelling the 0%
tractor as a particle find the work done by
the tractor against grasity per minute. 14008 N
I the total work done by the tractor in !
this time is 780 kJ, find the resistance
to motion. (Take g as 10.)

Suis
v

YT

In one minute:
the tractor climbs up the slope a distance 5% 60m = 300m
the vertical distance climbed is 300sinam = 36m
the work done against gravity is (1400 x g x 36)J = 504 kJ
“The specd of the rsctor s constant so the accekeation is 7ero.
Resolving * gives D~ R—mgsina = 0
D=R+ 1400 x 10x & = R+ 1680
The work done by the tractor = the work done by the driving force
= (Dx300)J = (R+1680) x 300)

‘This is known to be 780 kJ
Therefore 780000 = 300(R+1680) = R = 2600 - 1680
The resistance to motion is 920 N.

EXERCISE 7a

In each question from 1 to 3, a small object moves from A to B under the action
of the forces shown in the diagram. Find the work done by each force.

1. AB =2m 2. AB =3m 3. AB =4m

6N SN LI

AN PEAR AN
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For the rest of this exercise use g = 10, state any assumptions that are made in
modelling cach situation and give answers corrected to 2 significant figurcs.

In each question from 4 10 8 find the work done against gravity.
A block of mass 3 kg is raised vertically through 2.1 m.
A workman of mass 87 kg climbs a vertical ladder of length 7 m.

Eight crates of beer, cach of mass 24 kg, are lifted from the ground on to a
shelf’ that is 1.8 m high.

A forklift truck loads a tiger in a cage into the hold of an aircraft. The
combined mass of tiger and cage is 340 kg and the floor of the hold is 7.2 m
above the ground.

A crane lifts a one-tonne block of stone out of a quarry that is 11 m deep.

A block of mass 14 kg is pulled a distance of 6 m up a plane inclined at 20° to
the horizontal. The contact is rough and the magnitude of the frictional force
is 30 N.

Find the work done against (a) friction (b) gravity.

. There is an average resistance of 480 N to the motion of a train as it travels

5.8 km between two stations. Find the work done against the resistance.

£a o

A boy, whose mass is 40 kg, has a sledge of mass 6 kg. He pulls the sledge 36 m

up a slope inclined at 30° to the horizontal.

(a) Find the amount of work that the boy has to exert against gravity in order
to pull the sledge up.

The boy then sits on the sledge and slides back to the foot of the slope.

(b) Find the work done by ravity during the descent.
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A wardrobe is lowered by a rope at a steady speed from the balcony of a
fifth-floor flat to the ground, 12 m below. Given that the mass of the wardrobe
is 37 kg, find the work done by the rope during the descent.

In questions 13 to 16 a box of mass 6 kg is pulled by a rope along a horizontal
surface at a constant speed.

7B

The speed is 4 m/s. Find the work done by the rope in 20 seconds if the
tension in it is 1§ N.

The work done by the rope in moving the box 8 m is 200 1. Find the
tension in the rope.

‘The coeflicient of friction between the box and the surface is 4. If friction is
the only resistance to the motion of the box, find the work done by the rope in
pulling the box through S m.

The work done by the rope against friction in pulling the box a distance of
12m is 180 J. Find the coefficient of friction between the box and the surface.

A girl pushes her bicycle 150 m up a hill inclined at an angle  to the horizontal
where sin 2= . If the combined weight of the girl and her bicycle is 700 N,
find the work she does against gravity. If there is an average resistance to
motion of 20 N find the total work done by the girl.

A crate of mass 40 kg is pulled by a rope at a constant 1.5 m/s down a slope
inclined at 15° to the horizontal. Contact is rough and the coefficient of friction
is 0.7. Find

(a)  the frictional force
(b) the tension in the rope
(c) the work done by the rope per second

(d) the work done by gravity while the cratc moves down the slope for
6 seconds.
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A7

To rescue a woman trapped in a burning flat, a fireman climbs 10 m up the
turntable ladder, which is inclined at an angle of 70° to the horizontal. How
much work does the fireman, whose mass is 80 kg, do against gravity during his
climb? He lifts the woman out through the window and carries her down the
ladder to safety. If she has a mass of 50 kg,

(a) write down the magnitude of
(i) the force exerted by the-woman on the fireman
(i) the force exerted by the fireman on the ladder

(b) the work done by gravity during the descent.

A small smooth pulley is fixed at the top of the rough face of a wedge which is
inclined at 30° to the horizontal. A block A of mass } kg, lying on the face, is
attached to one end of a light inextensible string which passes over the pulley and
carries a particle B hanging freely at the other end. The coeficient of friction
between the block and the wedge is . If the particle B is moving down with
constant speed. find, in terms of g,

(a) the frictional force acting on the block
(b)  the tension in the string

(c) the weight of the particle.

When the particle moves down through 1 m, find
(d) the work done by gravity on the particle

(¢) the total work done against gravity and friction by the string attached to
the block.
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POWER

There are many situations where it is not sufficient to know how much work a
force can do. It is also important to know the rate at which the work is being
done. This quantity is known as power.

One unit of power is produced when work is done at the rate of 1 joule per
second. This unit is called the watt (W).

A machine working at the rate of 1 joule per second has a power of | watt.
1F 1000 joules of work are done per second, the power is 1000 watts or | kilowatt
(1'kw).

If we know the total work done in a certain time, the average power can be found.

For example, a force that does 45 joules of work in 9 seconds is working at an
average rate of 5 joules per second,
ie. the average power of the force is 5 watts.

The Power of a Moving Vehicle

‘The power of a vehicle is defined as
the rate at which the driving force is working.
A vehicle that has a speed of v m/s is moved v metres in 1 second by the driving
force, D newtons.
Therefore the work done in 1 second by the driving force is Dv joules.
ic. the power of the vehicle is Dv joules/second which is Dy watts.
Therefore, if H watts is the power of a vehicle,
H=D
If the speed of the vehicle is constant, both D and v are constant and therefore the
power is constant.
If the speed is not constant, the value of D gives the power af the instant when
the speed is v m/s.
Note that if the vehicle is stationary, its power is zero. This emphasises the
difference between the meaning of power in mechanics and the way the word
is used in the motor trade.
There is a maximum value of the power a particular vehicle can generate. When
the maximum power is used in a given situation, the speed produced is also
maximum. In this condition no acceleration is possible so the resultant force
acting on the vehicle is zero.
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A vehicle can use less power than the maximum available if, for example, a lower
speed is desirable or the resistance falls.

When solving problems involving the power of a moving vehicle, it is often
helpful to express the driving force in the form Doing this can reduce the
length of the solution.”

Examples 7b

- A brickayer's mate can cary 2 bod of bricks up a vertical five-metre ladder in
the average power required if the combined mass of the man and
lu: bricks is 92 kg. (Take g as 9.8.) What assumptions have been made?
The work done against gravity is 92g x 5J = 4508
“This work is done in 46 5
the work is done at an average rate of 452 joules per second
ie. the average power is 98 W.
It is assumed that the man and his bricks can be modelled as a particle which
rises exactly §

. On a level track a train has a maximum speed of 50 m/s. The total resistance
to motion is 28 kN.

50 mss,
BN D
(a) Find the maximum power of the engine.

“The resistance is reduced and it is found that the power needed to maintain the same
speed as before is 1250kW.

(b) Find the lower resistance.

() At mazimum specd there is no acceleration 50 the resultant force in the direcion of motion is
7210, We will model the train a3 a particke.

—pso

8000, D

Resolving —  D-28000 =0 = D = 28000
To achieve maximum speed, maximum power is needed.
Maximum power = driving force x maximum velocity

= 28000 x S0W

= 1400 kW
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(b) —pw

TR

As the velocity i constant the acceleration is ero, s the resulant force i zro.
H = Dv = 1250000 = Dy x 50 = Dy = 25000
Resolving — 25000~ Ry = 0
The reduced resistance is 25 kN,
3. When a car of mass 1200 kg is driving up a hill inclined at a to the horizontal,
with the engine working at 32 kW, the maximum speed is 25 m/s.

Given that sina=;, and assuming that the car can be modelled as a particle,
find the resistance to motion. (Use g = 10.)

Speed is maximum so acceleration is zero and the resulant force up the hillis zero.

Driving force = power/velocity.

The driving force is 220% N = 1280 N
Resolving /  D—R—Wsina = 0
- 1280 - R - 1200g x 5 = 0
R = 1280 - 2290 _ 539
16

The resistance to motion is 530 N.

4. The combined weight of a eyclist and his machine is 850 N. When riding, the
resistive forces are proportional (o the speed. On a level road, exerting his
maximum power of 180 W, the maximum speed attainable is 8 m/s. By treating
the cyclist and his machine as a particle, find the maximum speed which can be
achieved by working at 30 W down a hill with a gradient of 7%.

(IFf the gradient of a hill inclined at a to the horizontal is 7%, then sin a = 0.07)

Resistance o« speed = R = kv where k is a constant of proportion.



On the level

Resolving — D-R=0 = I:%“—Rk:ﬂ
- k=%
Downhill
Resolving \, D+ Wsinz-R=0 = —usoxunuﬁ':n

v
28125v2 - 59.5v~30 = 0

Solving this quadratic equation by using the formula gives

59.5 + \/(59.5 + 4x2.8125x30)
2% 28125

Only the positive solution has any significance.
Hence v = 21.64...
‘The maximum speed downhill is 21.6 m/s, corrected to 3 significant figures.

EXERCISE 7b

I the speed of a vehicle is given in km/h, the unit must be converted to m/s in
order to be consistent with the other units being used. This conversion can be
done by using the fact that 1 km/h = % m/s.

= 10,_state any assumptions that are made and give answers corrected to
2 significant figures.

In questions 1 to 5 find the average rate at which work is done.

. A mass of 60 kg is lifted vertically through 4 m in 9 seconds.

2. A mass of 40 kg is lifted vertically at a constant speed of 5 m/s.

w

A cat weighing 24 N climbs up a 3 metre high wall in 2 seconds.

4. A part-time assistant in a supermarket is stacking wine bottles on a shelf.
Each bottle weighs 5 N and is lifted up 1.6 m. The assistant stacks 36 bottles in
a minute.

An elevator is raising bales of straw, cach with a mass of 23 kg, to the floor of a
loft that is 2.1 m above ground level. On average, 64 bales are raised per hour.
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A car driving at a constant speed v, against a constant resistance R, is working
ata rate H.

(@) If v=25m/s and R=960 N, find H.

(b) If H=60kW and v=120 km/h, find R.

(¢) If R=1300N and H=26kW, find ».

A goods train has a maximum speed of 90 km/h on a level track when the resistive
forces amount to a constant 40 kN. Find the maximum power of the engine.

A car has a maximum speed of 140 km/h on a level road with the engine
working at 54 kW. Find the resistance to motion.

[
s o
S >
%%%
Sna=oos
A boy and his bicycle have a combined mass of 68 kg. Working at maximum

power the cyclist can achieve a speed of 8 m/s on a level road against resistive
forces totalling 45 N. Find the maximum power. Find also the maximum speed
up an incline with a 5% gradicnt.

. The maximum power that a van of mass 900 kg can exert is 36 kW. If the

resistance (o the motion of the van is a constant 1500 N, find the maximum
speed that the van can reach on a slope of inclination 1 in 15 (i.c. sina={5)
when driving  (a) up theslope  (b) down the slope.

Give one reason why your answers may not reflect the actual maximum speeds of
a real van.

. A car of mass 1100 kg has a maximum power output of 44 kW. The

resistive forces are constant at 1400 N. Find the maximum speed of the car
(a) onthelevel  (b) up an incline with gradient 5%

(c) down the same incline when using half the maximum power.

A car of mass 950 kg has a maximum power of 30 kW and encounters
resistive forces totalling 1050

(a) Find its maximum speed on level ground.

(b) The driver wishes to descend a hill of gradient 1 in 15 without increasing
spoed. What peroaiage of the maximum pover of the cniné should be
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. A lorry of mass 2000 kg is subject to a constant resistance. The maximum

speed of the lorry down a slope of 1 in 10 is 24 m/s and the maximum speed up

the same slope is 12 m/s. Find

(a) the maximum power of the engine

(b) the constant resistance

(¢) the maximum speed of the lorry on a level road.

‘The engine of a car of mass 1000 kg is working at the constant rate of

50 kW.  The resistance to motion is proportional o the speed.

(a) If the maximum speed on a level road is 40 m/s, find the constant of
proportion.

(b) Find the maximum speed up a slope with a gradient of 5%

(¢) When the engine is working at half power, the maximum speed of the car
down a slope inclined at an angle  to the horizontal is 35 m/s. Find a to
the nearest degree.

ACCELERATING VEHICLES
If a vehicle exerts a dnvmg force that exceeds all the forces opposing motion,

there is a resultant force in the direction of motion. As a result, the car has
an acceleration which can be found by applying Newton's Law.

Examples 7c

. A car of mass 1200 kg has a maximum speed of 144 km/h on a level road when

there is a resistive force of 56 N. Find the acceleration of the car at the instant
when its speed is 81 km/h and the engine is working at maximum power.

‘Specds must be expressed in metres per second.
144km/h = 144 x 5 m/s = 40m/s; similarly 81km/h = 22.5m/s

At maximum speed, treating the car as a particle, we have

o azo

Resolving  — D-56 =0 = D = 56
if H watts is the maximum power, H = Dv = 56 x40 = 2240
‘The maximum power is 2240 W.
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At the lower speed 2s a

‘The resultant force in the direction of motion is D — R
Applying F=ma. in this direction gives

%756 =100 5 a= 00363

Therefore, corrected to 2 significant figures, the acceleration is 0.036 m/s>.

. A motor cyclist whose mass combined with his machine is 240 kg is driving up a
road of inclination 1 in 10 at maximum power of 10 kW. When the speed is
25 m/s, the motor bike is accelerating at 0.05 m/s?. Taking the value of g as 10,

(a) find the constant resistance to motion.

At the top of the hill he picks up a pillion passenger of mass 80 kg and drives on
along the road which is now horizontal.

If the resistance is increased by 20%, find

(b)  the greatest speed that can be achieved when the engine is working at 70% of
the maximum power

(c)  the immediate acceleration produced if maximum power is suddenly engaged.

(a) Treating the motor cyclist as a particle, we have

gl

sin a = &
The resultant force up the hill is
D-Wsina~R = wm —zu)ox— -R

Using Newton's Law, F=ma, in the dlm:uon of motion gives
400-240-R = 240%x005 = R =148
The resistance to motion is 148 N.
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(b) The resistance i now 120% of 148 N, i, 177.6 N, and the pover is 0%
X . The motor cyclist, his machine and the pillion
pzssenger are treated as a particle.

0 kW,

v azo
—>
176 2

Resoving — 1% 176 =0 = =20 _ 54
v

The maximum speed is 39.4 m/s.

(© w04 .
—>
s
s < i

The resultant force in the direction of motion is D~ R
Thercfore using F=ma_ gives
M—ms a0 = a= 2386y
9.4 20
The immcdml: acceleration is 0.24 m/s%.

Note that this is an instantancous acceleration; as a result the velocity increases,
so reducing the driving force which in turn reduces the acceleration.

EXERCISE 7¢

Use g= 10, state any assumptions made and give answers corrected to
2 significant figures.

A car of mass 1500 kg is being driven up an incline of 1 in 20 against a
constant resistance to motion of 1000 N.

(a) At the instant when the speed is 20 m/s and the acceleration is 0.1 m/s,
find the power being exerted by the engine.
(b) 1f the engine is working at 20 kW, find the acceleration at the instant when

the speed is 7.5 m/s.

The resistive forces opposing the motion of a car of mass 2000 kg total
5000 . If the engine is working at 70 kW, find the acceleration at the instant
when the speed is 40 km/h.

A car of mass 1000 kg has a maximum power of 50 kW. The car is travelling
up a hill with a gradient of 8% against resistance to motion of 3000 N. Find the
acceleration at the instant when the speed is 30 km/h.
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A train of mass 400 tonnes is moving down an incline of | in 50 using a
power output of 50 kW. The resistance to motion is 30 kN. Find the
acceleration at the instant when the speed is 20 m/s.

‘The constant resistances o the motion of a car of mass 1200 kg total 960 N.
(a) If the car is driving along a level road and has an acceleration of 0.2 m/s?
at the instant when the speed is 25 m/s, find the power exerted by the

engine.
(b) If the car is moving down a slope of inclination 1 in 15 and working at
40 kW, find the acceleration at the instant when the speed is 25 m/s.

. The engine of a train of mass 50000 kg is working at 1800 kW as the train

ascends a slope of inclination 1 in #. The train encounters constant resistive
forces of 10 kN.

(a) If the maximum speed of the train is 50 m/s, find .
(b) Find the acceleration at the instant when the speed is 30 m/s.

A car of mass 1000 kg encounters resistive forces of 1200 N when ascending a
slope with a 10% gradient.

(a) If the engine is working at 30 kW find the maximum specd.

(b) When moving at this speed the driver suddenly increases the power of the
engine by 25%. Find the immediate acceleration of the car.

A cyclist is riding up an incline of I in 20. Working at 2 kW the maximum

speed up the incline is 20 km/h.

(a) Find the resistance to motion given that the combined mass of the cyclist
and machine is 100 kg.

(b) If there s no change in resistance or power, find the instantancous
acceleration when the cyclist reaches level ground at the top of the slope.

A car of mass 800 kg moves against a constant resistance R newtons. The
maximum speeds of the car up and down an incline of I in 16 are respectively

14 m/s and 42 m/s. If the rate at which the engine is working is H kW, find

(a) the values of R and H

(b) the acceleration at the instant when the speed s 17.5 m/s on level ground.

The resistance to the motion of a car of mass 1000 kg is proportional to the
square of the speed. With the engine working at 60 kW, the car can drive up an
incline of 1 in 20 at a steady speed of 30 m/s. If the car travels down the same
slope with the engine working at 40 kW, find the acceleration at the instant when
the speed is 20 m/s.



CHAPTER 8
MECHANICAL ENERGY

ENERGY

Anything that has the capacity to do work, possesses energy. This energy can be
used up in doing work.

Conversely, in order to give energy to an object, work must be done to it,

iie. work and energy are interchangeable and so are measured in the same unit,
the-joule.

‘There are various different forms of energy such as light, heat, sound, electrical
energy and chemical energy. These can often be converted from one form to
another, e.g. electrical energy can be used to give heat or light energy.

In this book however we are concerned primarily with mechanical energy, which
is the capacity to do work as a result of motion or position.

KINETIC ENERGY (KE)

A body moving with speed v possesses kinetic energy. The value of the KE is
equal to the amount of work needed to bring that body from rest to the
speed v and an expression for its value can be found as follows.

Consider a body of mass m which starts from rest and reaches a speed v after
‘moving through a distance s under the action of a constant force F.

Augest —> N
7»7777777777777777%7/

The acceleration, a, is given by

v —ul = 2as =
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Then Newton's Law, F=ma, gives

m?

F=-— = Fs = tmy?

2 :
Now Fs is the work done in producing the kinetic energy, therefore rmy? is the
value of the kinetic energy,
iie. for a body of mass m moving with speed v,

KE = im?

Note that both m and v? are always positive quantities showing that KE is
always positive and does not depend upon the direction of motion,
ie. kinetic energy is a scalar quantity.

POTENTIAL ENERGY (PE)

Potential energy is a property of position. If a body is in such a position that, if
released, it would begin to move, it possesses P}

Consider, as an cxample, a body that is held at a hmghlhahovca fixed level. I
that body is released it will begin to fall, ie. it will begin to possess KE. So
before it is released it has the potential to move, hence the name for energy
due to position.

‘The value of the PE is equal to the work needed to raise the body through a
vertical distance 4.

The work done in raising a body of mass m is the work done
against gravity, ie. mgxh A 4{
fmg.

PE = mgh

1f the body falls from rest and reaches a speed vat lhe bottom then,

using v?-u?=2as gives v:=D2gh, ic. gh=1r?

Therefore mgh =$mv* confirming that potential energy is converted into
kinetic energy.

‘There is no absolute value for the PE of an object, as the height & is measured
from some particular fixed level. If a different level is chosen the PE
changed without the body itself moving. It follows therefore that in every
problem the level from which height is measured must be clearly specified. As
the PE of an object that is on the chosen level is zero, in this book we identify
this datum by marking it ‘PE = 0'.
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Negative Potential Energy

If an object is below the datum, the value of h is negative (h is the height above
the datum), so the object has negative potential energy.

vE = ~mea

Note that there is another type of potential energy, which readers will meet in
Chapter 10. It is called elastic potential energy (EPE) and it is a property of
an object attached to a stretched elastic string. However, none of the work in
this chapter requires knowledge of this type of mechanical energy.

Examples 8a

. A window cleaner of mass 72 kg climbs up a ladder to a second-floor window,
5m above ground level. Assuming that the window cleaner can be treated as a
particle, find his potential energy relative to the

He then descends 3 m o clean a first-loor window. Find how ek poatal
energy he has lost. (Use g =9.8.) Is the assumption reasonable

At the second-floor window, A,

m=1
g =98
h=s
PE = mgh = 72x5x 98]
= 3500 (25f)

In descending to the lower window, B, the
reduction in height is 3 m.

Loss in PE = mg x ( reduction in h)
72x9.8x3]J
= 2100 (25f)

Alternatively we could find the values of PE at the two windows and subiract
‘The height of the point where the weight of the man acts may be quite different
from the height of the window, so treating him as a particle that rises exacrly Sm
is not a reasonable assumption, but gives a rough approximation.
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A particle of mass 6 kg has a velocity v metres per
What is its kinetic energy if (a) »=7  (b) e ¥?
(@) KE=!mi=}x6x71=1471
(b) The speed of the particle is |v]
When v=4i-3j, |v]=/(£+[-3})=5
KE=(1x6x5)1=75]
. A bird of mass 0.6 kg, flying at 9 m/s, skims over the top of  tree 6.2 metres

high. What is the total mechanical energy of the bird as it clears the tree?
Use g=98.

Treating the bird a5 o particke,
KE of the bird is ym?,

e x06x9) = 243)
PE of the bird is mgh

e 06x98x62)=365)

‘The total mechanical energy is KE + PE = 608 )

Water is being raised by a pump from a storage tank 3 m below ground level and
jected at ground level through a pipe at 6 m/s. If the water is delivered at a rate
of 420 kg each second, find the total mechanical energy supplied by the pump in one

second in lfting and ejecting the water. (Take g as 9.8.)

In I sccond,  PE gained by water = mgh
= 420x98x3J = 123481
KE gained by water = 4mv?
= 1x420x62J = 75601
“The total encrey gained by the water is supplicd by the pump.

Total ME supplied by the pump per second = 19908 J.
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EXERCISE 8a

Use g=98 and give answers corrected to 2 or 3 slgmfmnl figures as appropriate.
If any assumptions are made, state what they are.

The potential energy of a particle of mass m kilograms, which is at a height

i metres above a given datum, is N joules.

(@) If m=4 and h=11, find N. (b) If N=48 and m=6, find h.

Find, in joules, the kinetic energy of

(a) a block of mass § kg moving at 9 m/s

(b) a car of mass 1200 kg travelling at 36 km/h

(¢) a bullet of mass 16 g moving at 500 m/s

(d) a body of mass 10 kg with a velocity v m/s where v

. Find the items missing from the following table.

On an assault course a woman of mass 54 kg starts from ground level at A,
climbs 9 m up a scramble net, drops from the top B, to a mat C, 3.6 m below B,
then runs up a bar to D at a height of 8 m above the ground. Find
(a) her potential cnergy relative to the ground at (i) A (ii) D
(b) the gain in potential encrgy between A and B
(¢) the loss in potential energy between B and C
(d) the gain in potential energy between C and D
(¢) Using the answers to parts (b), () and (d), find the P.E. at D.
Check that this agrees with your answer to part (a) (ii

(a) Find the gain in kinetic energy when the speed of a body of mass 4 kg
increases from 7 m/s to 11 m/s.

(b) Find the kinetic energy lost when the speed of the same body falls from
18 m/s to 5 m/s.
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A car of mass 900 kg is travelling at 72 km/h.

(a) Find how much kinetic energy is lost if the speed falls to 54 km/h.

(b) If the kinetic energy rises to 281.25 kJ, at what speed is the car travelling?

A particle of mass 3 kg is at rest. It begins to move with constant

acceleration and five seconds later it has kinetic energy of 150 J. Find

(a) the speed at the end of the § seconds

(b) how far the particle has travelled in this time.

A pump raises 45 kg of water through a vertical distance of 12 m.

(a) How much potential energy is gained by the water?

The water is then forced through a pipe at 12 m/s.

(b) How much kinetic energy does the water gain?

A pump raises water from a depth of 5 m and cjects it through a pipe with a

speed of 8 m/s.

(a) I the cross-sectional area of the pipe is 0.06 m?, find the volume of water
discharged per second.

(b) Given that | m® of water has a mass of 1000 kg, find the mass of water
discharged per second.

(c) Find the total mechanical energy gained by the water.

THE PRINCIPLE OF WORK AND ENERGY
Mechanical energy was defined as the mpamy ol‘ |he foms acting on a body to do
work. Now the li
mmﬁdmbymfmaﬂmgonawysuwm
the change in the mechanical energy of the body.
‘This is the principle of work and energy.

Hdtexlum”umsmmadneﬁmnﬂmhlpswmudunm
of the body the mechanical energy increases, whereas opposing
external forces cause a deuw in mechanical energy.
“The weight of an object is not counted as an external force in this context because
work done by weight is Potential Energy and is already accounted for.

In solving problems involving this principle it is wise to use it in the form

Final ME ~ Initial ME = Work Done (~ means the difference between)

‘This avoids any confusion in cases where one type of energy increases and the
other decreases.
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Examples 8b

. A force acting on a body of mass 6 kg, moving horizontally, causes the speed to
increase from 3 m/s to 8 m/s. How much work is done by the force?
If the maguitude of the force is 11 N, how far does the body move during this speed
change?

s ¢ san
—b > —F
¥ metres. ’

As the body is moving horizontally there is no change in PE so only KE changes.

Work done = Final ME ~ Initial ME
HE)(8) - 1(6)(31))
165)

Fs

s = s =15

Work done by force
165

The body moves 15 m.

A small block of mass 3 kg is moving on a horizontal plane against a constant
resistance of R newtons. The speed of the block falls from 12 m/s o 7 m/s as the
block moves 5 m. Find the magnitude of the

12mis Tmis

TP Roewons —>

%77777%77/7777%7/
T

“There is no change in PE and, as the speed is reducing. the final KE is less than the initial KE
Initial ME ~ Final ME = §(3)(12%) - }(3)(7)

216-7351

14251

Change in ME

25 = R=285

Work done by resistance
Rx5

‘The magnitude of the resistance force is 28.5 N.

. A stone fals vertically downward through a tank of viscous oil. The speed of
the stone as it enters the oil is 2 m/s and at the bottom of the tank it is 3 m/s.
Given that the oil s of depth 2.4 m, find the resistance, F newtons, that it exerts on
the stone whose mass is 4 kg. Take g 25 9.8.
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The resistance is an opposing force so the work it does reduces the ME of the stone. Both KE and PE
change.

Initial ME = [£(4)(2%) + (4)(9.8) (24)}J

= 8+ 9408) = 102.08J Fp 2
Final ME = §(4)(3%) + 0 = 18]
Work done by the resistance = Change in ME Fnewtons i
o Fx24 = 1020818
= F = 3503... J7
P
The resistance is 35.0 N (3 sf). PE=0

4. A car of mass 1000 kg drives up a slope of length 750 m and inclination 1 in 25.
1f resistance forces are negligible, calculate the driving force of the engine if the
speed at the foot of the incline is 25 m/s and the speed at the top is 20 m/s.
Model the car as a particle and use g = 9.8.

ne

The driving force, D newtons, acts for 750 m
. work done by driving force = 750D J
Both kineti energy and potential cnergy change.
Final KE = §(1000) (20°)J = 200 kJ
Final PE = (1000) (9.8) (750 sin 2) = 9800(750 x 4 ) = 294 kJ
Final ME = 494 kJ
Initial KE = §(1000)(25%)J =.312.5kJ
Initial PE = 0
Initial ME = 312.5kJ
Work done by driving force = Final ME — Initial ME
750D = 494000 - 312500
= D =242
The driving force is 242 N.
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EXERCISE 8b

Use the pnnclple of work and energy for each question. Model each large object
ricle, ignore air resistance unless it is specifically mentioned and state any

othe assumptions made. Take £ 48 9.5 and give answers corrected (0 2 or 3 of

as appropriate.

A mass of 6 kg is pulled by a string

across a smooth horizontal plane. As the gl i s
block moves through a distance of 4.2 m, 7
the speed increases from 2 m/s o 6 m/s. S

Find the tension in the string.

A body of mass 8 kg, travelling on a rough horizontal plane at 12 m/s, is
brought to rest by friction. Find the work done by the frictional force.

ORest ORest

A ball of mass 0.4 kg is thrown vertically
upwards with a speed of 10 m/s. It comes
instantaneously to rest at a height of 3.6 m
above the point of projection, P. Find the
esistance to its motion. The ball then falls
back to . If the resistance is unchanged,
find the speed at P.

. A body of mass 0.5 kg is lifted, by vertical force, from rest at a point A to a

point B that is 1.7 m vertically above A. If the body has a speed of 3 m/s when
it reaches B find the work done by the force. Hence find the magnitude of the
force.

200 I3
oms € —>

Hm

A car of mass 750 kg, is travelling along a level road at 10 m/s against a
constant resistance of 200 N. Exerting a driving force of 1200 N, the driver
accelerates for 20 m. At what speed will the car then be moving?

A block of mass 5 kg lies in contact with a horizontal planc. It is pulled from
rest through a distance of 8 m by a horizontal force of 12 N. Find the speed
atained if the contact between block and planc is

(a) smooth (b) rough, with a coefficient of friction of ;.
A bullet of mass 0.02 kg is fired horizontally at a speed of 360 m/s into a

fixed block of wood. The bullet is embedded 0.06 m into the block. Find the
average resisting force exerted by the wood.
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A particle of mass 7 kg is pulled by a force of F newtons, 4 metres up a

smooth plane inclined at 30° to the horizontal. Find the work done by the
pulling fore if

(a) the particle is pulled at a constant speed

(b) the speed changes from 1 m/s initially to 2 m/s at the end.

A block of mass 3 kg slides down a plane inclined at « to the horizontal
where sin a The block starts from rest and there is a constant frictional
force of 4 N.

(a) How far has the block travelled when its speed reaches 6 m/s?
(b) When the block has moved 4 m down the plane, what is its speed?

In raising a body of mass 2 kg from rest vertically upwards by 6 m and
giving it a speed of v m/s, a force does work amounting to 800 J. Find v.

. A body of mass 2 kg falls vertically from rest through a distance of 5 m. If

the speed by then is 9 m/s find the air resistance.

In questions 12 to 14, water is pumped at a rate of pm?/s from a tank d m
below ground. The water is then delivered at ground level at v m/s, through a
pipe whose cross-sectional area is _am?.

The density of water is 1000 kg/m®.

If d=8, v 0.05, find
(a) the volume of water discharged per second

(b) the weight of this water
(¢) the work done per sccond by the pump in raising and delivering the water.

0 and

and a=

If p=02, d= .1, find
(a) the value of v
(b) the power the pump exerts in moving the water.

The work done per second by the pump in raising and cjecting the water is
160 kJ. Given that p=6 and d=2 find v.
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. Two boys are kicking a ball about. It has a mass of 0.5kg. The ball comes

towards one boy at 8m/s and he passes it back at 12m/s.
(a) Find the work he docs in bringing the ball to instantancous rest
(b) Find the work he does in giving it a speed of 12m/s.

. A boy makes a slide on level icy ground. The slide is 6m long. He runs up to

the slide and steps onto it at a speed of Sm/s. He reaches the other end at a
speed of 4m/s. His mass is 45kg.

(a) Find the loss of kinetic energy.

(b) Find the resistance to motion.

(¢) Assuming that air resistance is negligible, find the coeflicient of friction.

. A particle of mass mkg is pushed up a plane inclined at an angle 6 to the

horizontal. The coeflicient of friction between the particle and the plane is s
The particle has an initial speed um/s. It travels a distance dm up a line of
greatest slope of the plane and the speed then is vm/s.

Fin

(a)  the work done against the frictional force
(b) the work done against gravity
(c) the total work done.

CONSERVATION OF MECHANICAL ENERGY

‘We know from the principle of work and energy that the total chang: in the
‘mechanical energy of a body is equal to the work done on the
1t follows directly that:

1f the total work done by the external forces acting on a body is zero
there is no change in the total mechanical energy of the body,
ie. energy is conserved

This is the principle of conservation of mechanical energy.

Remember that the weight of a body is not an external force in this context as the
work done by the weight is already included as potential cnergy.

At present we are concerned with only two types of mechanical energy, so a
problem can be solved by working out the loss in KE, say, and equating it to
the gain in PE. (However, for those readers intending to carry on studying
mechanics and who will meet problems which also include the third type of
mechanical energy (sce p. 154) we recommend the method of equating the
total mechanical energy in two positions. )
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Examples 8c
. A particle is projected vertically with speed 8 m/s. Find its peed afe it boa

moved a vertical distance of 2 m

(a) wpwards  (b) dowm

Take £ 25 9.8 and give anawers corrected {0 2 Sgnificant figures,

Let the mass of the particle be m kg and the final speed be v m/s.

AtA PE =0 and ME = imx8J
Total ME = 32m ]
(a) AtB  PE = mgh = 19.6mJ
and KE = {m?]
Total ME = (19.6m+4vim)J
Total ME at A = Total ME at B
32m = 196m+4vim
= vi= 248
= v = 50(2sf)
The speed at B is 5.0 m/s (2 7).
(b) ALC PE = mg(~2))
and KE = {mv?]
Total ME = (}mv? - 19.6m)J
Total ME at A = Total ME at C
32m = Lmy? ~19.6m
= Vo= 1032
= v=10(23)

Note that in the example above the value of the mass, m,

The speed at C is 10 m/s.

was not given and was
not needed as it cancelled in each conservation of energy equation.  This will
always be the case as m is a factor of both PE and KE.

Note also that an alternative solution could be given using Newton's Law and the
equations of motion with conslant acceleration.
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A bead is threaded on to a circular ring of radius 0.5 m and centre O, which is
fixed in a vertical plane. The bead is projected from the lowest point of the ring, A,
with a speed of 4 m/s, and first comes to instantaneous rest at a point B. Contact
between the ring and the bead is smooth and there is no other resistance to motion.
Find the height of B above A. Take g as 9.8 and give answers corrected to 2
significant figures.

B
R
w
i
PE=0 N
A K1

‘The nomal reaction R is always perpendicular to the direction of motion of the bead therefore no work
is done by R. No other external force is acting so energy is conserved,

AtA PE =0 and KE = }mv = {m(47')
Total ME = (0+8m)]
ALB PE = mgh = 98mh) and KE =0
Total ME = (9.8mh +0)J
Total ME at A = Total ME at B

: 8m = 9.8mh

= b=
Corrected to 2 significant figures, B is 0.82 m above A.

. A small block A of mass 2m, is lying in smooth contact with a table top. A light
inextensible string of length 1 m is attached at one end to A, passes over a smooth
pulley at the edge of the table, and carries a block of mass m hanging freely at the
other end. Initially A is held at rest, 0.8 m from the edge of the table.

I the system is released, find A's speed when it reaches the edge.
Take g as 9.8 and correct your answers to 2 significant figures.

b
y
%2
" B
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Initially KE=0, PEofA=0, PEofB=mg(-02)J
Total ME = (0.2)(9.8)m ) = ~1.96m J
When A reaches the edge of the tabi, the speed of cach block is » m/s and B s | m below the tabl op.
When A reaches the cdge,
KEof A = }(2m»?)  KEof B = 1my?)
PEof A = 0 PEOfB = mg( - 1)J
Total ME = (mv? 4 mv? —mg) J
Initial total ME = Final total ME
~1.96m = mv? + {mv? - 9.8m
ie. 784 = 32 = v = 5227 = v = 23(2sf)
‘The speed of each block is 2.3 m/s.

Remember that the choice of the datum level for PE is arbitrary. We could just as well have chosen the
fowest level reached by B. (You may like to check that the same result would be obtained. )

In Examples 2 and 3 you will notice that the letter m is used both for mass and
metre. It is easy to see the difference between the two m’s in type because, for

mass, m is italic. When hand-writing a solution, however, this cannot be done
50 it is a good idea to write out the word metre in full.

EXERCISE 8c
For each question use the Conservation of Mechanical Energy. Take g as 9.8
and give answers corrected to 2 or 3 significant figures as appropriate.

A particle of mass m kilograms is projected vertically upwards with speed
6m/s. Find the height it attains before first coming to rest.

. A stone is thrown vertically downwards with speed 3 m/s. Find its speed

after it has fallen 4.5 m.

. A ball is thrown vertically upwards, from a point A, with speed 8 m/s. Given

that A is 1 m above ground, find

(a) the greatest height reached by the ball

(b) the speed of the ball when its height is 2.4 m
(c) the speed of the ball as it hits the ground.
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Questions 4 to 6 concern a particle P, moving on a plane inclined to the
horizontal at 30°. A and B arc two points on the plane. Contact between the
body and the plane is smooth.

P is projected up the plane from A with speed 4 m/s and comes to
instantancous rest at B. Find the distance AB.

P is released from rest at B. Find its speed as it passes through A if
AB=24m.

P is moving down the plane and passes through B with speed »
It AB=21m and the particle passes through A with speed 6 m/s, find v.

In questions 7 to 9 a smooth bead is threaded on to a smooth circular wire with
centre O and radius @ metres. The wire is fixed in a vertical plane.

The bead is released from rest at a point level with O. 1f a=0.5, find the
speed of the bead as it passes through the lowest point.

‘The bead is projected from the lowest point on the wire with speed 4.2 m/s.
If =06, find the height above O at which the bead first comes to rest.

‘The bead is projected from the lowest point and just reaches the highest point.
Given that a =08, find the speed of projection.

For questions 10 and 11, give answers in terms of / and g.

Two identical particles of mass m are connected by a light inelastic string of
length 2/. One particle, A, rests in smooth contact with a horizontal table and
the other particle B hangs freely over the edge of the table. The string is
perpendicular to that edge. If A is released from rest when it is at a distance /
from the table edge, find its speed when it reaches the edge.
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. Two particles P and Q are conneeted by a light inextensible string that passes

over a smooth pulley. The masses of P and Q are m and 2m respectively.
The particles are reicased from rest when cach is at a depth 2/ below the pulley.
Find their speed when each has moved a distance /.

State all the assumptions you make in modelling each problem from 12 to 14.

Sue hopes to swing across the stream on a rope, which is attached to an
overhanging tree at point A. The bank on the opposite side of the

stream is 1.2m higher than the bank on which she is standing. At what speed
‘must she push off in order just to get there?

Peter Pan ‘flies’ across the stage N
on a harness, which slides along

a smooth wire AB. End A of

the wire is fixed at a height of

6m and end B at a height of ~ 6m
5.5m. The lowest point of the .
wire as he crosses the stage is at
a height of 4m. He starts from
rest at A.

(a) Find his maximum speed.  (b) Find his speed at B.




. A particle slides down a smooth plane on a line AB, which is inclined at 40°

Chapter 8

The seat of a swing is 0.4 m above the ground when it is stationary. A girl is
swinging so that she passes through the lowest point with speed 5.4 m/s. Find
the height of the seat above ground when she first comes to rest.

State what assumptions have been made and comment on their suitability.

to the horizontal. At A its velocity down the plane is 3m/s. The height of A
above B is 16m. Find the velocity of the particle when at B.
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SUMMARY

Newton'’s Laws of Motion
1. A body's state of rest or constant velocity is unchanged unless a force acts on it.

2. The acceleration of a body is proportional to the force producing it,
ic. F=ma, where the unit of force, called the newlon, is the force
needed to give a mass of | kg an acceleration of 1 m/s’.

The force and the acceleration ar in the same dircction.

3. Forces between objects act in equal and opposite pairs.

Weight

Weight is the force of gravity attracting an object to the earth. The acceleration
g which it produces is approximately 9.8 m/s’.

‘The weight of an object of mass m is mg.

Equilibrium

A body that is at rest or moving with constant velocity is in a state of equilibrium
and so is the set of forces acting on that body.

A particle is in equilibrium if the resultant force acting on it is zero.

Friction
Friction exists if two objects are in rough contact and have a tendency to move.

The frictional force F is just large enough to prevent motion, up to a limiting
value.

When the limiting value is reached, F=puR where R is the normal reaction
and p is the coefficient of friction.

For rough contact 0 < F < uR and for smooth contact F=0.

When friction is limiting, the resultant of R and R is at an angle 1 to R
where 4 is the angle of friction and tan 1 = p.

169
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Work

‘When a constant force acts on an object the amount of work done by the force is
iven by
ccomponent of force in the direction of motion
x distance moved by object

‘The unit of work is the joule (J ), which is the amount of work done when a force
of 1 newton moves an object through 1 m.

The work done by a vehicle moving at constant speed is
driving force x distance moved

Power
Power is the rate at which work is done and is measured in watts where
1 watt (W) is 1 joule per second.

The power of a moving vehicle is the rate at which the driving force is working
and this is given by

driving foree x velocity

Energy

Energy is the ability to do work.

Energy and Work are interchangeable so energy is measured in joules.

‘The Kinetic Energy (KE) of a moving object is given by 4, it can never be
negative.

Potential Energy (PE) is equivalent to work done by gravity and is given

by mgh where ) is the height of an object above a chosen level
PE is negative for a body below the chosen datum.

If the total work done by the external forces acting on a body is zero the total
‘mechanical energy of the body remains constant.

Work done by gravity is accounted for as potential encrgy so weight is not
included as an external force.
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MISCELLANEOUS EXERCISE B

In this exercise use g = 9.8 unless another instruction is given.

. The diagram shows three coplanar forces of magnitudes 2 N, 3 N and P N

all acting at a point O in the directions shown.

]
Given that the forces are in equilibrium obtain the numerical values of
Pcos and Psin0 and hence, or otherwise, find tan 6 and P. (AEB)

A particle of mass 2 kg is suspended from a point C of a light string, the ends
of the string being attached 10 fixed points A and B. When the particle hangs in
equilibrium, AC is horizontal and CB is inclined at 20° to the horizontal.

Find the magnitude of the tension in the string in
(a) the section BC (b) the section AC (AEB)

. A particle of mass 2 kg which is free to move along the positive x-axis is at

rest at time £ =0s. For the first ten seconds it is acted upon by a force in the
positive x direction of magnitude 6 N; for the next 240 seconds no force acts;
then the particle is brought to rest by applying a force of magnitude 10 N along
the x-axis. Find the time at which the particle comes to rest and the distance
travelled up to that time. (AEB)

Two particles A and B are placed on a rough horizontal table at a distance @
apart. The coefficient of friction between the table and A is }, and the
coefficient of friction between the table and B is .

‘The particles are projected simultaneously with velocity u in the direction AB.
Given that the particles do not collide, find, in terms of u and g, the distance
travelled by each particle before it comes (o rest

Deduce that u? < 3ga. (NEAB)

In a race, an athlete of mass 70 kg starts from rest and runs a distance of

100 m along a straight horizontal track. During the first 6 seconds of the race,
the net propelling force is horizontal and of magnitude 175 N.

For the remainder of the race, the net force is a horizontal resistance with a
magnitude of F N

(a) Find the speed of the athletc after the first 6 seconds.

(b) Given that the athlete completes the race in 11 s, find the value of F.
(AEB)
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6. The points A, B and C of a horizontal plane have coordinates (4, 3), (~4, 0)
and (4, =3), respectively, these dimensions being in metres. A particle P on the
plane is subject to three forces which are directed towards A, B and C.

(a) When P is at the origin the forces directed towards A, B and C have
maguitudes 4 N, 2 N and 4 N, respectively, as shown in the diagram.

y

Calculate the magnitude of the resultant of the three forces, and state its
direction.
(i) Given that the plane is rough, and that P is in equilibrium at the origin,
state the magnitude and direction of the frictional force on
(i) Given that the planc is smooth and that the mass of P'is 0.1 kg, calculate
the aceeleration of P when it is at the origin.
(6) Waen P s at the point (~4,3) the fore directed towars § i zr0, nd the
rees directed towards A and C have magnitudes 10 N and 14 N,
uspec\lvely Calculate the magnitude and direction of the resultant of the
two non-zero forces. (UCLES)

A small pareel P, of mass L5 kg, is placed on a rough plane inclined at an angle
of 27° to the horizontal. The coefficient of friction between the parcel and the
plane s 0.3. A force S, of variable magnitude, is applied to the parcel as shown
in the diagram. The line of action of S is parallel to a line of greatest slope of
the inclined plane.

Determine, in N to | decimal place, the magnitude of S when the parcel P is in
limiting equilibrium and on the point of moving

(a) down the planc  (b) up the plane. (ULEAC)

8. A light inextensible string passes over a small fixed smooth pulley. The string
carries a particle of mass 0.06 kg at one end and a particle of mass 0.08 kg at the
other end. The particles move in a vertical plane, with both hanging parts of the
string vertical. Find the magnitude of the acceleration of the particles and the
tension in the string. (AEB)
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A smooth pulley is fixed at a height 3/ above a
horizontal table and a light inextensible string
hangs over the pulley. A particle of mass m is
attached to one end of the string and a particle
of mass 2m is attached to the other end.
‘The system s held at rest with the particles
hanging at the same level and at a distance / from
the table. The parts of the string not in contact
with the pulley are vertical. The system is then
sed from rest. Find, in terms of g and /, the
speed u with which the particle of mass 2m strikes
the table.

iagram shows two particles, A of mass 3m and B of mass 2m, connected by
a light inextensible string which passes over a smooth fixed pulley at the edge of
a horizontal table. Initially A is held at rest on the table and B is h-mng frecly
at a height h above the floor. The particle A is then released and duri

motion along the table xperiences a retarding forc. due o friction with e
table, of magnitude | mg. The particle B strikes the floor before A reaches the
edge of the table. Find, in terms of m and g, the tension in the string and the
acceleration of the particles whilst they are both moving. Show that the speed

of A at the instant when B hits the floor is \/Zlgﬁ)

When B hits the floor, A continues moving along the table but eventually comes
to rest before it reaches the edge. Show that the length of the string must be
greater than 4h, (NI

A long light inextensible string passes over a smooth pulley, and particles of
masses m and 4m are fixed to the two ends of the string. The system is released
from rest with the string taut and with each particle at a height 1.2 m from the
floor. (Take £ to be 10).

(a) Show that the acceleration of either particle is 6 m/s%.

(b)

Calculate the time taken for the heavier particle to reach the floor, and the

speed on impact.

(c) Assuming the heavier particle does not rebound, caleulate the greatest height

above the floor attained by the lighter particle in the subscquent motion.
(UCLES)
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The diagram shows a particle A, of mass $ kg, resting on a smooth plane which
is inclined at 30° to the horizontal. A light inextensible string connects A to a
second particle B, of mass 3 kg, which hangs freely. The string passes over a
small smooth pulley P fixed at the top of the inclined plane, and the portion AP
of the string is parallel to a line of greatest slope of the plane. The system is
released from rest with the string taut and the hanging part vertical.

(a) Calculate, in m/s? to 2 decimal places, the acceleration of A.
(b) Calculate, in N to 2 decimal places, the tension in the string. (AEB)

Each question from 13 to 16 is followed by several suggested responses. Choose
which is the correct response.

. A particle travelling in a horizontal straight line has an acceleration of +2 m/s%.

A Its total mechanical energy is constant.
B lts kinetic energy is constant.
€ Work is being done on the particle.

. A particle is moving with uniform velocity.

A The particle is in equilibrium.
B The particle has a constant acceleration.
€ There is a resultant force acting on the body in the direction of the velocity.

Forces represented by 21+ i, §— 8, and pi+ g, are in equilibrium,
therefore

A p=3 a
B p=-3 and g=

. “The potential energy of a body of mass m is mgh where h is

A the distance from a chosen point
B the height above the ground
€ the height above a chosen level.

A lorry has mass 6 tonnes (6000 kg) and its engine can develop a maximum
power of 10 kW. When the speed of the lorry is v m/s the total non-
geavitational resistance to motion has magnitude 25v N. Find the maximum
speed of the lorry when travelling along a straight horizontal road. Find also the
maximum speed up a hill which is inclined at an angle = to the horizontal where
sin @ = 7l , giving your answer to 2 decimal places. (AEB)
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A heavy stone S, resting on rough horizontal ground, is to be moved by pulling
horizontally on two ropes, SP and SQ, which are attached to the stone. The
tensions in the ropes are 300 N and 500 N respectively, and the angle between the

is 60°, as shown in the diagram. Find, cither by accurate drawing or by
calculation, the resultant force on the stone due to the two ropes, giving its
‘magnitude and the direction that it makes with SP.

‘The stone is dragged slowly along the ground for a distance of 2 m in the
direction of the resultant pull, all forces remaining constant in magnitude and
direction. Find the total amount of work done by the forces dragging the stone
along the ground.

Assuming that the coeficient of friction between the stonc and the ground is 0.5,
find the mass of the stone. (Take g to be 10 m/s%.) (UCLES)

A lorry, travelling at constant speed, moves a distance of 2 km up a hill

which is inclined at 10° to the horizontal. Given that the mass of the lorry is
2400 kg, and that the frictional resistance to the motion is of magnitude 800 N,
find, in J, to 3 significant fguma the total work done by the engine of the lorry
against the resistance and gravity. (AEB)

‘The diagram represents a path which consists of a slope AB, 90 m long, inclined
at 257 lo |h= horizontal and a horizontal section BC. A boy on a skate-board
starts from rest at A and glides down AB before coming to rest between B and
C. The magnitude of the resistive forces opposing the motion are constant
throughout the journcy. The combined mass of the boy and skate-board is 40 kg
and the boy reaches B with a speed of 14 m/s. Calculate, to 3 significant figures,

(a) the energy lost, in J, by the boy and skate-board in going from A to B
(b) the magnitude, in N, of the resistive forces

(c) the distance, in m, the boy travels along BC before coming to rest.
(ULEAC)
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. A smooth bead P, of mass 0.15 kg, is threaded on a smooth straight fixed

wire which is inclined at 35° 10 the horizontal. The bead P is relcased from rest

and moves down the wire, starting from a point A. After 2 seconds, P passes

through a point B on the wire. Calculate

(a) the distance AB, giving your answer in metres to | decimal place,

(b) the kinetic energy of P at B, giving your answer in joules to | decimal place.
(Al

EB)

A cyclist working at a rate of 150 watts maintains a steady speed of 27 km/h
along a straight horizontal road. Find the resistance to motion, stating your
units. (AEB)

The instruction for answering questions 23 to 30 is: if the following statement
must always be true, write T, otherwise write F giving reasons, where you can,
for your conclusion.

If a frictional force acts on a body, it is not necessarily of value uR where R
is the normal contact force.

. The angle of friction is the angle between the frictional force and the normal
reaction.

If & body has a resultant force acting on it the body will accelerate in the
direction of the force.

A particle is hanging freely attached to a light inextensible string. The string
is made to accelerate vertically upward. The tension in the string is greater than
the weight of the particle.

. A car is towing a van at a steady speed. The tension in the tow rope is

greater than the resistance to the motion of the van.
If a particle has a constant acceleration veetor it must be moving in a straight line.

As long as no external forces act on a system the kinetic energy must be constant,

. Some external forces which act on a moving body do not do any work.

. A lorry of mass 5000 kg is travelling up a slope inclined at an angle x to the

horizontal, where sin @ = yiy. The engine of the lorry is working at a

steady 20 kW and the constant resistances due to friction and to airflow around

the lorry amount to 600 N. At the instant when the lorry is moving at a speed of

12 m/s, caleulate, in m/s? to 3 significant figures, the aceeleration of the lorry.
(ULEAC)

A car has an engine of maximum power 15kW. Calculate the force resisting the
motion of the car when it is travelling at its maximum speed of 120km/h on a
level road.

Assuming an unchanged resistance, and taking the mass of the car to be 800kg,
calculate, in m/s?, the maximum acceleration of the car when it is travelling at
60km/h on a level road. (UCLES)
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. The total mass of a train is 400 tonnes. It moves on a slmighl horizontal
track. ng;\ms( a constant resistance of 20 kN. Find the rate, in kllowlms, at which
the engine is working when it is travelling at a uniform speed of 6:
The tractive force of the engine is now increased to 25 kN and mammmed at this
value. The resistance remains unchanged. As a result, the speed of the train
increases uniformly from 63 km/h to 81 km/h. For this part of the motion,
show that the acceleration of the train is 3 m/s? and find

(a) the time taken
(b) the distance travelled. (NEAB)

. The resistance to the motion of a motor coach is K newtons per tonne,

where K is a constant. The motor coach has mass 4} tonnes. When travelling

on a straight horizontal road with the engine working at 39.6 kW, the coach

maintains a steady speed of 40 m/s.

(a) Show that K=220.

The motor coach ascends a straight road, which is inclined at an angle « to the

horizontal, where sina = 0.3, with the same power output and against the same

constant resisting forces.

(b) Find, in joules to 2 significant figures, the kinetic energy of the motor coach
when it is travelling at its maximum speed up the slope. (ULEAC)

. The resistance to motion of a car of mass 2000 kg is proportional to its
speed. With the engine working at 72 kW the car can attain a maximum speed
of 12 m/s when travelling up a straight road, which is inclined at an angle a to
the horizontal where sina = 3.

(a) Show that the resistance to motion is 4000 N at this speed.

(b) Find the greatest speed at which the car could travel down this road with the
engine working at 72 kW. (AEB)

. A motor cyclist together with his machine has a mass of 200 k. He is
ascending a straight road inclined at 0 to the horizontal where sin 0 = against
a constant resistance of 120 N and the engine is working at 9 kW.
Caleulate

(a)  the acceleration of the motor cyclist when his speed is 20 m/s

(b)  the maximum speed which he can attain up the incline.

Later the motor cyclist descends the same hill with a pillion passenger whose
mass is 75 kg. Given that the constant resistance is now 165 N and that the
engine is switched off, find the time taken and the distance covered as the speed
of the motor cyclist increases from 10 m/s to 20 m/s. (WIEC)
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. A car, of mass M kilograms, is pulling a trailer, of mass 1M kilograms,

along a straight horizontal road. The tow-bar connecting the car and the trailer
is horizontal and of negligible mass., The resistive forces acting on the car and
trailer are constant and of magnitude 300 N and 200 N respectively. At the
instant when the car has an acceleration of magnitude 0.3 m/s%, the tractive force
has magnitude 2000 N.

Show that M(A+1) = 5000.
Given that the tension in the tow-bar is 500 N at this same instant, find the value
of M and the value of 4. (ULEAC)

. The total mass of a woman and her bicycle is 80 kg. The woman freewheels

down a slope inclined at an angle 6 to the horizontal, where sin 6= 0.14, with
constant acceleration of magnitude 0.9 m/s%.

(a) Prove that the total magnitude of the resistive forces opposing the motion
is 3776 N.

(b) Find the time required for the woman to cover 180 m from rest.

The woman cycles up the same slope at constant speed 6 m/s the resistive forces
remaining unchanged.

(¢) Find in watts, to 3 significant figures, the power that must be exerted by the
woman.

(d) IF now the woman suddenly increases her work rate by 240 W, find the
‘magnitude of her acceleration up the slope, to 3 significant figures, at that
instant. (ULEAC)

(in this question take g to be 10)

(a) A weightlifier lifts a weight of mass 100 kg from the floor to a height of
2 m above the floor. Calculate the work done on the weight by the
weightlifier.
The weightlifter then allows the weight to fall back to the floor. State the
loss in potential energy of the weight, and hence calculate the speed of the
weight on impact with the floor

(b) Water flows over a waterfall where there is a vertical drop of 80 m. The
water at the top of the waterfall is flowing at a speed of 3 m/s. By
considering the potential and kinetic energy of 1 kg of water, or otherwise,
find the speed of the water after it has fallen 80 m

Water flows over the waterfall at a rate of 200 m/s and 1 m* of water has
a mass of 1000 k. Assuming that 40% of the energy of the water at the
bottom of the waterfall can be converted into electricity by suitable
generators, calculate the power, in kilowatts, that could be developed.
(UCLES)
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ELASTIC STRINGS AND SPRINGS

ELASTIC STRINGS

‘When a string can be stretched by forces applied at its ends it is called an elastic
string.

The natural length of an elastic string is its unstretched length.

Two forces, one at each end, must be applied to an elastic string in order to
stretch it. You may argue that pulling one end will cause stretching if the
other end is tied to a fixed object such as a wall, but remember that a force
acts on the string at the point of attachment, e.g. where it is fastened to the wall.
Clearly the stretching forces must each act outwards; they must also be equal and
opposite as otherwise the string would move in position and not just stretch.

v orcd
El

An elastic string that has been stretched is faut; when it is in a straight line and is
of natural length, it is described as ‘just taut’.

naturat length nawral length extension

string just taut string taut

The difference between the stretched length and the natural length is called the
extension and s often denoted by x.

We know that a taut string exerts an inward pull at cach end and, by considering
the equilibrium at one end of the string, we see that the tension is equal and
opposite to the stretching force there.

T [ \

79



180 Chapters
HOOKE'S LAW

In the seventeenth century a relationship between the extension of a stretched
string and the tension at each end was discovered experimentally by Hooke.
‘The relationship, known as Hooke’s Law, states that, up to a certain point,

the extension, x, in a stretched elastic string
is proportional to the tension, T,mﬂienrlng

ie. Toxx or 1‘:1i
a

where ais the natural length of the string
and A is the modulus of elasticity of the string.

The Elastic Limit

As the extending forces applied to the slring are steadily increased, there comes a
time when a further increase suddenly produces an extension much greater than
Hooke's Law would suggest. The string has become overstretched and will not
return to its natural length when it is nlmad it has gone beyond its elastic
limit. Subsequently its extension bears no relationship to the tension and, at
this level of study, is no longer of any interest to us; in this book we deal only
with strings that have not exceeded their elastic limit.

The Modulus of Elasticity

The form in which Hooke's Law is usually used is
r=X
a
Considering the dimensions on each side of this formula we see that
on the LHS we have the dimensions of a force
on the RHS we have  (the dimensions of /) x <10
length
Therefore / has the dimensions of force and is measured in newtons.
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Further, when the length of an elastic string is doubled, i.e. when x =a, then
T=14 showing that
A s equal to the tension in an elastic string
whose length is twice the natural length.

SPRINGS
Hooke's Law applies to springs in a similar way as to elastic strings but there is
one important difference - a spring can be compressed as well as stretched.

‘When stretched, i.e. when it is in fension, a spring behaves in exactly the same way
as a stretched elastic string, i.e. equal and opposite tensions act inwards at the
ends.

When a spring is compressed, the reduction in its length is called the compression
and the forces in the spring are an outward push, called a thrust, at each end.

‘The spring is said to be in compression and it obeys Hooke's Law where T'is the
thrust and x is the compression.

FooT T E

natural length

Examples 9a

1. A light elastic string whose natural length is 0.8m is stretched to a length of 1.1m
by a force of 12N as shown. Find the modulus of elasticity of the string.

e

2 n } N
7 T

Tension = extending force = T =12

Using Hooke's Law gives T= ;(;)

The modulus of elasticity is 32N.
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3 neunmlle-:\hnru.msmnguundmmluwemnth Find, in
terms of @ and 4, the length of the spring whe:

(a) the tension in the spring is }4

(b) the thrust in the spring is 1.

‘When there is a tension in the spring it s extended and when there is a thrust it is compressed.

(a) Toh roh
[ e ]

Hooke's Law gives 1= ix> = x=1a
The extended length s~ a+}a = }a

(b) T-ia Tejy

Again Hooke's Law gives
The compressed length is

x
a-

. One end of an elastic string, of natural length 1.2m and modulus of elasticity 20N,
is fixed to & point A on a smooth horizontal surface. A particle of mass 1.2kg is
tached o the other exd B and » o acs on the paricl, plig i awey fum 4,
until the length of the string has increased to 1.5m.

(a) Find the tension in the string.

(b) If the force ceases to act on the particle, find the acceleration with which the

particle begins to move.

(c) State, with a reason, whether or not the particle continues to move with

constant aceeleration.

(a)

— e >e03m-
7

The extension in the string i 0.3m
Hooke's Law gives T = % =5

The tension in the stretched string is SN.
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(b) SN
+ =12k
g

When the force is removed the only horizontal force acting on the particle s the tension in the
sring and this acts towards A,

Using Newton's Law ~ F = ma
gives 5=12a = a=417 3sh
The particle begins to move towards A with aceeleration 4.17m/s? (3 sf).

(€) As s00n as the particle begins to move towards A the string gets shorter and
the tension in it reduces, causing a reduction in the acceleration.

Therefore the particle does not move with constant aceeleration.

EXERCISE 9a

An elastic string of natural length | m is stretched to a length of 1.3m by a force
of 3N. Find its modulus of elasticity.

A light elastic string whose modulus of elasticity s 18N is stretched from its
natural length of L.4m 10 a length of 1.8m. Find the tension in the string.

‘The length of a spring whose modulus of elasticity is 30N is reduced by 0.4m
when compressed by forces of 20N. What is the natural length of the spring?

A force of §N acts outward at each end of a light elastic string of natural length
1.6m. Find the stretched length of the string if the modulus of elasticity is

(a) 10N (b) 20N (c) 4ON.

. The natural length of a light spring is 0.9m and its modulus of elasticity is 20N.

Two forces act inwards, one at each end of the spring. Find the compressed
length of the spring if the magnitude of cach force is F newtons, where

(@ F=10 (b) F=14 (c) F=4.
A force F newtons acts inwards at each end of a light spring and produces a

compression of 0.3m. Find the value of F if the modulus of elasticity of the
spring is 12N and the natural length is

(@) 05m () Im () 2m.
A light elastic string, with modulus of elasticity 22N, is extended by 0.5m. Find
the natural length of the string if the tension in it

(@ 8N (b) 10N (c) I6N.
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One end of an elastic string of natural length 0.5m is attached to a point A on a
smooth horizontal surface. A particle P, of mass 0.4kg is attached to the other
end of the string. This particle is held on the table, at a distance 0.8m from A,
by a person exerting a horizontal force of 6N.

(a) Find the modulus of elasticity of the string.
(b) The person releases the particle. Find its initial acceleration.

{¢) Find the tension in the string and the acceleration of P when the distance
APis,

(i) 07m (i) 0.6m  (iii) 0.5m.

An upper body exerciser consists of a spring of length 20em with a handle
attached at each end. The modulus of elasticity of the spring is 600N. A boy
can stretch the spring to 25cm in length. Find the force which he is then exerting
on each handle.

Another model of the upper body exerciser, which uses springs of the same type
as in Question 9, is adjustable by inserting extra springs between the handles.

Ben uses two springs and can extend it by 13cm. Tony uses three springs and
can extend it by 9em. Who is the stronger?

EQUILIBRIUM PROBLEMS

In Chapter 6 the equilibrium of a particle under the action of a set of coplanar

forces was discussed and the following conclusions were reached.

® Two forces that keep a particle in equilibrium must be equal and opposite.

@ When three or more forces acting on a particle are in equilibrium, the sum of
the force components in any direction is zero.

Using these facts we can now look at some problems in which elastic strings or

springs provide one or more of the forces that keep a particle in equilibrium.
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Examples 9b

A light elastic string, of natural length 1 m and modulus of elasticity 35N, is fixed
at one end and a particle of mass 2kg is to the other end. Find the length
of the string when the particle hangs freely in equilibrium.

From the cquilibrium of the particle,

T=2
) )
Now using Hooke's Law we have
7= L 2x98=35xx l
a 4o
056 AT
4

Therefore the length of the string is 1.56 m.

2. The natural length of a light elastic string AB is 2.4 metres and its modulus of
elastieity is dg newtons. The ends A and B are attached to two points on the same
fevel and 2.4m apart, and a particle of mass nkg is attached to the midpoint C of

the string. When the particle hangs in equilibrium, each half of the string is at 60°
to the vertical. Find, corrected to 2 significant figures, the mass of the particle.

From symmetry the tensions in the two portions of the string are equal.
For the forces acting on the particle:
Resolving vertically
2Meos60" = ng = T=ng n
Now using Hooke’s Law for cither portion of the string,

T=2 o

= ]

From (1] and (2],
ng:% = x =03



185 Chapter 9

In AACD,  AD = AC sin 60°

Also AC is the stretched length of one half of the string.
AC = 12+x

= 1385... = 124031 =  n=06I88. .

‘The mass of the particle is 0.619kg (3 sf).

. A light elastie string of natural length 2a is fixed at one end A and carries 3
particle of mass 3m at the other end. When the particle is hanging freely a
horizontal force 3mg is applied to it. When the particle is in equilibrium the string
i inclined to the vertical at an angle 0 and the extension of the string is a.

(a) Find 0
(b) Show that the modulus of elasticity of the string is 6mgv2 newtons.

(@) Considering the equilibrium of the particle:
Resolving —  gives
Tsin0-3mg = 0 m
. Resolving | gives
T cos 0 —3mg = 0 e
=02 gives
7
Tsin _ 3mg _
Img Toosh m = tan 0 =
0 =45

Jme
(D) The answer s require in surd form 5o we will express sin 45" in that way

3" g3 (as sin 45°
Sin 45

From 1],

Using Hooke's Law T = zi = i=2T=6mg/3
The modulus of elasticity is 6mgy/2.

. Two identical springs, AC and BC, each of natural length a and moduius of
elasticity Zmg, are joined together at C. The ends A and B are attached to two
points distant 4a apart vertically; A is above B. A particle of mass m is attached
at C. Find the length of BC when the particle rests in equilibrium.

The extensions in the two springs are not cqual as the weight of the partike i helping 10 streich the
wpper spring but not the lower one,
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3

EXERCISE Sb

Taking x as the extension in AC we have AC = a+x.
Then CB = da—(a+x)=3a-x

Therefore the extension in BC is (3a—x)-a = 2a—-x

‘The particle is in equilibrium
Ty~Ty—mg =0 1
Using Hooke's Law

ForAC Zmgx 2
a
ForCB Ty — M24-x) _ 2mg(2a—x) 5]
A a

Using [2] and [3] in [1] we have

s dmeQa=x) .o
a a
L5
a
BC = 3a-x

In questions 1 to 3 an elastic string, with modulus of elasticity 2 Nand natural
length am, has one end attached 1o a fixed point and the other to a particle of
mass mkg which hangs in equilibrium.

3. The string s stretched to length 1.3m. Find J.

Find the extension of the string.

When 4 = 24, the particle causes the string to stretch (o three times its natural

length. Find m

In questions 4 0 6 a vertical spring, with modulus of elasticity AN and natural
length am, has its lower end on the floor. On top of the spring is a light
platform on which a particle of mass mkg rests in equilibrium.

a =03, m=2. The particle is 0.2m above the floor. Find 4.

a=05 m=15 i=40. Find the height of the particle above the floor.

If 4 =35, the particle compresses the spring to 60% of its natural length.

Find m.
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A spring is fixed at one end. When it hangs vertically, supporting a mass of 2kg
at the free end, its length is 3m. The mass of 2kg is then removed and replaced
by a particle of unknown mass. The length of the spring is then 2.5m. If the
modulus of clasticity of the spring is 98N, find the mass of the second load.

The end A of a light elastic string AB of natural length @ and modulus of
elasticity 2mg is fastened to one end of another light elastic string AC of natural
length 2a and modulus of elasticity 3mg. The ends B and C are stretched
between two points 6a apart, so that BAC is a horizontal line.

Find the length of AB.

red at 30° to the horizontal. It is
held in equilibrium by a light elastic string attached to the mass and to a point
on the plane. Find the extension in the string if it is known that a force of 49N
would double the natural length of 1.25m.

. Two identical springs AC and BC of natural length a and modulus of clasticty

3mg are attached to a particle of mass m at point C. The ends A an
attached to 1wo points o that A is vertically above B and AB = 3a. The
particle is in equilibrium between A and B.  Find the length of AC.

. Two springs AB and BC are joined together end to end to form one long spring.

The natural lengths of the separate springs are 1.6m and [.4m and their moduli
of clastiity arc 20N and 28N respectively. Find the tension in the combined
spring if it is stretched between two points 4m apart.

An elastic spring is fixed at one end. When a force of 4N is applied to the other
end the spring extends by 0.2m. If the spring hangs vertically supporting a mass
of Ikg at the free end, the spring is of length 249m. Find the natural length
and modulus of elasticity of the spring.
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13. The natural length of an elastic string is 2.5m. The ends A and B are attached
to two points on the same level and 2m apart. A particle of mass 0.4 kg is
attached 1o the mid point of the string and it hangs in equilibrium 1 m below the
level of AB. Find the modulus of clasticity of the string.

A B

04kg

14. A light elastic string AB has natural length A
2a and modulus of elasticity mgv/3. The h
end A is attached o a fixed point and a D
particle of mass m is attached to B. The ’
system is held in equilibrium, with B below C
the level of A and AB inclined at an angle 0 ! ’
to the vertical, by a force P at 90° to AB.
In this position AB = 3a.

(a) Find0. (b) Find the force P.

15. ABCD is an elastic string of natural length 3m and particles of equal mass are

attached to the unstretched string at points B and C wherc AB = BC = CI
The ends A and D are then attached to (wo points on the same horizontal level
and 3m apart. The particles hang in equilibrium so that the string sections AB
and CD are each at 60° to the horizontal.

Am—————3m——————=D

B c

(

Given that the extension in AB is xm, find an expression for the extension
in BC.

(
(c) The modulus of elasticity is SON. Find the mass of each particle.

1

Find the value of x.
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PROBLEMS ABOUT REAL OBJECTS

Some of the problems encountered in earlier chapters involved real objects such
as cars, people, cyeles etc., which we modelled as particles with the same mass as
the object. Other assumptions, such as zero air resistance, were also made in
some cases in order to form a model.

In this chapter we have seen how Hooke's Law can be used to solve problems
about light elastic strings and springs but in most real situations strings and
springs do have some weight. So in order to estimate results in these
circumstances we now need to make the further assumption that real strings
and springs are light and obey Hooke’s Law. The context in which strings
and springs occur often includes a weighing machine with a scale pan whose
weight is small compared with anything placed in the pan and in this case
another assumption is made, i.c. that the pan is light (weightless).

The worked example and the exercise that follow, illustrate the application of this
wider range of assumptions needed to form a model.

Example 9¢

Raj is designing a machine to weigh heavy crates. A ‘mock-up’ of one of his designs
uses a spring attached to a weighing platform as shown.

natural length of the spring is 10cm. When a crate, known to be of mass
mk.lsphuawmwumnmmmum. How far should the
platform descend when a mass of 150kg is placed on it?
We can model this situation by
assuming that the spring obeys Hooke's Law,
treating the spring and the platform as light,
treating the package as a particle,
and so produce this simplified diagram.
When the mass of 100kg s in cquilibrium, 7} = 100g

‘The compression in the spring is 1cm so Hookes Law gives

T"”E = 1= 1000g
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1f the thrust is T3 when the mass of 150kg is in equilibrium, 73 = 150g

and Hooke's Law gives T3 = %

1500g = 1000gx = x=15

The estimated distance that a 150kg mass would descend is 1.5 cm.

EXERCISE 9c

. In a pinball machine the ball, of mass 30g, is
propelled from a cup, of mass 90.g. which is
attached 1o a spring. The spring has modulus of
elasticity 9N and natural length 15cm.

(a) The mechanism allows the spring to be given
a compression of 10¢m. Find the force
necessary to do this.

(b) Assuming that the masses of the spring and
the holding mechanism are negligible, find
the initial acceleration of the fotal mass of
the cup and ball when the spring is released.

The spring for some kitehen scales is of length 10em. It s connected (o0 a dial
which is intended to measure loads up to 49N. Design considerations suggest
that the compression should not exceed 2.5cm. By assuming that the scale pan is
weightless find the minimum value you would recommend for the modulus of
elasticity of the spring.

. A door latch mechanism contains a spring to return the latch to the closed
position. When the latch is in this position the spring is held compressed by
means of a peg which prevents it from expanding. The spring has modulus of
elasticity 12N and natural length 8cm.

(a) In the closed position the spring cxerts a force of SN on the peg. Find the
compression of the spring

(b) Tn opening the door the spring is compressed by a further Iem. Find the
force required to hold the latch in the open position.

m—]

Laich inclosed position ‘Latch in opea position
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“Springmakers’ Ltd. are testing springs for a new application. They all have the
same modulus of elasticity and are of various lengths.

(a) A spring of natural length 0.3m is found to extend to 0.35m when a force
of 240N is applied. Find the modulus of elasticity of the spring under test.
(6) I the applcaion the spring willbe subected o ensions up o a vale of
Uis required that the extension should not exceed 0.05m. Find the
‘maximum length of spring which could be used.

Part of the suspension system on one rear wheel of a car consists of a spring with
one end fixed to the body of the car and the other end fixed to the wheel axle.
‘The modulus of elasticity of the spring is 8000N.

(a) The car, when empty, puts a load of 2940 N on this spring, which
compresses it to a length of 25cm. Find the natural length of the spring.

(b) Passengers and luggage increase the load on this spring by 1370N. What is
its compression then?

(€) The ground cearane of the empty car
18cm. Find the value to which this
will be educed (for 8 Statonary car)
when the passengers and luggage are
in the car. 15cn)

A *baby-bouncer” consists of a safety seat that can be suspended on two identical
elastic ropes from the top of a doorway 2 metres high. The seat is designed to
rest in equilibrium at a height of 0.5m above the floor when occupied by a child
of mass Tke.

i
Y

(a) If the ropes are cach 1.1m long, what should the modulus of elasticity be?

(b) An older child, of mass 11kg, climbs into the seat. At what height above
the floor will the seat rest in equilibrium?

State all the assumptions you have made in working out your answers.
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An anti-vibration mount for a Platorm
machine contains a spring attached to

a fixed base plate and (o a platform,

which can move vertically. A machine

of mass 240kg has a rectangular base,

and a mount is placed under each

corner of this base. It is required

that, when the machine is not running,

the springs should be compressed to

half their natural length. Bt e

(a) Find the thrust in cach spring. State any assumptions you make in doing this.
(b) Find the modulus of elasticity of the springs.

. The mechanism for a retractable ball-point pen includes a spring with a natural
length of 1.2¢m.

gmmD

The force needed to bring the pen into use from the retracted position is 1 N and
the spring is then compressed to a length of 0.5cm.
Find the modulus of elasticity of the spring.
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ELASTIC POTENTIAL ENERGY

An object possesses potential energy when the position of the object is such that
releasing it from that position results in motion. We are familiar with the
potential energy of an object which would fall from rest when released, but
there is another type of potential energy.

Consider an elastic string fixed at one end and with a particle P attached to the
other end. A force acting on P, away from the fixed end, stretches the string, and
when that force is removed the particle begins to move, i.e. a particle attached to
a stretched elastic string possesses potential energy because of its position. To
distinguish this type of potential energy from gravitational potential energy, it
is known as elastic potential energy (EPE).

We know that work done to a system causes an equivalent increase in the
‘mechanical energy of the system, so the EPE of a stretched elastic string can
be found by calculating the work done by the stretching force.

The Work Done in Stretching an Elastic String

The force that stretches an elastic string is not constant because it is at all times
equal to the tension in the string, which, in turn, is directly proportional to the
extension. It follows that one way to find the work done is to multiply the
average force by the total extension produced.

Consider the work done when an elastic string, with a natural length a and
modulus of elasticity 4, is stretched from an extension x, to an extension x; .

When the extension is x; A=

‘When the extension is x; F=




Elastic Potential Energy 185
Over the period while the extension increases from x, (0 x;,
the average extending force is  £(7, +T3),
therefore the work done is given by H(7)+T2)(x; - x,)
ie. work done in stretching an elastic string
= average tension X increase in extension
If x, i zero, i.c. the string is initially unstretched, then T) also is zero and the
expression above can be simplified to give § 7x where T'is the final tension.
Further, using 7 = X, the work done can be expresed 15 5.
ie. the amount of work needed to stretch an elastic string

e
by an extension x is given by ™

An alternative way 1o find the work done in stretching an elastic string, uses
caleulus.

When the extension i 5, say, the extending foroe is -

Now if the string is further stretched by a small amount s, the work required is
given approximately by 2 (5)

The total work done in stretching the string from its natural length a to a length
(a+s) is therefore given approximately by Z A ss.
Then,as 050, Y s ijxm -

. q a

The expressions derived above apply equally well to an extended or compressed
elastic spring.
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Examples 10a
The natural length of a light elastic string is 1.2m and its modulus of elasticity

is 18N, Initially the string is just taut and is then stretched until it is 2m long.
Find the work done during the extension.

The inital extension and the inital tension are both zero.

——r

@-19——w

A2 18%08

The work d i .
e work done is given by 5. e, £07

The work done is 4.8J.

2. Tbemugdw!bedmexlmpklshdnghddlnmumdmﬂﬂlbmwlau(nru

(a) Find the final extension.
(b) State an assumption that has been made.

(a)  The initial extension s 1.6m; let the final extension be xm.

——2m . D4 m—

18x04

13N e 6N

When extension is 0.4m, the tension is

‘The final tension is given by 1‘7

The average tension is given by (15x +6)
Work done = average tension  increase in extension
= $(15x+6)(x—04)
= 1(156 - 24)
1558 =84 = x=07483...
The final extension is 0.748m (3 sf).
(b) We have assumed that the string has not exceeded its clastic limit.

3. One end of an elastic spring is fixed to a point A on 2 horizontal plane. The modulus of
elasticity of the spring is 4, the natural length is a and the spring is strong enough to
stand vertically. A particle of mass m s attached to the other end of the spring which is
held at a distance a vertically above A. If the particle is allowed to descend gently to its
equilibrium work




o

Elastic Potential Energy 197

When the particle is in equilibrium

T=mg
Using Hooke's Law gives
7=
a
mg= 4 yomem
a i

“The work done in compressing the spring

e A (msa)
e Za(A)

nigla
22

is given by

The work done is

EXERCISE 10a

The sature ength ofan hstcsring s 0.3 it modules of latcty
8N. e work done in

(a) giving it an extension of 0.2m

(b) stretching it to a length of 0.6m

(c) stretching it from a length of 0.4m, to a length of 0.7m.

‘The natural length of a spring is Sa and its modulus of elasticity is 2mg. Find
the work done in

(%) compressing it 10 a length da

(b) compressing it from length 3a to length 2a

(¢) compressing it until the thrust is mg.

The modulus of elasticity of a spring is 20N and its natural length is 1.5m. Find
the work done in

(a) stretching it until the tension is 8N

(b) stretching it 10 increase the tension from 8N to 12N.

. An halc srng has ¢ atucal engh of 20 Tho work done n cxtending it

by 0.5m

(a) Find the modulus of clasticity.

(b) Find the work done in stretching from its natural length to a length of 3m.
Find the work done in stretching a rubber band round a rolt of papers of radius
4cm if the band when unstretched will just go round a cylinder of radius 2em

and its modulus of clasticity is 0.5N. Assume that the rubber band obeys
Hooke's law.
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. A light clastic string is fixed at one end 1o a point A and a particle P attached to
the other end hangs in cquilibrium at a point B. The natural length of the string
is 1.4m, the modulus of elasticity is 8N and the mass of the particle is 2kg.

(a) Find the depth of B below A.

(b) Find the work done in stretching the string from its natural length to the
length AB.

. An upper body exerciser consists of a spring of length 20cm with a handle
attached at each end. The modulus of elasticity of the spring is 600N. A man
can stretch the spring to 25cm in length.

(a) Find the work he does in performing 15 repetitions of this exercise.
(b) If these repetitions take him 20 seconds, find his power.

. A jack-in-the-box toy comprises a box of
depth 25em, with a spring fixed to its base.
“Jack’ is a puppet attached to the top of the
spring. The natural length of the spring is
30¢m. The height of the puppet is 10cm
and its mass is 0.2kg.

(a) When “Jack' s in cquilibrium with the box open the length of the spring is
25cm. Find the modulus of elasticity.

Making the assumption that the puppet does not compress, find the work

done in compressing the spring so that the box can be clos

(b]

. A string of natural length 2a and modulus of elasticity 4 has its ends attached to
fixed points A and B, where AB = 3a. Find the work done when the mid-
point C of the string is pulled away from the line AB to a position where triangle
ABC is cquilateral.

ENERGY PROBLEMS

We know that if no external work is being done to or by a system, the total
amount of mechanical energy remains constant, and problems involving the
conservation of kinetic energy and gravitational potential energy have already
been considered.

Now that the elastic potential energy of a stretched elastic string can be found
(the work done in stretching an elastic string from its natural length is equal
to the elastic potential energy in the string) problems can be tackled where
three types of mechanical energy, KE, PE and EPE, arise. As there are now
likely to be changes in all three types, equating the foral mechanical energy in
one position with the total in another position is wiser than trying to juggle
with which types of energy are decreasing and which increasing.
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Examples 10b

. A particle of mass 2kg is attached to one end of an elastic string of length 1m and
modulus of elasticity 8N which is lying on a smooth horizontal plane. The other
end of the string is fixed to a point A on the plane and when the string is just taut

the particle is at a point B. The particle is pulled away from A until it reaches the
point C where  AC = 1.5m and is held in that position.
2k 5 A

05 m————Im

(a) Find the elastic potential energy in the string.
‘The particle is then released from rest.

(b) Find the velocity of the particle when it passes through the point B.
(c) What is its velocity when it passes through A?

i 8x(0.5)

( B vt

When the particle is at C, the EPE is

The EPE in the string is 1J.

(b)  In moving from C to B, there is no change in PE as the motion takes place on a horizontal
lane.

o

B »

ALC,  KE=0 and EPE=1J
AUB, KE = {m? = (§)(2)¥* and EPE =0
Conservation of ME gives 0+1 = v +0 = v=1
The velocity of the particle at B is 1 m/s towards A.

(€ When the partice reaches B th string is no longer streiched so there is no EPE in the srin.

B A
I o —T—— 1

Between B and A there is no change in EPE thercfor the KE remains constant
the velocity at A is 1 m/s in the direction CA.

Note that the speed of the particle remains constant until it reaches D, a

point on the opposite side of A where  AD = Im. Beyond this point the

string again begins 1o stretch and contains EPE.

B A DT
s

constant specd. | s
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2. A light elastic spring of length 1 m and modulus of elasticity 7N has one end fixed
to a point A. A particle of mass 0.5kg hangs in equilibrium at a point C vertically
below A.

(a) Find the distance AC.
‘The particle is raised to the point B, between A and C, where AB = 1m, and is
released from rest. Find

(b)  the speed of the particle as it passes through C

(c) the distance below B of the point D where the particle first comes to rest.

(a) AtC T=mg
A
ie. T=05%98 =49
tm
Using Hooke's Law gives T 7TX
=49 = x=07
J" 4 The extension is 0.7m.
c
‘The distance AC is 1.7m.
s
(b) We will use conservation of ME from B to C.
AUB PE = mgh = 0.5x 9.8 x 0.7 = 3.43
n KE =0
EPE = 0
B Al PE =0
KE = {m? = 0257
=0
o EPE in the string is given by %
2
. e = 2207 a5
2x1

Conservation of ME gives
3434040 = 040257 + 1715

V=68 = v

o 2619...
The speed at C is 2.62m/s (3 sf).
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(€)  We could use conservation of ME from C to D but that involves the speed at C which might not
be correct. By working from B to D we avoid this.

AtB PE = (0.5)(9.8)(x)
KE=0 and EPE =0

AtD PE=0 and KE=0

Conservation of ME gives 49x = 3.5¢ (1]
x=0 or 14

When x = 0 the particleis at Bso, at D, x = 14

D is 1.4m below B.

Note that the two positions of instantancous rest, i.c. B and D, are at equal
distances from the equilibrium position C.

3. One end of a light elastic string, with natural length 0.8m and modulus of elasticity
16N, is fixed at 2 point A on a smooth plane inclined at 45° to the horizontal. A
particle of mass 1kg, attached to the other end of the string, rests in equilibrium at
a point E on the plane.

(a) Find the distance AE.

‘The particle is pulled down the plane to a point C, where AC = 1.6m, and is
then released from rest

(b) Find the speed of the particle as it passes through E.

(a) Resolving along the plane gives
T-gcosd5” =0 = T =06929...

) o
Using Hooke's Law, T = f gives

16x
X
The length of AE is 115m (3 sf).

6.929.. = x=0346...
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The normal contact force on the partcle is perpendicular to the direction of motion, and the
plane is smooth, so no work is done.

When the particle is at C, total mechanical energy = EPE

_16(08)
= O =6
When the paricle i at E, total mechanical cnergy = EPE + P+ KE
2
- {% 4 1xgx0454sin45° + %xlxv’}]

= (057 +4343...))

Using conservation of mechanical energy between (i) and (ii) gives
0.5 +4343... = 64 = v=2028..

The velocity of the particle at E is 2.03m/s (3 sf).

4. In a fairground test your strength machine, a spring is fixed at one end and lies,
just taut, in a horizontal groove. A metal cylinder is attached to the other end.

‘The would-be strong men strike the cylinder
50 a5 to compress the spring, and the
‘machine records the compression achieved
when the cylinder first comes to rest.

‘The natural length of the spring is 1m,

the modulus of elasticity is 60N and the
mass of the cylinder is 4kg.

If a competitor gives the cylinder an nitial
speed of 3m/s, find the recorded
compression if

(a) the groove is smooth,
(b)  the coefficient of friction between cylinder and groove is 0.2.
State any assumptions you have made in your solution.
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v=o
B—pim W/ 0000000000
A 13 B
ALA the only mechanical energy is KE

5o total energy at Ais §(4)(3%)), e 18J
At B the only mechanical energy is EPE

02 3 e 200
)

These expressions apply 1o both parts of the question.

50 total energy at B is

(a) No work is done (o the system once the cylinder is set moving 5o we can
use conservation of mechanical energy, giving

0 =18 = x=077...
The recorded compression is 0.77m (2 sf).

(b) 11 the groove s rough. work s done by the frictional force, so energy is not The
frictional force opposes the motion of the cylinder 5o the work it does causes  loss of energy in

the syse
Resolving vertically for the cylinder gives R=dg
“The frictional force, F, is given by iR i.c. F=02x4g =784

Friction acts for a distance x so work done by friction is Fx, ie. 7.84x
work done = loss in energy
= initial energy — final energy
ie. T84y = 1830 = 3027 +784x—18 = 0
Solving this quadratic equation by using the formula gives
60x = ~7844 /(7847 +2160) =  x = 0.654...
‘The recorded compression is 0.65m (2 sf).

Assumptions made are:
the cylinder is modelled as a particle; the spring is light

and for part (b)
the groove is uniformly rough friction between the spring and the groove
can be neglected.
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5. A partice P, of mass 2m, is fastened to the end of each of two identical elastic
strings, each of natural length 3a and modulus of elasticity 3mg. The other ends of
the strings are fixed to the points A and B that are distant 8 apart on the same
level. When the particle rests in equilibrium at the point D, it is at a distance 3
below C, the midpoint of AB.
B_ 4 C 40 A

(a) Find the tension in each string.

(b) Measuring gravitational potential energy relative to AB, find the total
mechanical energy in the system.

The particle is now raised to C and released from rest in this position.

(¢) Find the speed of P as it passes through D.

(a) Resolving vertically for T gives 27 sin a = Jmg
AACDisa '3, 4, S triangle so AD = Sa
From AACD, sna=} = T=im
(b) The extension in each string is Sa—3a, ie. 2a
EPE in each string is g x {22
2x3a
PE of the particle is  2mg(~3a) = ~6mga
The particle is at rest so there is no KE
Therefore the total ME = 2 x 2mga — 6mga = —2mga

= 2amg

(c) When the particle is at C there is no KE or PE
but the EPE in each string is 3mg x &= imga
When the particle passes through D
EPE+PE = ~2mga (from (b)) and KE = }(2m)? = m
Using conservation of ME from C to D gives
2 ymga) = —2mga+mv = v = /3ga
ie. the speed of the particle as it passes through D is /3ga.
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EXERCISE 10b

In questions | and 2 a particle of mass 2kg is attached to one end of a light elastic
string of natural length a metres and modulus of clasticity 4 newtons. The other
end of the string is attached to a fixed point A on a smooth horizontal surface.

. i=5 a=08 AB=Im and BC=1lm.
‘The particle is held at C, with the string im o
stretched and released from rest. .
(S S
(a) Find the clastic potential energy —=i5 =TT
when the particle is at C.
(b) Find the elastic potential energy when the particle is at B.
(c) Find the kinetic energy when the particle is at B.
(d) Find the speed of the particle as it passes through B.
. =8 a=05 AB=05m and BC=07m.
‘The particle is projected from point B A 5 10ms
with velocity 10m/s in the direction BC. —————P——o0c
(a) Find the elastic potential energy an0s x=07m
when the particle is at B.
(b) Find the kinetic energy when the particle is at B.
(c) Find the elastic potential energy when the particle is at C.
(d) Find the speed of the particle as it passes through C.
In questions 3 and 4 a particle of mass 3 kg is attached to one end of a light
elastic spring of natural length  metres and modulus of clasticity 4 newtons.
‘The other end of the spring is attached to a fixed point A on a horizontal
surface. The coeflicient of friction between the particle and the surface is i
L =0, 4=80, a=2 AC=2m.
The particle is projected from C with 2m
speed 20m/s and it has a speed of A—_ % ec
10m/s as it passes through B. 1o 20ms
(a) Find the elastic potential cnergy <

when the particle is at C.
(b) Find the kinetic energy when it is at C.
(¢) Find the kinetic energy when it is at B.
(d) Find the elastic potential energy when it is at B.
(¢) Find the distance AB.
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4=150, a=3 AB=2m and BC=3m.

‘The particle is released from rest at C 2m 3m
and it has a speed of 4m/s as it passes sy B
through B. T <———o¢

(a) Find the elastic potential cnergy
when the particle is at C.

(b) Find the elastic potential energy when it is at B.

(¢) Find the kinetic energy when it is at B.

(d) Find the work done by friction during the motion from C to B.

(e) Find the value of .

A particle of mass 2kg is suspended from a point A by a light elastic spring of
natural length 1 m and modaulus of clasticity 8ON. The particle is initially held at
a point B, which is 0.6m vertically below A, with the spring compressed. It is
then released from rest at B. In the subsequent motion the particle is at point C
‘when the spring has reached its natural length. Take the gravitational potential
energy to be zero at point C.
(a) When the particle is at B find the values of
(i) the clastic potential energy (i) the gravitational potential energy

(iii) the kinetic energy.
(b) When the particle is at C find the value of the elastic potential energy.
(c) Find the speed of the particle as it passes through C.

In this question use g = 10m/s?.

One end of a light elastic string of natural length 2m and modulus of clasticity
120N is fixed at a point A; the other end carries a particle of mass I kg. The
particle is released from rest at the point A and drops vertically. It first comes to
rest at a point B vertically below A and the string then has an extension of x metres.

(a) Write down the kinetic energy of the particle when it is at A and find, in

(i) the elastic potential energy
(ii) the gravitational potential energy relative to B.

(b) Write down the kinetic energy of the particle when it is at B and find the
elastic potential energy in terms of x.

(c) Find the depth of B below A.

A particle of mass Skg is suspended from a point A by a light spring of
natural length 0.4m. When in equilibrium the particle is at a point B, vertically
below A, where 8m. The particle is pulled down to point C, also
vertically below A, where AC = 3m. It is then relcased from rest at C.

(a) Find the modulus of clasticity.
(b) Find the speed of the particle as it passes through B.



-

5

Elastic Potential Energy 207

A Night sping, of waturatlngth da 31 modulus of elasticty I, i fed at
a point A and a par ass m is attached o the other end.

particle is suspv.ndul in equilibrium, it is at a point B vertically below A. It is
projeced vertically downards from B with speed v and first comes to rest at a
point C where  AC =

(a) Find the distance AB. (b) Show that v = v2ga.

A ring R, of mass m, can slide freely round a smooth wire in the shape of a
circle, of radius a, fixed in a vertical plane. The ring s fastened to one end of a
light elastic string of natural length a and modulus of elastiity mg. The other
end of the string is attached to the lowest point of the wire. R is held at the
highest point of the wire and is slightly disturbed from rest in this position.

R

Find the velocity of R when

(a) itis level with the centre of the wire,

(b) the string first goes slack,

(c) the string makes an acute angle 2z with the upward vertical.

In a pin-ball machine the ball, of mass 30g. is propelled
ich is attached to a spring.

icity 9N and natural

length 15cm. The mechanism allows the spring to b

given a compression of 10cm. It is then released and the

ball and cup move over the smooth horizontal surface of |

the table. The ball leaves the cup when the spring.

reaches its natural length.

(a) Find the elastic potential energy of the spring when it is fully compressed.
(b) Find the kinetic energy of the cup and ball combined, at the moment when
the spring reaches its natural length.

(c) Find the speed with which the ball leaves the cup.
(d) Find the kinetic energy of the cup at the moment when the ball has just left t.

(¢) Find the extended length of the spring at the moment when the cup first
comes 1o rest.
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A particle of mass 2kg lies on a smooth planc Iy
which is inclined at an angle of 30° to the

horizontal. The particle i attached to one cnd of

a light elastic string of natural length 1 m and [

modulus of elasticity 20N. The other end of the

string s attached to a point A on the plane.

‘The particle can rest in equilibrium at a point B

on the plane.

(a) Find the extension of the string when the particle is at B.

If the particle is relcased from rest at A,

(b) find the speed with which it will pass through B.

(c) find the distance it has travelled down the plane from A when it first comes

. Two points A and B are distant 3a apart in a horizontal line. A particle P of

ass m is connected to A by a light inextensible string of length 42 and to B by a
light elastic string of length a and modulus of elasticity +mg. Initially P s held
at a point distant a from B on AB produced, with both strings just taut, as
shown in the diagram. P is released from rest in this position.

B 3 3
K3 7

P

(a) Show that when AP s vertical the speed of P is 2,/za.
(b) Find the tension in the elastic string at this instant.

. A and Bare two fixed points ona smooth horizontal plane. AB = 33m. A spring,
of naturallegth 09 clasticity 6N, topoint A
end toa particle P, of A of

i ind modulus of elasticity 8 N has it parti to point B.

(a) Find the distance AP when the particle is in equilibrium.

(b) The particle is released from rest at point C where AC = 0.5m.
(i) Find its velocity as it passes through the equilibrium position.
(ii) Find the length of AP when the particle first comes to rest.
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An aircraft of mass 5000 kg lands on the deck of an aircraft-carrier at a speed of
50m/s relative to the deck. It catches on the mid-point of an elastic cable which
lies, just taut, across the deck at 90° to its path. The cable has a natural length
of 60m. The plane is brought to rest in a distance of 40m by the stretching
cable and by a retarding force of magnitude 8000 N in the direction opposite to
its motion, which is produced by its engines. Find the modulus of elasticity of

REFINING MATHEMATICAL MODELS

A mathematical model of a situation is produced by making certain assumptions.
‘These may include assuming that certain objects are small enough to be treated as
particles, other subjects are light enough to be treated as weightless, air resistance
can be ignored, relevant physical laws are obeyed, and o on.

The model is then used to predict results. If these results, compared with those
observed in trials, are not accurate enough to be useful, then the model requires
improvement.

One way to achieve this is to include one or more of the quantities previously
ignored. Which of these to choose depends upon assessing how reasonable the
original assumptions were.

Consider, for example, the loaded weighing machine given below, modelled by a
light spring that obeys Hooke’s Law, with a particle placed on it as shown.
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One of the assumptions made in forming this model is that the platform is light. If
unreliable results are produced, a refined model could take into account the mass
of the platform. Whether or not the refined model produces better sumala can
only be assessed by comparing predicted results with observed res

EXERCISE 10c

A climber of mass 60kg is attached by a rope of length 30m to a
on a vertical rock-face. When she is 20m above the point to
which the rope is attached she slips and falls. She first comes to
rest after falling through a vertical distance of 57m. Assuming that
she is not retarded by contact with the rock-face during her fall,
and that the mass of the rope can be neglected, state any further
assumptions you would make in order to model this situation.

(a) Use your model to find
the modulus of clasticity of the rope
(i) her speed at the moment that the rope becomes taut.
(b) What features of the model might lead to unreliable estimates?
State any adjustments that could be made.

The Department of Transport in Ruritania, having invested in new trains for its
railways, decides to replace all the old buffers in the stations. A technical team,
Tooking into the design of new buffers, decides first of all to produce a
mathematical model.

The first model treats the train as a particle, of mass A kilograms, hitting the
buffers at a speed of v metres per sccond and being brought to rest in a distance
of d metres. The buffers are modelled as a spring, of natural length a metres,
‘modulus of elasticity 4, fixed at one end and able to take a maximus

compression of ¢ metres. The mass of the buffers is taken to be negligible, being
small compared to the mass of the train. Using this model there is no loss of
energy when the particle collides with the spring. In this first model it is assumed
that the retarding force produced by the brakes is negligible.

(a) Aunmlng that the spring does not become fully compressed, obtain d in
nd .

(b) Shnw that if the train is 1o be brought o rest before the spring is l'ully
ar
&

compressed then it is necessary to satisfy the condition 4>
I s decidd to refine the model by introducinga retarding fore R, produccd by
the b
(© Agam assuming that the spring does not become fully compressed, show.
that now
4o VAR +1,:lw‘ —aR
(d) Show that this refined model includes the result obtained in (a) from the
original model.
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. A bungee jumping event is to take place from a suspension bridge which is SOm
above a river. The jumpers dive from the bridge attached 1o an elastic rope. You
are required to consider some suitable ropes for this activity. The aim is that the
jumper should be brought to rest just above the surface of the water. Carry out
the investigation for the case of a man of mass 70 kg, using a model which treats
the man as a particle and the rope as light, and assume that the initial velocity is
zero. State any other assumptions that you make.
Use the following variables:
natural length of the rope, a metres,
modulus of elasticity of the rope, 4 newtons,
extension of the rope when the man reaches the water, x metres,
extension of the rope if the man is suspended in equilibrium on it, e metres,
the speed with which he passes through this equilibrium position, ¥’ metres per
second ( this is the greatest speed he reaches).
(a) Obtain an expression for  in terms of a and x.
(b) Obtain an expression for ¢ in terms of a and 4.
(c) Obtain an expression for ¥ in terms of a, ¢ and /.
(d) Complete the following table of values.

a 10 2 30 40 a5

x

B

e

2+e

v

(¢) Can you suggest any factors which might make some of these lengths of
rope unsuitable?

(F) Which assumptions might you consider changing in order to refine the
model?
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PROJECTILES

THE MOTION OF A PROJECTILE

A particle that is sent moving into the air is called a projectile. At this stage we
consider that air resistance is small enough to be ignored so the only force acting
on a projectile, once it has been thrown, is its own weight. It follows that the

projectile has an acceleration downward of magnitude g, but has constant
velocuy horizontally.

Therefore the horizontal motion and the vertical motion arc analysed scparately.

The horizontal and vertical components of velocity and displacement will be
involved and a new form of notation is used to denote these quantities.

Consider a particle projected with a velocity ¥ at an angle 0 to the horizontal.
We take O as the point of projection, Ox as a horizontal axis and Oy as a
vertical axis.

At any time during its flight, the projectile is at a point where:
the horizontal displacement from O is x
and the vertical displacement from O is y.
212
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Now the horizontal velocity is the rate at which x increases and this is denoted
by %. (The dot over the x means ‘the rate of increase with respect to time’.)

Similarly the vertical velocity at any time is denoted by j .
The initial components of velocity are:
Vcos 0 in the direction Ox
Vsin § in the direction Oy.
Consider the horizontal motion, where the velocity is constant.
At any time ¢ seconds after projection,
i= Veost 1
x = (Veos0)xt = VreosO 2]
Consider the vertical motion where there is an acceleration g downwards.
Using v=u+ar and s=ui+jar® where u="Vsin 0, gives
F=Vsin0-gt B
y = (Vsin0)xt—jgt* = Vsin0-jgr* 4

‘These four equations provide all the information needed to investigate the motion
of any projectile.

1f, for example, we want the speed v of the particle at a particular time, ¥ and j
can be found from equations 1] and (3}, then v? = %%+ j2.

Also, the dircction of motion, .. the way the particle is moving, is given by the
direction of the velocity.
S0 if the direction of motion makes an angle a with the horizontal, then

tana =/
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Examples 11a

A particle P is pro[zded lrom a pmnx o wm- a speed of 40 ms™', at 60° to the
horizontal. Find, 3 seconds

(a) the speed of the p:mde
(b) the horizontal and vertical displacements of the particle from O
(c) the distance of P from O.

Take g us 10 and give answers corrected to 2 significant figures.

Note that ms™" is an alternative form for m/s.

(a)  Use cquations [1] and [3] with V=40, 0=60" and r=3.
Horizontally, % = 40 cos 60° = 20
Vertically, § = 40sin 60° — gr = 34.64 ~ 30
- 5= 464
1 is the speed of the particle after 3 seconds,
464 + 20 = v=2053...
“The speed of the particle is 21 ms™' (2 sf)

(b)  Use cquations [2] and [4]
Horizontally, ~ x = 40 x 3 cos 60° = 60
Vertically, y =40 x3sin60° — fgr? = 10392 — 45
y = 5892
The displacements of the particle from O are:

60 m horizontally and 59 m vertically (2 sf)
(©) OP? = x?4y?
= 607 +58.922 = 7072
The distance of P from O is 84 m (2 sf)
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2. The initial velocity of a particle projected from 2 point O is i+ »j where i
and J are horizontal and vertical unit veetors respectively.
(a) Find, in terms of , », g and 1
(i) the velocity vector of the particle 1 seconds after projection
(ii) the position vector of the particle at this time.

(b) Given that the position vector of point A is > § + kj, find h in terms
of vand g. 2%

o

(a) In the direction Ox,  is constant and equal tow = x = ut
In the direction Oy, j = v—gt = y = vl—-};l’
. after 1 seconds
(i) the velocity of the particle is ul+ (v - g0}
(i) the position of the particle is uri+ (v — 1212 )j

3uv 3
b) AtA, wi= i
(b) R e
7 W g (9
Then p.‘w-gg:‘AE-i(w)

3. A particle P is projected from  point 5 m above the ground. The horizontal and

vertical components of the velocity of projection are each 24 ms'.
(a) Find the angle of projection.

215

(b) Taking g a5 10 find the horizontal distance of P from the point of projection

when it hits the ground.

"
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(a) If the velocity of projection is ¥ then

Veosf = 24 and Vsin6 =
Vsing _ 24
o= S0 By
R AT
- 0= a5

(b) When the particie hits the ground it is S m helow the point of projection 0
Atany timef,  y = 24— g
" 5, -S=24r-57 = SP-2W-5=0

when
Hence (5141 (1=5) =0 = 1=-}ors
A negative time has no meaning in this problem, so 1= 5.

Atany time 1, x=241 so, when r=5, x=120

When P hits the ground its horizontal distance from O is 120 m.

4. The top of a tower is 10 m above horizontal grownd. A boy fires a stone
from a catapult with a velocity of 12 ms~". Find how far from the foot of the
tower the stone hits the ground if

(a) it is fired horizontally
(b) it is fired at 30° below the horizontal.
Take g as 10 and give answers corrected to 2 significant figures.

(@) E

Z

‘When the inital velosity is horizontal, (=0, therefore sin 6= 0 and cos 0= |

Atanytimer, x = Vi and y =

When the stone hits the ground, y =
g = -l0 = A= =2

= y2 (rcannot be negative)
When (=2, x= V= 12/2 = 1697...
‘The stone hits the ground 17 m from the foot of the tower (2 sf).



(b) F

7
The stone is fired at a downward angle 5o @ is a negative acute angle.
Atany time 1, - x = Vicos(~30°) = Vicos 30°
and y = Visin (=30°) — tg? = —Visin 30° — g*
When the stone hits the ground, y = —10
2(-4)~dg = -0 = 52460-10 =0

=

= 0936 (1 cannot be negative)

When

= 0936, x = Vrcos30" = 12 x 0.936 x 0.8660
= 9.726.

‘The stone hits the ground 9.7 m from the foot of the tower (2 sf).

Note that it is possible to solve problems in which 0 is negative, without referring
to the standard projectilc equations, but by starting from first principles taking
the downward direction as positive. The reader is given an opportunity to try
this approach in question 27 in the next exercise.

. A particle P is projected from a point O with velocity ¥ at an angle 0 to the
horizontal. Find, in terms of ¥’ and 0, the time at which P reaches its greatest
height, and what the greatest height is.

o x

When P is at its greatest height it is momentarily travelling horizontally, i. § = 0.
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§ o= Vsin0-gt

L when j =0 Vsn0=g = Fsind

iic. the greatest height is reached after a time of
“The height at time ¢is given by y = Vesin 0~ dgr?
o ") sin 0 - %g(

V2 sin’ 9
=y a-h

. for the greatest height # H = V(

2 gin?
. the greatest height reached is V;—‘“o

s
EXERCISE 11a

Unless another instruction is given, take ¢ as 10 ms~2 (i.c. m/s?) and give
answers corrected to 2 significant figures; these approximations are justified as we
have already made one approximation in ignoring air resistance.

In questions where vector notation is used, 1 and j are horizontal and vertical unit
vectors respectively.

In cach question from 1 to 5, a particle P is projected from a point O on a
horizontal plane with velocity ¥ at an angle 0 to the horizontal. Al units are
based on metres and seconds.

Given that V=245 and 0=30°, find the speed of P after
(@) 1second  (b) 2 seconds.

If ¥=20 and 0=60°, find the height of P above the plane when
@ =1 (b) 1=2 (¢) 1=3

llustrate your answers with a sketch.

Given that ¥ =30 and tan0 =3, find the speed and the coordinates of
the position of P after

(a) 1second  (b) 2 seconds.

If ¥=10 and 0=60°, find the time taken for P to travel a horizontal
distance of 5 m and find the height of P at this time.

After 4 seconds P hits the plane at a point A. If 0= 45", find

(@) ¥ (b) the distance OA.



o

~

Projectiles. 219

. A partice is projected with a velocity vector 20i+40j. Find the velocity
nds.

vector of the particle after 3 seco

A particle P is projected from a point O with a velocity of 10 m/s at an angle
of 30° to the horizontal. Find the horizontal and vertical displacements of P
from O after half a second and hence find the distance from O to P at this time.

A stone is thrown from a point O on the top of a cliff of height 60 m, and
falls into the sea 2} seconds later at a point whose displacement from O is
241 60). Find, in the form ai +bj, the velocity of projection.

A particle s projected from a point O with a velocity vector §+2j. Find the
velocity and the position of the particle in vector form after

(a) fseconds  (b) 1} seconds.

A particle P is projected from a point O with velocity V. Giving answers in
terms of g find, in the form ai + b). the velocity and position of P after

1 seconds if

(a) V=5i+3j

(b) V=di-j

(¢) V=20ms"! at 60° to the horizontal

(d) V=10ySms~" at 6 to the horizontal where tan 0 = 2.

. At fielding practice a cricketer throws the ball wuh a spmi of 26 m/s at an

angle 2 above the horizontal, where tan o = 2.

(a) the times at which the ball is 16 m above the ground
(b) the horizontal distance covered between these times.

A stone is thrown downwards from a point A into a quarry that is 25 m
deep. Find the initial speed and the direction of projection if, after 2 seconds, the
stone lands at the boltom of the quarry at a horizontal distance from A of

(@) 30m  (b) 20m.
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A particle s projected with a velocity of 20y/2 ms™! at an angle of 45 to
the horizontal. Find, in terms of g, how long it is before the particic reaches its
highest point and what the greatest height is.

. A particle is projected from a point O and after 1} seconds it passes through

a point whose position is represented by the vector 4i+J. Find the initial
velocity as a vector.

A boy is at the window of his flat and " Aows
throws a ball to his friend on the ground

24 m below. The ball is thrown with speed oA\ "
10 m/s at an angle of clevation a, where

tan o= .

(a) Find how long it takes for the ball to
reach ground level.
(b) If the friend is standing 8 m from the
wall of the flat, will he be able to catch
the ball without moving? 777

A particle is projected with a velocity vector al+ bj. After § seconds the
velocity vector is 40i + 60j. Find the values of a and b.

. A particle P is projected from a point O with a velocity of 25 ms~' at an

angle of 60° to the horizontal. For how long is P at least 15 m above the level

. Two seconds afier a particle is projected from a point O, ts position vector

relative to O is given by 12i+4j. Find in the form
(a) the velocity of projection  (b) the velocity after 2 seconds.

A golf ball is hit by a gnlfzr at 25 m/s towards the green which is 2 m below
the level of the tee. struck at an angle 0 to the horizontal where

tan 6=% and lands duecuy in the hole! What is the horizontal distance from
tee to hole?




. A stone is thrown from the top of a cliff
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. In a Highland Games Competition the local strongman, Mac, is hoping to

break the record for throwing the heavy hammer. He manages to hurl the
hammer with a speed of 25 ms~" at 40° to the horizontal. If the record throw is
60.6 m, does Mac break the record?

at an angle a to the horizontal and with a
speed of 19.5 m/s. The stone falls into the
water 37.5 m from the foot of the cliff.
Given that tan a =1, find the height of
the cliff if o is

(a) above the horizontal

(b) below the horizontal.

Find the angle of projection of a ball, thrown at 20 ms', which is at its
greatest height when it just passes over the top of a tree that is 16 m high.

. A stone is thrown from a point A, 1m above the ground, with a velocity of

4/2ms" at 45° to the ground. Taking A as the origin and i and j as horizontal

and vertical unit vectors respectively,

(a) write down the initial velocity vector of the stone,

(b) find the position vector of the stone ¢ seconds after being thrown,

(¢) use (b) to find the value of £ when the stone hits the ground,

(d) what is the horizontal distance from A of the point where the stone hits the
ind?

. From the top of a fifty-metre high cliff, the angle of depression of a marker buoy

is 30°. A student throws a stone from the cliff top in an attempt to hit the buoy
but is foolish enough to think that the stone should be thrown at 30° below the
horizontal. How far short of the buoy will the stone land if it is thrown with a
speed of 15ms™'?

of

The horizontal and vertical components of the initial velocity of a projectile
are each of magnitude u. Express in the form i+ b}

(a) the initial velocity

(b) the velocity of the projectile after (i) seconds (ii) 2 seconds

(¢) the position of the projectile after 2 seconds.
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26. An arrow is shot from the top of a building 26 m high. The initial speed of
the arrow is 30 ms~'. Find how long the arrow is in the air if it is fired at an
angle of 20° to the horizontal

(a) upwards  (b) downwards.

27. A particle P is projected from a point O, with speed ¥ at an angle 0 below
the horizontal.

Taking the axes shown in the diagram find, 1 seconds after projection, an
expression in terms of g for

(a) the horizontal velocity component

(b)
(¢) the horizontal displacement of P from O
(d)  the vertical displacement of P from O.

the vertical velocity component

28. A particle P is projected from a point O, with speed 20 ms~! at an angle of
30° below the horizontal. Use the results found in question 27 to find

(a) the speed of P (b) the distance of P from O,
after 2 seconds.

From the battlements of a castle, 30 m above the ground, defenders are
catapulting rocks at their attackers below. They all think that the best angle of
projection is 20°. The strongest catapulter can fire a rock with a speed of 6 m/s
and even the weakest fires at 2 m/s. Find the distances from the foot of the
castle walls between which the attackers may be hit.

State any assumptions that have been made.
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PROPERTIES OF THE FLIGHT PATH OF A
PROJECTILE

The Equation of the Path

y
pa

Using x and y axes through the point of projection, we have scen that the
coordinates of the position of the projectile at any time can be expressed as.
x = Vicos
= Visin 0 jgr*
As these two equations give x and y each in terms of the vaniable 1, they are the
parametric equations of the path of the projectile (which is also called the
trajectory ).

From the first equation, 1 = —>

¥ cos 0

Substituting in the second equation gives

o Fasing (% )’
Veos0 "\ Veosh

= y:xlxnﬂfL 0]
2V cos* 0

For any particular projectile, g, ¥ and 0 arc constants, so  is a quadratic
function of x, showing that the path of a projectile is a parabola with a
vertical axis of symmetry.

Equation [1] is called the equation of the path of the projectile, or the equation of
the trajectory.

It is very useful in problems where the position of the projectile is involved but
the time taken to reach the position is not.
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In particular if the angle of projection, 0, has to be found, the equation of the
path can be rearranged as follows

Using —Iz—:sec:ti: tan’0+ 1 gives the equation of the path as
cos? 0
x?
= xtan0- £ (041
¥ € )

If we are given the coordinates of a point through which the projectile passes,
and ¥ is known, this becomes a quadratic equation in tan 0.

‘The reader should be prepared to use the equation of the trajectory in either of
the forms above to solve a problem in which time does not appear.

Note that the equation is valid for the whole of the path, including those cases
where the projectile moves on below the level of the point of projection, e.g. a
stone thrown from the top of a cliff.

The Greatest Height Reached

7
In Examples 11a, we saw in example 5 that, for a projectile given an initial
velocity ¥ at an angle 0 to the horizontal, the greatest height H reached above
the point of projection is given by

H=

Although this expression can sometimes be quoted in a solution, its derivation
may be asked for. So it is important to remember that it is found by using
the time taken to reach the point where y is zero.
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The Range on a Horizontal Plane

‘The range of a projectile on a horizontal plane is the distance between the point
of projection O and the point where the projectile returns to the level of O. The
range is usually denoted by R as shown in the diagram opposite.

When the projectile reaches A, y =0,

_ 2¥sing

N g

Note that this is the time taken for the whole of the journey; it is known as the
time of flight.

Note also that the time of flight is twice the time taken to reach the highest point
on the path.

e Visn0-igr=0 =

Now R is the value of x (= Vi cos 0) at this time,

. :
e R= szﬂ(z—‘%i) - %(2sinﬂoos5)

R Wisin0cs0 _ Visin20

B 3 s
‘The second of these forms is best if the problem is simply to find R, but when Ris
being used in conjunction with other distances, e.g. the greatest height, the first
form is usually better.
Note that we are referring above to the range on a horizontal plane, ie. the
distance between O and the point where the projectile is again level with O.

Ifa projectile ends its flight above O (e.g. a ball that lands on a roof), or below O
(e.g a stone thrown from the top of a tower to the ground), the range is the
distance between O and the landing point but is not given by the expressions
above.

51 i

o
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The Maximum Horizontal Range

The formulae derived above for

r the horizontal range of a projectile show that the
value of R depends upon the initial velocity and the angle of projection.

Therefore, for a given value of ¥, the range varies only with 0 and the maximum
range occurs when sin 20 is maximum.

The greatest value of sin 20 is | and this is when 20=9%0° =

.
Therefore  the maximam horizontal range, Ruw, is ©
it achieved when 0 = 45°

and

Examples 11b

L4

0=45°

1. Two seconds after it is projected from a point O on a horizontal plane, a particle
P passes through a point represented by 3i+5j, where i and j are, respectively,

vectors of 1 ms~" horizontally and vertically. Find

(a) the speed and direction of projection
(b) the range of the projectile.
Take g as 10 and give answers corrected to 2 significant figures.

e

In this problem, although we have the coordinates of 4 point on the tajectory, we do not use the
cquation of the path, as time is involv

(a) AtP, x=3 and

Using x = Vrcosf and

and

y=5s

2Wcos 0
2¥ sin - 20

=

25 = 2Vsinf

Visin0-lgl when 1=2 gives

U]
2
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25 25
- wno = 2
> ano - X

21=m

83.15°, ie. 83°(2sf)

From (] ¥V = 125%6...

__ 3
2 cos 83.15°

The speed of projection is 13 ms~' (2 sf).

2V2sin 0cos @ _ 2(12.58)" sin 83.15° cos 83.15°
3 10
= 3748

(b) Range =

The range is 3.7 m (2 sf).

. A gun is fired with 2 muzzle speed of 100 ms~" in a tunnel whose roof is 4 m
above the point of projection. Find the greatest permissible angle of projection if
the bullet is to avoid hitting the roof. Find also the range of the gun with this angle
of projection.

Take g as 10 and give answers corrected to 2 significant figures.

100ms &

The greatest height of the bullet is 4 m above O,
As we are not asked (0 derive the expression for the greatest height, it can be quoted.
22 in?
- Visino o 4o 0tsint0
% 20
sinf = 008944 = 0 =513, ie 5.1°(2s0)

2
The range R is given by R %

R = (10*sin 10.26°) =10 = 180m (2sf)
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3. A missile fired from a point O, with velocity 40 ms~' at an angle a to the
horizontal, passes through a point distant 32 m horizontally and 45 m vertically
from O. Show that there are two possible angles of projection and give their values
(take g as 10 and give your answers o the nearest degree ). Illustrate your answers
on a diagram.

The coordinates of a point on the path of the missike are given and the time when the point is reached
does ot matier; 5o we use the cquation of the path.

2 (tan?
) n
v o @(anad
sing v = xtanx e

gives 45 = 32tana —

Using tan 2 = 7, this equation simplifies to
45 = RT-3AT+1) =
= 3277 - 327+ 482

0
This is & quadratic equation for T in which a =32, b=-32, c=482
b —dac = 407.04, which is positive.

So there are two values of T and therefore two different values of z.

Solving the equation by using the formula gives

= 8153 or 1847

T — tana = S2EVAOTO4 aszio 18

. the two values of z are 62° and 83°.
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. A particie s projected from a point O at ground level, at an angle of elevation

of S5°. It just clears the top of each of two walls that are 2 m high. If the first of
the walls is distant 2 m from O, find

(a) the speed of projection

(b)  the distance of the second wall from O.

Take £ as 10 and give answers corrected to 2 significant figures.

y

&

~Tm

(2) As the projecik jur clears the first wall we can take (2,2) as a it on the path.

2
; & .
Using  y = xtand - E g
10x4 60.79
- oo 10x4 g 6019
2= 2un 85— s = 285 —
= V= 60.7 856 = 71.02... = Vo= 8427...

The speed of projection is 8.4 ms™" (2 sf).
(b To find the locaton of the second wall we e the cther value of x for which y = 2 50 we use

the equation of the path again.

When y=2 and ¥ =8426, the equation of the trajectory becomes

1057
= 14 e 1.428x -0
2= 18Iy - s 1.428x - 0.2140x7
= X - 6.673x+9.346 = 0 w

Solving this quadratic equation by formula gives
_ 6673+ V(6673 —4x9.346) _ 667342673
2 2

X =2 or 4673
The second wall is 4.7 m from O (2 sf).

Note that the sccond root of equation (1] could have been found directly, using the fact that one of the
roots is 2 and also that the sum of the roots s ~b/a. Hence x+2=6673 =
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5. A parice P is prjcted from » oiat © on  borizontalpane with sped ¥ at
an angle 0 to the horizontal.

(a) State the value of 0 for which the range is maximum and give the value of the
maximum range.

(b) Find, in terms of ¥ and g, the ratio of the greatest height to the maximum

(a) The maximum range is achicved when 0 = 45°

»

B

Roar =

(b) When the particle is at its greatest height, y

0

_ Vsinds®

Vsinds —gt =0 = B

The greatest height is the value of y when 1= (¥ sin 45°)/g

2 a5 3 gin? 450
ie. = Visinds - lg? VisinT45 #M
»

3

2
The ratio Huws © Ry i5 i o =
4 2

EXERCISE 11b

For questions where quantitics are given in the form ai +bj, 1 and j are
respectively horizontal and vertical unit vectors, measured in the unit consistent
with other quantities in the question.

In questions 1 to 6, a particle P is projected from a point O on a horizontal
plane, with speed ¥ and angle of elevation 0. The greatest height reached is H
and the range on the plane is R. The maximum range is Ross. 1f you can
remember the formulae for H and R, you may quote them but if not, derive them
as quickly as you can. Do not rely on looking up each formula as you need it.
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Throughout the exercise take g as 10 and give answers corrected o 2 significant
figures unless another instruction is given

Y

(I

1. ¥=24ms™' and 6=30°, find Hand R.

2 ¥=20ms" and R=28m, find 6.

3.0=45 and H=10m, find ¥and R.

4 R=60m and 0=60°, find ¥ and H.

5. V=30 and R has its maximum value, find Ro,

6. H=16m and ¥V=40ms™', find 0 and R.

7. A stone is thrown with speed 26 ms~' at an angle a to the horizontal where
tana = . Find how far it has travelled horizontally when
(a) itis at the same level as the point of projection
(b) it is 2 m below the point of projection.

8. A particle is projected from a point O with speed 50 ms~' at an angle of
elevation of 40°. Taking Ox as the horizontal axis and Oy vertically upward, find

(i.e. do not quote) the equation of the flight path of the particle. Hence find the
height of the particle when it is distant 20 m horizontally from O.

9. A particle is projected from a point on a horizontal plane with a speed of
12m/s. Find the angle of projection and the range if the time of flight is half a
second.

10. Using a horizontal x axis and a vertical y axis find the equation of the path
of a projectile whose initial velocity is
(a) Sms~" at an angle 0 above the horizontal where tan 0 =
(b) 30 ms~' at an angle of 45° below the horizontal.

1. A ball is thrown with a speed of 16 ms~' from a point on a level

playground. The angle of projection is x where fan = 3. Find the time for
which the ball is in the air and the horizontal distance it travels in this time.
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A stone is thrown from ground level with a speed of 15 m/s, so that when it
is travelling horizontally it just passes over a tree of height 3 m. Find the angle
of projection.

A particle is projected from a point on a horizontal plane with
speed /(2¢h ). Find in terms of A, the range on the plane if the angle of
projection is

(a) 30°  (b) 45"  (c) 60°.

. A missile is fired at 80 ms~' at an angle & to the horizontal. The missile

must pass over an obstruction that is 20 m high and 120 m away in the line of
flight. Find the smallest permissible value of a.

(120,20

In a children’s game played with large pebbles, the aim is to throw a pebble

50 tha lands within a circle of diameter 0.2 m, drawn on the ground. A player
stands at A, a point marked on the ground, which is 3 m from Q as shown. One
child can throw the stone with a speed of 5 m/s from a height of 0.6 m above the
ground and always projects it at an angle of elevation of at least 35°. If 0 is the
angle of projection, find the range of possible values of 6 that will land the stone
in the circle

Take g as 10 and give angles (0 the nearest degree.

”

A particic s projected from a point O with speed 2V at an angle  to the
horizontal where tan @ = 2. Find its height above the point of projection when
its horizontal distance from O is

@ h () 2 (©) 3 (d) 4k
Explain the reason for the answer to part (d).
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17. A cricketer strikes the ball with speed 36 ms~' at a height of 0.5 m above

the pitch. He ‘skies’ it, hoping to hit it for six. Unfortunately it is caught on the
boundary line, 70 m away, at a height of 2.2 m. At what angle was the ball
struck?

Bmhs

o h2m

wf )

. The maximum range of a shell fired from a particular gun is 2400 m. At

what angle and at what speed is the shell fired?

. A ball is thrown from O with initial velocity 5i+ 7). Find the Cartesian

equation of its path.

. The speed of a tennis player's serye is 45 m/s. At the moment when the

racquet strikes, the ball is exactly over the base line and at a height of 2.8 m.
The height of the net is 0.9 m and the distance from the base line to the point
where the ball reaches the net is 12 m. If the ball is served at an angle of §°
below the horizontal, will it clear the net? (Take g as 9.81 and work to 3 sf.)

. A golf ball is struck with a speed of 26 ms~" at an angle  to the horizontal

where tan a = 2. The golfer finds that he has not sent the ball in quite the
direction he wanted and directly in the line of flight are two trees. One is

22 m high and 20 m from the tee; the other is 21 m high and 48 m from the tee.
Determine whether the ball will clear either or both of the trees.

A ball is projected with veloeity 101+ 20J from a point O and moves freely
under gravity. The ball strikes a wall, 30 m away from O. If § and § are vectors
of magnitude 1 ms~" horizontally and vertically respectively, find

(a) the time, in seconds taken for the ball to reach the wall
(b) the height above O, in metres, of the point where the ball strikes the wall
(c

the acute angle, to the nearest degree, which the direction of motion of the
ball makes with the horizontal at the instant when it strikes the wall.
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FURTHER PROBLEMS

Examples 11c

. A and B are two points 60y/3 m apart on level ground. A particle P is projected
from A towards B with speed 45 ms~" at 30° to the horizontal. At the same instant
a particle Q is projected from B fowards A with speed 153 ms~! at 60° to the
horizontal.

(a) Using exact trig ratios prove that P and Q are always at the same height.

(b) Find £ when P and Q collide and find in terms of g their height above the
ground when they collide.

For P we wil use an x-axis in the direction AB and for Q  separate x-avis in the direction BA.

m

(a) Afler ¢ seconds, using y = Vt sin 0 — gr* gives:

ForP  yp = 45tx ) - Ler? = $1-Jg2
ForQ yo = 15y3rx ¥ - et = $1-1g?
ie. atany time 2. yp = yo

P and Q are always at the same height.
(b) Using x = Vicos O gives:

ForP  xp = 45rx

ForQ g = ISy/3rx} = 156x ¢

P and Q will collide when  xp +xo = AB

i.e. when 600 x = 60y/3

= (=2

2y

When

So-fgr =

=45-2¢
Pand Q collide (45-2¢)m above the ground, when = 2.
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2. A particle is projected from a point O on a plane inclined at 30° to the
horizontal. 'The velocity of projection is 20 ms ' at 30° to an upward line of
greatest slope. If the particle hits the plane at the point A, find, taking g as 10,
(a)  the horizontal distance travelled by the particle
(®)  the range up the plane.

i
- x
() The point A is on the path of the projectile s its coordinates satisy the equation of the path.

Avis also on the plane so its coordinates satisfy the cquation of the fine O

‘The equation of the path of the projectile is

g
Y " La— |
re 2(20)" cos? 60° "
The cquation of the line OA is
y = xtan30° @

‘The coordinates of A can be found by solving these two equations simultancoudy.

From (1] and 2]

. . 10x?
Xan30° = xun 60 - gt
10x
= 800 % 025 = 17321 - 0.5774
= x = LISATx20 = 23.094

This value of x is also the x coordinate of B.
The particle travels a horizontal distance of 23 m (corrected 0 2 sf).

(b)

A

o 2094 m B

The range up the plane is the distance OA

‘The range up the plane is 27 m (2 sf).



26 Chapter 11
EXERCISE 11c

‘The problems in this exercise are varied in type and are generally a little harder
than those in the previous exercises. If g is given a numerical value, use 10 and
correct answers to 2 significant figures.

. A particle P is projected from a point O with velocity 12+ 16§. Two

seconds later, another particle Q is projected from O and collides with P after
another second. Find the initial velocity of Q.

For environmental reasons, golfers playing on the village golf course are
required to restrict the height of golf balls in flight to 15 m. If a player tees off
with an initial speed of 35 ms~" at an angle of projection of 40°, for how long
does he contravene the regulations?

A particle is projected from a point A on a horizontal plane, with velocity
60 ms~' at 30° to the horizontal. At the same instant a second particle is
projected, in the opposite direction with speed 50 ms~', from a point B on the
same plane.

(a) Given that the particles collide, find the angle of projection of the second
particle.

(b) I the time interval from projection to collision is 1.1 seconds find, to
2 significant figures, the distance between A and B.

Two particles A and B are projected at the same instant from the same point
O on a horizontal plane. The initial velocity of A is ¥ at 30° to the plane and
that of Biis V/3 at 60° o the plane.

(a) Show that, d: long as both particles are in the air, one of them is vertically
above the other.

(b) Find, in terms of ¥ and g, the distance between the two points where the
particles return to the plane.

P is projected from a point O with speed 21 ms™' at an angle « to
tal. One second later a missile Q is projected from a point 0.3 m
th initial velocity 31.5 ms™! at an angle f to the horizontal. Given

that tan o = 4 and tan f =

(a) prove that the particles collide
(b) find the time of the collision
(c) find the direction in which each missile is moving just before the collision.

A particle is projected up a line of greatest slope of a plane inclined at 30° to
the horizontal. The initial velocity is 15 ms~' at 30° to the plane. Find

(a) the range up the plane  (b) the time of flight.
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A particle is projected down a line of greatest slope of a plane inclined at 30°
0 the horizontal. The initial velocity is 15 ms™" at 60° to the plane. Find

(a) the range down the plane  (b) the time of flight.

A particle P is projected up a line of greatest slope of a plane inclined at 30°
10 the horizontal. The initial velogity of P is inclined at 15° o the plane. If P
strikes the plane after 3 seconds, find the speed of projection.

The fairway between the tec and the green on the 18th hole at the golf course has
an upward slope of 10%. The maximum speed at which Vic Alder can hit a golf
ball is 50ms~' and he wants to strike the ball so that it lands as far up the
fairway as possible. Find the angle of projection he should choose. Find also
how far up the fairway the ball will land if this angle is used.
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RELATIVE VECTORS

RELATIVE VELOCITY

Most of the time we judge the position or motion of an object with reference to
the earth’s surface, which is fixed.

Sometimes, however, we ‘scc’ motion that is not relative to the carth. Consider,
for example, an observer A sitting in a moving railway carriage, who looks out of
the window at B, who is a passenger in another train moving at the same speed
on a parallel track. To A, B appears to be stationary. Relative to the carth B is
moving but, relative to A, B is stationary.

Now if A's train is travelling at 70 mph and the speed of B's train is 80 mph,
B passes A at 10 mph. The velocitics of A and B relative to the carth (ofien
called their true velocities) arc 70 mph and 80 mph but, relative to A, the
velocity of B is (80-70) mph.

What is happening in both cases is that the observer, in this case A, is
disregarding his own velocity and secing only the difference between B's
velocity and his own.

Now consider the situation when A gets up from
his seat and walks across lhe carriage to the

relutive to cariage.

has moved at right angles to the railway track. B
However, as A crossed the carriage, the carriage velocity od
itself moved forward along the track; so A’s of A ofcamese
true velocity is at an angle to the track as
shown in this diagram,
ie. velocity of A relative to the carriage
= true velocity of A — velocity of carriage
In general if the true velocities of two moving objects, P and Q, (i.c. their
velocities relative to the carth) are denoted by vp and v and the velocity of Q
relative to P is denoted by qvp then
o = Vo—Vr
238
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Examples 12a
The units used throughout are metres and seconds.

1. A passenger on a ship, whose velocity is 14i — 22j, is watching a boat whose
velocity is 81+ 5. What does the velocity of the boat appear to be to the
passenger on the ship? lustrate your solution with a sketch.

The velocity of the ship, vs, is 141 - 22
The velocity of the boat, v, is 8+ 5]
The velocity of the boat relative to the ship is gvs where
s = Ve ¥s
= 814 5§ (141 - 22§)
= —6i+27j
The boat appears to have a velocity of ~6i+ 27}

2. The velocity of a particle P is ~2i+3j. Relative to P, another particle Q has
a velocity of 6i+9j. Find the true velocity of Q and hence find Q's speed.

v = ~2043)
ave = 6i+9j
Yo -Vp = QW
Yo = QW+ Ve = 6149 + (~2i+3))
= 4i+ 12§
Q's velocity is 4i+ 12§

Qsspeedis [4i4+12§], ie. 4/10ms .
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If the velocities of two moving objects are not given in vector form, the relative
velocity can be found by drawing and measurement or by trigonometry.

. A helicopter is flying at 120mph on a bearing of 052° above a car travelling east on
a straight road at 70 mph. What does the speed and direction of the helicopter
appear to be to the driver of the car?

‘Taking vy and v, as the respective velocities of the helicopter and car and ¥, as
the velocity of the helicopter relative to the car we have

W=y~ Ve

1 we draw a line PQ 10 represcot v, followed by a fine QR represeating ¥ (ic. v reversed),
the line PR that completes the triangle represents

If triangle PQR is drawn to scale, PR can be measured to give the relative speed,
while the angle measured clockwise from the north line gives the direction of the
relative velocity.
Alternatively, using the cosine rule in APQR gives

R? = 120 +70° ~2x 120 x M0 cos 38° = PR = 77.9.
Then the sine rule gives

sin@ _ sin 38°
70 779

= 0=336.°

Hence ¢ = 18.4°

So the relative velocity is of magnitude 78 mph (2 sf )
on a bearing of 018" (nearest d!yee)
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. To a cyclist riding due south at 11kmh~", the wind appears to be blowing from the
south east at 4kmh~'. Find the true wind velocity.

Using v and v for the velocities of the wind and the cyclist, then

e = V-
where w¥c represents the velocity of the wind relative to the cyelist. As it is Vo
that we want 1o find, we rewrite this equation in the form

Vo = W¥et Ve where ¥ =dkmh! and ve = 11kmh"!
Then in a triangle formed by a line representing y¥. followed by a line
representing Ve, the line that completes the triangle represents .

Using the cosine rule in AABC gives
AB = V(121 + 16 - 88 sin 45°) = 8.647...

Then the sine rule gives

n

sin0 _ sin 45"

I
s Twer. 0!

Hence the true wind velocity is 8.6kmh~" (2 s )
on a bearing of 199° (nearest degree ).

Alternatively a scale drawing of AABC can be used.

=

EXERCISE 12a

In questions where units are not specified, any given vectors are measured in
units based on metres, seconds, newtons and kilograms.

. Acar, A, is travelling at 50 mph on a straight road and another car, B, is
being driven on the same road at 40 mph. Find the velocity of B relative to A if
the cars are travelling

(a) in the same direction  (b) in opposite directions.



N

22 Chapter 12

A horse breaks loose from his groom and gallops away in a straight line at 32mph.

‘The groom runs directly after the horse at 10mph.

(a) What is the velocity of the groom relative to the horse?

(b) I the horse suddenly stops and begins to gallop at the same speed in the
opposite direction, what now is the velocity of the groom relative to the horse?

A launch is lravcllmg with velocity 21§+ 16] and the velocity of a pieasure

boatis 8i - 3j. Fi

(a) the velocity of the launch relative to the pleasure boat

(b) the velocity of the pleasure boat relative to the launch.

‘The velocities of a helicopter and a light aircraft arc 15§+ 8j and ~3i+9j.

Relative to the light aircraft, what is

(a) the velocity of the helicopter  (b)  the speed of the helicopter?

. To the pilot of a transport planc flying with velocity 14i+ 11j, the velocity

of a liner appears to be ~5i+2j. What is the true velocity of the liner?

. To s biker alking dus torh ot B kb ! the wind appears to be blowing
S km

from the north west at

(a) Taking i and j as | kmh~! cast and north respectively, express each of the
given velocities in i form.

(b) Find the true wind velocity in the form ai + b}

The velocity of a particle A is 4i+5). Relative to A the velocity of another
particle Bis —2i+j and relative to B the velocity of a third particle C is
3i-5j. Find

(a) the true velocity of B

(b) the true velocity of C
(c) the velocity of C relative to A.

To an observer in a boat moving North East at 20kmh~' an acroplane appears
to be flying due West at 100kmh~'. What is the true course and speed of the
acroplane?

A passenger in a train travelling North East at 100kmh-~' watches a car moving
on a straight road. The car scems to be travelling $30°W at 125kmh~!. What
i the true velocity of the car?

. Two aireraft are flying at the same height on straight courses. The first is flying

at 400kmh~" due North. The true speed of the second is 350kmh~" and it
appears, o the pilot of the first aircraft, to be on a course S40°W. Find the true
rse of the second aireraft.
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RELATIVE POSITION

The position of a point"A can be given, relative to 0, by
its coordinates but we can equally well use the vector OA.
For example, if A is the point (2, 3) then OA is 2i + 3j
and is called the position vector of A relative to O.

The position vector of a point can also be
given relative 0 a point other than the origin.
Suppose that A and B are points whose
position vectors relative to 0 are

20i+16) and 15i-+22j respectively.

From the diagram we see that the position
(ie. the displacement) of A relative to B is
Si—6j, ic. 20i+16j — (15i+22j).

This shows that if we use notation similar to the velocity notation,
ic. Tx, 1y and Ary, we have

Afp = TA— Ty

EXERCISE 12b
In questions 1 10 4 find, in the form i+ ), the displacement of
(a) A relative to B (b) B relative to A.
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5. Two parices, P aad Q. both san moving from the origin with constant
velocities 6i—j and 3i+7) respectively.
(a) Find the position vector of each particle after  seconds.

(b) What s the displacement of Q relative to P after 3 seconds?

o

A particle P starts from rest at the origin when (=0, and moves along the
positive x-axis with an acceleration after ¢ seconds given by

(a) Find the velocity vector and the position vector of P after ¢ seconds.

A second particle Q starts from the point (3,0) and moves with constant
velocity 3i-+4j.

(b) Find the velocity vector and the displacement vector of Q after f seconds.
(c) What is the velocity of Q relative to P when =47

(d) What is the displacement of Q relative to P when =47

In the remaining questions, | and j are unit vectors cast and north respectively.
All quantities are measured in units based on kilometres and hours.

7. A helicopter A leaves a heliport and flies with velocity 10§ +4). At the
same time another helicopter B takes off from a field whose position vector
relative to the heliport is 36i+2j. The velocity of Bis —8i+3j.

. \
Field

Heliport

(a) Find, after ¢ seconds,
(i) the position vector of A relative to the heliport
(if)  the position vector of B relative to the heliport
(iii)  the displacement of B from A.

(b) Explain what happens when =2,
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. At 2 pim. he poston vecor,relative o 2 lighthouse, of a sip A s 101 and
A’s velocity is 120+ 5]. At the same time another ship B, whose velocity
is ~3i+10j, isina position 20 4j relative to the same lighthouse. Find,
after ¢ hours,
(a) the position vector of A relative to the lighthouse
(b) the position vector of B relative o the lighthouse
(c) the position vector of A relative to B
(d) the time when A is due north of B.

. A particle P starts from the origin O with initial velocity 2i—§ and moves
with acceleration 6¢j . Another particle Q starts from the point  with initial
velocity §-+j and moves with acceleration —41. Find
(a) the velocity of P relative to Q at any time ¢
(b)  the speed of P relative to Q when =2
(¢) the displacement of P relative to Q at any time
(d) the distance between P and Q when = 3.

CLOSEST APPROACH AND INTERCEPTION
Closest Approach

Consider two moving objects A and B, with velocities v, and v, and suppose
that at the time when observation begins, they are at points A, and By. Now
if we consider all the motion relative to B, then B is apparently stationary at
the point B, and A appears to move from the point A, in the direction of ,¥g.

Once the direction of the relative velocity, Vo ¥, i found another diagram can
be drawn, t0 a distance scale, showing the line ByA, and a line from B in the
direction of vy — vy

‘The distance between A and B at any time is represented by the distance from Ao
0 the corresponding point on the line of relative motion.

In particular, the shortest distance between A and B is given by measuring the
perpendicular distance from A, to that line, using the chosen scale.
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Examples 12c

An aircraft P is 1200m due north of another aircraft Q. When observed, both are
flying at the same height with constant velocities of 150ms~" due west and
200ms ! on a bearing 330° respectively. Find the distance between the aircraft
when they are closest together and the time when this occurs.

“The fist sketch sharws the triangl giving the velocity of Q relative to . The sccond sketch shows the
initial distance apart, PyQs. and the direction of motion of Q relative 10 P (i the direction of qve).

On a scale drawing the first sketch would be drawn to a specd scale, the angle 0 measurcd and used in
the sccond drawing.

From a scale drawing of (i), 0= 16°.

The second sketch would be drawn (o a
the aircraft

ice scale; measuring d gives the shortest distance between

From a scale drawing of d=330m.

‘The time when P and Q are closest together is found by measuring the distance from Qy to D on
G i v (1) v e v conrc . o sped and dvelg o by te
relative speed measured on the speed scale in drawing (i)

From scale drawing (ii), QyD = 1150m and from (i), qvp = 180m
ey

Therefore the time when the aircraft are closest is 4 seconds, ie. 6.4s, after the
first observation.

The use of trigonometry gives a more accurate solution so it is always worth
looking first to see whether the trigonometry seems to be straightforward. In
the example above it requires several steps.

“In AABC, the cosine rule gives AB

then the sine rule gives ABC or CAB, cither of which gives 0
then d is found from AQ, Py D



Relative Vectors 247
Interception
Suppose that one moving object plans to intercept (i.c. meet) another moving

object. This means that it must move in a direction such that the shortest
distance between them is zero.

Now we know that the shortest distance apart is measured from one end of the
initialline joining the objcets, to a point on a line drawn from the other end in the
direction of their relative velocity. Therefore, for the shortest distance apart to be
zero, the direction of the relative velocity must lie along the initial linc.

. At 1200 hours a destroyer that is 12 nautical miles south west of a cruiser, sets off
at 20 knots to intercept the cruiser which is travelling due east at 15 knots.

(A knot is 1 nautical mile per hour.)

(a) On what bearing should the destroyer travel?

(b) At what time will interception occur?

Diagram (i) show irection at noon of the fine joining the destroyer D 0 the cruiser C. For
interception, this direction must also be the direction of the velocity of D relative to C.

N e

(i)
D,

Diagram (ii) shows the triangle used to find p¥c where p¥c = ¥ =¥

‘We kaow the magnitude and direction of vc and the direction of p¥c, but only the magaitude of vp.

S0 we rearrange the cquation as ¥+ p¥c = Yo and interpret it by

drawing a line PQ representing vc followed by a line from Q. of unknown kength, in the direction of pvc.
the third side PR has to be 20 unit fong.

The direction of PR gives the bearing of the destroyer.

Scate drawings of these disgrams would give a solution 1o the problem but this time we will use
trigonometry.
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Bearing
R

e

3 TS Q

(a) In APQR, the sine rule gives

sing _ sin 135°
50

= sing = 0.5303..
= ¢=32027.0
= [ 12974,
the destroyer should set a bearing of 77° (nearest degree)
(b) Then using the sine rule again gives

QR _

Y

S @ QR=63%0.

The destroyer covers 12 n.-uniul miles at a relative speed of 6.350 knots.

The time taken is therefore m hours, i.c. | hour 53 minutes.

So interception takes place at 1353 hours.

In some problems on interception the initial positions and the velocities are
expressed in ij vector form. These tend to be less practical than the ‘real-fife’
situations so far examined and the solutions are, in general, simpler.

. Two particles P and Q start simultaneously from poiats Po and Q, with position
vectors 13i+5 and i +7] respectively, relative to a fixed point O. The particles
move with constant velocities represented respectively by —5i—2J and i 3.

Given that the units are metres and seconds

(a) show that P and Q collide,
(b) find how long after the start the collision occurs,
(c) find the position vector of the point of collision.
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(a) The paricies wil collide i the direction of the rlative velociy s the same as the direcion of
QP

Vo - ¥p = i-3-(=5i-2§) = 6i—}
The direction of QoPy is 13§ + 5§~ (i+ 7))
ie. 126-2) whichis 2(6ij)
Therefore QuPy is parallel to vo — vp and the particles will collide.

the distance PQ

(b) The time of collision is given by The relative speed.

112i-2)
[CR ]

Therefore the particles collide 2s after the start.

ie ot

(c) Afier 2 seconds, the position vector of P is given by
o= 1345425 - %) = 3i+)

“The position vector of Q could equally well be used, as = Fq al impact

The particles collide at the point with position vector 3

EXERCISE 12¢

At noon an obscrver on a ship travelling due cast at 20kmh~! sees another ship
20km due north which s travelling $30° E at 8kmh~'. At what time are the
ships nearest together?

Two aireraft P and Q are flying at the same height at 300kmh~' SE and
350kmh~! N60° E respectively. If P is initially 10km north of Q, how close do
they get to one another?

A runaway horse is galloping across a field at 40kmh~" on a bearing 020°. It is
already 300m away in a direction due east, from a mounted rider who takes off
in pursuit with a speed of 48kmh~". In what direction should she ride to catch
the runaway?

A yacht in distress is 8 km from a harbour on a bearing of 220° and is drifting
S10°E at 4kmh~'. On what bearing should a lifeboat travel to intercept the
yacht if the speed of the lifeboat is 30kmh~!?
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5. Two cyclists are riding one along each of two perpendicular roads which meet
at A. At one instant each cyclist is 500m from A and both are approaching A.
IF the speed of one cyclist is 8ms~! and the shortest distance between the cyclists
is S0m, find the two possible speeds of the second rider.

6. Two aircraft A and B are flying at the same height in directions N30° E and
N10°W respectively. At the instant when B is 10km duc cast of A it is realised
that they are on a collision course. I the speed of A is S00kmh~! find the speed
of B.

7. A destroyer moving on a bearing of 030° at S0kmh~" observes at noon a cruiser
travelling due north at 20kmh~". If the destroyer intercepts the cruiser one hour
later find the distance and bearing of the cruiser from the destroyer at noon.
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SUMMARY
Elastic Strings and Springs

An elastic string is one that can be stretched and will return to its original length.
When it is stretched it is said to be taut.
Its unstretched length is its natural length and in this state it s said to be just taut.

An elastic string is stretched by two equal forces acting outwards, one at each end
of the string, which are equal to the tension in the string.

These propertics apply also 1o a stretched clastic spring but a spring, unlike a
string, can be compressed. It is then said to be in thrust and exerts an
oulward push at each end, equal to the compressing force.

Hook:s Law states that the extension, x, in an elastic string or spring is
proportional to the tension, 7; in the string, i.c.

ix

a

T

where a is the natural length of the string
and 4 is its modulus of elasticity.

‘The unit for / is the newton and the value of 4 is equal to the force that doubles
the length of the string.

A string that has reached its clastic limit no longer obeys Hooke's Law and will
ot retum 1o its original length if stretched further.

Elastic Potential Energy

A stretched elastic string or a stretched or compressed elastic spring possesses
elastic potential energy ( EPE) equal to the amount of work needed to provide
the extension or compression.

21




252 Consolidation C
The amount of EPE in an elastic string stretched by an extension x from its
natural length a is given by
EPE = s
2a

If a string is already stretched by an amount x; and is then further stretched until
the extension is x,, the work done in producing the extra extension is given by
either of the following expressions:
Work done = (average of initial and final tensions) x (x; — x;)
A o
=5 (&= x?)

Projectiles
For a particle moving in a vertical x y plane with initial speed ¥ at an angle  to

the horizontal, at any time :
X

Veos  §= Vsinf-gt

x = Vicos y = Visin0-jgr*
The equation of the path is

y=xtanf— or y = xian0- 55 (14 un0)
g

ot
202 cost0
The greatest height occurs when § =0

The range on a horizontal plane is

.
“‘T"Z" and is found by using y =0

)
The maximum range i V? and is given when 0= 45°

Relative Motion
If an object A is at a position vector r, with velocity v, and another object B is at
a position vector rg with velocity vy then
the displacement of A relative to B is ry — ry
and the velocity of A relative to B is vy — vy
For interception v, — vy must be parallel to ry —ry
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MISCELLANEOUS EXERCISE C
In this exercise use g = 9.8 where necessary, unless another instruction is given.

In questions 1 and 2 a problem is st and i ollowed by & umber of suggested
responses. Choose the correct res

If the force needed to compress a spring to half of its natural length is 7, then
the force needed to stretch it to twice its natural length is

A ST B T cr D 21

If the work don in stretching a spring to twice its natural length is E, then the
work done in compressing it to half of its natural length is

A LE B E C 4E D I6E

In question 3 a problem is set and is followed by a number of statements.
Decide whether each statement is true (T) or false (F).

‘The diagram shows an elastic string of natural length a and modulus of clasticity
2mg, fixed at one end to a point A and with a particle P, of mass , attached to
the other end. P is released from rest at a point C where  AC = 2a.

encth horizontal surface

At C the acceleration is 2g.

AL C the elastic potential energy is 2mga
When P reaches B the kinetic energy is zero.
When P reaches B the acceleration is zero.
(v) When P reaches A the velocity is zero.

A canal has long straight parallel banks

that run north/south. The canal has idth 25m.
There is a uniform current of speed 1.5m s~
towards the south. A girl wishes to row

from a point O on the west bank to a point P 0| g
on the east bank. The point on the cast

bank directly opposnc 100 is E, and P is

1

south of E wi = Oasin the diagram. o
Her speed in il water 5 1 Show .
that she can only row dircctly to P if sin 0 < 3. Ll P

Given that sin 0 = {, find the direction in which she should point the boat in
order to get directly to P, as quickly as possible.

Find the time taken in this case. (UCLES),
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Two light clastic strings cach have natural length 0.15m and modulus 75N. One
end of cach string is attached to a particle of mass 0.12kg, and the other ends arc
attached to points A and B, 0.3m apart at the same horizontal level. The
particle is initially held at rest 0.08m vertically below O, the mid-point of AB, as
shown in the diagram.

(a) Find the tension in each of the elastic strings.
(b) Show that the energy stored in each of the strings is 0.1J.

‘The particle s released from rest in this position, and subsequently passes
through O with speed v metres per second.

(c) Use the principle of conservation of energy o calculate v, giving your
answer to 2 significant figures. (ULEAC)

In the sport of bungee jumping, a light elastic rope has one end attached to the
participant and the other end attached to a fixed support on a high bridge. The
participant then steps ofT the bridge and falls vertically. Given that a particular
participant has mass 60kg, and that the rope has natural length 30m and modulus
of elasticity 88N, find, in metres to one decimal place, the distance of the
participant below the point of support at the first instant of instantaneous rest.
(You may assume that the participant does not reach the ground.) (AEB),

A light clastic string of natural length 0.3m has one end fixed to a point on a
ceiling. To the other end of the string is attached a particle of mass M. When
the particle is hanging in equilibrium, the length of the string is 0.4m.

(a) Determine, in terms of M and g, the modulus of elasticity of the string.

A horizontal force is applied to the particle so that it s held in equilibrium with
the string making an angle x with the downward vertical. The length of the
string is now 0.45m.

(b) Find a, to the nearest degree. (ULEAC)
A light elastic string, of natural length 2m and modulus 392N, has one end attached
toa fixed point A. A particle P, of mass | kg, is attached to the other end of the string.
(a) Show that, when P hangs in equilibrium, the length of AP is 2{m.

The particle P is released from rest at A and falls vertically.

Use the work-energy principle to caleulate

(b) the speed, to 3 significant figures, of P at a distance 24m below A,

(c) the greatest length of the string. (ULEAC)
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A particle is projected from a point on horizontal ground. The initial

horizontal and vertical components of velocity are 14 ms~' and 21 ms~'

respectively. Find

(a) the times when the particle is moving at 45° to the horizontal

(b) the horizontal and vertical distances from the point of projection to the
particle at each of these times. (WIEC)

A stone is thrown, at an angle of 30° above the horizontal, from the edge of a
vertical cliff at a height of 35 m above sea level. If the initial speed of the stone is
7 ms™, find the time taken for the stone to hit the sea. Find also the horizontal
distance from the bottom of the cliff at which the stone enters the sea.  (AEB)

. This question is followed by several suggested responses. Choose which is

the correct response.

A projectile is projected from a point O on level ground with initial velocity u at
45° to the horizontal. When it is about to hit the ground

A y=0 B x=0 C itis travelling vertically downwards.

A golf ball is driven from a point A with a velocity which is of magnitude
28ms~" and at an angle of elevation of 30°. The ball moves freely under
gravity. On its downward flight, the ball hits a vertical wall, at a point B which
is 8.4 m above the level of A, as shown in the diagram. Calculate

(a) the greatest height achieved by the ball above the level of A,

(b) the time taken by the ball to reach B from A.

By using the principle of conservation of energy, or otherwise,
(c) find the speed, in m s~' to 1 decimal place, with which the ball strikes the
wall. (ULEAC)

. The unit vectors § and j are horizontal and vertically upwards respectively.

A particle is projected with velocity (8i+10j) ms~' from a point O at the top
of a cliff and moves freely under gravity. Six seconds after projection the particle
strikes the sea at the point S. Calculate

(a) the horizontal distance between O and S,
(b) the vertical distance between O and S to the nearest metre,

(¢) the speed with which the particle strikes the sea, giving your answer in ms~!
to 1 decimal place. (ULEAC)
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A yacht is sailing due cast at a speed of 2.5ms~' and a motorboat is moving due
south at a speed of 7ms~'. Find the direction of the velocity of the yacht
relative to the motorboat. (UCLES),

A mountain rescue team is investigating
whether or not 1o use a new ]

flexible rope. They take a length of 20m

of the rope. One end is attached (o the top §
of a fixed crane and a harness is attached

to the other end. Kirsty, a member of

the team, whose mass together with that of
the harness is 60 ke, is lowered gently until
she hangs at rest. The stretched rope is

then 21 m long. By modelling the rope as

a light elastic string and Kirsty as a particle,

(a) estimate the modulus of elasticity of the rope.

Kirsty climbs back to § and releases herself to fall vertically, strapped in the
harness attached o the rope. She comes to instantancous rest at the point C at
the end of her descent.

Estimate

(b) the length SC of the stretched rope,

(c) the greatest speed that Kirsty achieves during her descent.

State any further assumptions you have made in modelling Kirsty's descent from
StoC (ULEAC),

‘The diagram shows a particle P, of mass 63, suspended by two identical light
elastic strings from the points A and B which are fixed and at a horizontal
distance 2/ apart. Each string has natural length / and P rests in equilibrium at a
vertical distance }/ below the level of AB. Determine

(a) the tension in either string,

(b) the modulus of elasticity of either string. (ULEAC)



B

Consolidation C 27

‘With respect to a fixed origin O, the unit vectors i and j are directed

horizontally and vertically upwards respectively. At time =0 a ball is

projected with velocity (10i+20j) ms! from O and moves freely under gravity.

The ball strikes a vertical post, which is 30 m horizontally away from O, at a

point P above the horizontal plane through O. Calculate

(a) the time ¢, in seconds, when the ball strikes the post

(b) the height, in metres to 2 significant figures, of P above the plane

(¢) the acute angle, in radians to 2 significant figures, which the velocity of the
ball makes with the horizontal at the instant when it strikes the post.

(ULEAC)

12mm

© T

]
A missile P is projected from a point O on horizontal ground with a velocity
whose components are U horizontally and 1 vertically upwards. At the point A
on its flight path the missile is at its maximum height H above the ground. The
time taken for the missile to travel from O to A is T. Express both H and T in
terms of ¥ and g.

When P has been travelling for a time 37, a second missile Q is projected
vertically upwards with speed ¥, from the point C which is on the ground
vertical

IF Q subscquently collides with P at A, show that ¥, = V.

Given also that OC = 222, find i terms of U.

Show that, just before P and Q collide, the speed of P is twice that of Q.
(NEAB)

Omey

3 m) Q
o]

£

A golf ball is projected with speed 49 ms™" at an angle of elevation a from a

point A on the first floor of a golf driving range. Point A is at a height of 3 m

above horizontal ground. The ball first strikes the ground at a point Q which is

at a horizontal distance of 98 m from the point A as shown in the diagram.

(a) Show that 6tan’x—30tana+5 = 0

(b) Hence find, to the nearest degree, the two possible angles of elevation.

(€) Find, o the nearest second, the smallest possble time of direct light from
At0Q. (ULEAC)
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‘The unit vectors i and j are directed due cast and due north respectively.

‘The airport B is due north of airport A. On a particular day the velocity of the

wind is (704 + 25)) kmh~". Relative to the air an aircraft lies with constant
250 kmh~". When the aircraft flies directly from A to B determine

(a) its speed, in kmh™", relative to the ground
(b) the direction, to the nearest degree, in which it must head.
After flying from A to B, the aircraft returns dircctly to A.

(©) Calculale the ratio of the time taken on the outward flight to the time taken
n the return flight. (ULEAC)

. A river with long straight banks is 500 m wide and flows with a constant

speed of 3ms~'. A man rowing a boat at a steady speed of 5 ms~", relative to
the river, sets off from a point A on one bank so as to arrive at the point B
directly opposite A on the other bank. Find the time taken to cross the river.

A woman also sets off at A rowing at 5 ms~! relative to the river and crosses in
the shortest possible time. Find this time and the distance downstream of B of
the point at which she lands. (AEB)

While practising her tennis serve, Jenny hits the ball from a height of 2.5 m
with a velocity (258 —0.5)) ms~\. (i, j represent unit vectors in horizontal and
vertical directions respectively.)

(a) Find the horizontal distance from the serving point at which the ball lands.

(b) Determine whether the ball would clear a net, which is 1 m high and 12 m
from her serving position in the horizontal direction, i. (AEB)

The two forces (4i—6§) N and (6i+2J) N act on a particle P, of mass 2 kg.

(a) Show that the acceleration of P is (5i—2j) ms2.

Attime 1=0, Pisata point with position vector (5i+3j)m relative toa
fixed origin O and has velocity (~7#)ms~'. Calculate, at time ¢ = 2 seconds,

(b) the position vector of P relative to O
(¢) the velocity, in metres per second, of P
(d) the Kinetic energy, in joules, of P. (ULEAC)

Sally can swim in sill water at 1.1 ms~'. She swims across a river flowing
at0.7 ms between parallel banks 25 m apart. Find the time, in seconds to

1 decimal place, she takes to swim from a given point on one bank to the nearest
point on the opposite bank. (ULEAC)
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. A cricket ball was thrown by one player and caught at the same height from

which it was thrown by another player, 30 m away. The ball moved freely under
gravity. The greatest height reached by the ball above the point from which it
was thrown was 10 m.

(a) Show Il‘ul the vertical component of the initial velocity of the ball was
4ms.

Caleulate
(b) the time of flight, in seconds, of the ball,
(¢) the speed, in ms!, with which the ball left the thrower’s hand. (ULEAC)

In the dangerous sport of bungee diving an individual attaches one end of an
elastic rope to a fixed point on a river bridge. He/she is attached to the other end
and jumps over the bridge so as to fall vertically downwards towards the water.
‘The rope should be such that the diver comes to rest just above the surface of the
water.  In order to find out which particular ropes are suitable experiments are
carried out with weights attached to the rope rather than people.

In one experiment it was found that when a weight of mass m was attached to a
particular rope of natural length a and dropped from a bridge at  height of 3a
above the water level then the weight just reached the level of the water.

Show that the modulus of elasticity of the rope is 3mg/2.

State, with justification, whether the above result is an underestimate or an
overestimate of the modulus of elasticity of the rope.

The weight of mass m is then removed and a weight of mass Sm/2 is then
attached to this rope and dropped from the same height so that the weight enters
the water.

When the weight emerges from the water its speed has been reduced to zero by
the resistance of the water. Show by using conservation of energy or otherwise
and assuming that the rope does not slacken, that the subsequent speed v of the
weight at height & above the water level is given by

2

v

g(udh). (WIEC),

. A string of natural length 2a and modulus of elasticity A has its ends fixed (0 two

points, A and B, which are at the same horizontal level and at a distance
apart. The centre of the string is pulled back to a point C in the same horizontal
plane as A and B such that ABC forms an equilateral triangle.

Find the tension in the stretched string and the energy stored in it.

A small mass m is placed inside the stretched string at the point C and the string
released. The mass is catapulted through the mid-point of AB.

Neglecting the effects of gravity find the speed of the mass as it leaves the string.
(MEI),




c

‘The diagram shows three identical r:lnxuc strings OA, OB and OC, each of
natural length a and modulus 4. The strings are joined at O, and A and B are
fixed to points in a horizontal line at a Gistancs 20 apart. String OC is vertical
and has a particle of mass m attached to the end C. The system is in equilibrium
with the particle resting on a horizontal table. Given that OA and OB are each
inclined at 60° to the vertical, show that

(a) the mngnilndcs of the tensions in the two strings are equal;

b) OA =
® &
(c) the magnitude of the tension in cach string is equal to ﬂ&#
Find in terms of m1, g and 4, an expression for the magnitude of the reaction
exerted on the particle by the table.

Deduce that 1 < "'““//33 (AEB)

. A steel ball B, of mass 0.125 kg, is attached to one end of a light elastic string OB,
the end O being attached to the ceiling. The modulus of elasticity of the string is
525N, and the string has natural length 1.5m.  In equilibrium the ball is at E.
Show that the depth of E below O is 1.54m, correct to 3 significant figures.

The ball is released from rest at O, and does not hit the floor. State an
assumption necessary for conservation of energy to apply.
Hence find
(i) the speed as B passes through E,
(i) the maximum depth of B below O. (UCLES),

. A light elastic string of natural length a and modulus Tmg has a particle P of
mass m attached to one end. The other end of the string is fixed to the base of a
vertical wall. The particle P lies on a rough horizontal surface, and is released
from rest at a distance § a from the wall. The coefficient of friction between P
and the surface is .

Use the work-energy principle
(a) to show that P will hit the wall,
(b) to find, in terms of a and g, the speed of 7 when it hits the wall. (ULEAC)
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. The buffer at the end of a railway siding is designed to stop trucks that run into

it without any damage being done. The system in the buffer that absorbs the
energy of the truck is modelled by an elastic spring which immediately begins to
be compressed when the truck runs into the buffer. Once the spring has been
compressed, it is prevented from returning to its natural length. Tests show that
a truck of mass 10 tonnes moving at 0.5ms~" is stopped by the buffer when the
spring has been compressed by 0.4m. The maximum compression allowed for in
the design of the buffer is 1.2m. Calculate the maximum compression force that
the buffer system is able to withstand. (UCLES),

Two light springs are joined and stretched between two fixed points A and C
which are 2m apart as shown in the diagram. The spring AB has natural length
0.5m and modulus of elasticity 10N. The spring BC has natural length 0.6m
and modulus of elasticity 6N. The system is in equilibrium.

(i) Explain why the tensions in the two springs are the same.
(ii) Find the distance AB and the tension in each spring.
(iii) How much work must be done to stretch the springs from their natural
length to connect them as described above?

A small object of mass 0.012kg is attached at B and is supported on a smooth
horizontal table. A, B and C lic in a straight horizontal line and the mass is
released from rest at the mid-point of AC.

(iv) What is the speed of the mass when it passes through the equilibrium
position of the system? (MEI)

In a charity event, a man is attached to the end of a light elastic rope, the other end of
which is secured to a platform on a viaguct. The platform is 120m above the ground.
The natural length of the rope is 80 m and its modulus of clasticity is 17640 N.

‘The man drops from the platform and falls without encountering any
obstructions. ( Air resistance may be neglected.) A ‘safe’ jump is one in which
the man comes instantaneously (o rest at least 10m above the ground.

Using the principle of conservation of energy and treating the man as a particle,

(a) find, to the nearest kg, the mass of the heaviest man who can make a ‘safe’
jump,
(b) caleulate the speed of a 75kg man at a height of 20m above the ground.
(ULEAC)




CHAPTER 13
IMPULSE AND MOMENTUM

MOMENTUM

The momentum of a body is the product of its mass and its velocity,

ie. for a body of mass m, moving with velocity v,
momentum = mv

Because momentun is a scalar multiple of velocity, which is a vector, it follows
that momentum also is a vector quanity.

When the velocity of a body is constant and its mass does not change, its
momentum is constant.

We know that a force is needed to change the velocity of an object and it follows
that a force must act on the object in order to change its momentum. The precise
relationship between a force and the change in momentum that it produces can
be found by combining Newton’s Second Law with the equations of motion with
constant aceeleration.

Consider a constant force F that acts for a time ¢ on a body of mass m in the
direction of its motion, causing the velocity to increase from u to v. As the
force is constant, the acceleration a that it produces, is also constant.

Using F=ma and v=u+ar gives

v=ui(£)
m
= Ft = mv—mu

So we see that the change in momentum, ie. final momentum minus initial
‘momentum, is given by the product of the force and the time for which it acts.
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IMPULSE

‘The product of the force and the time for which it acts is called the impulse of the
foree and is denoted by the symbol J,

ie. J=F
‘Therefore impulse = change in momentum
ie. J = my—mu

‘This relationship shows that impulse, too, is a vector quantity. Hence, if a force
exerts an impulse on an object in a direction opposite to that of motion, the
impulse is negative. It follows that the change in momentum is negative,
ie. the final momentum is less than the initial momentum.

As with all problems involving vector quantities, it is important when dealing
with impulse and momentum to define the chosen positive direction.

Although readers will often find that 7 is used as the symbol for impulse, we
prefer to use J. Our reason is that at a further stage in the study of
mechanics (beyond the scope of this book) a completely different quantity is
represented by /.

Units

The unit of impulse is, as might be expected, the product of a force unit and a
time unit so, for a force in newtons acting for a time in seconds, the unit of
impulse is the newton second, N s.

{Note that this is nor newton per second.)

Momentum (mass x velocity ) can be measured in kilogram metres per second,
(kg ms~") but usually the impulse unit, N s, is used instead.

Examples 13a

. A hammer of mass 0.8 kg is moving at 12 ms~" when it strikes a nail and is
brought to rest. What is the magnitude of the impulse exerted on the hammer?

ANl the inital momentum of the hammer is lost when it his the nail.
The change in the momentum of the hammer is 0.8 x 12Ns=9.6Ns
the impulse exerted on the hammer is 9.6 N's.
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2. A particle of mass 2 kg is moving in a straight line, with a speed of 5 ms ",

A force of 11 N acts on the particle for 6 seconds, in the direction of motion.

Find

(a) the maguitude of the impulse exerted on the particle

(b)  the speed of the particle at the end of this time.

2k Sm

H‘).—PH

Take the posive dirceton 2 being 10 the ight
(a) The impulse of the force is J N's where
J=F
= 1Ix6
The magnitude of the impulse is 66 N's.

(b) Tnitial momentum is 2x 5 Ns
Final momentum is 2v Ns
Using  J=mv—mu gives
=22-10 > v=3

The velocity after 6 seconds is 38 ms~!

3. The velocity of a particle of mass 7 kg, travelling along the x-axis, changes from
I oty 1 s i esmats kot th et of 5 oo oron ot e
magnitude of the force and state its direction.

Let the consant foree be F N
Initial momentum is 7 13§ N's; Final momentum is 7 3§ Ns
The impulse of the force is SF N's
Using  J = my—mu gives

SF = 20§-91i = ~T0i
> F= 7005 = —14i

‘The magnitude of the force is 14 N and it acts in the direction —i.
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4. A truck of mass 1200 kg is travelling at 4 ms* when it hits a buffer and is
brought to rest in 3 seconds. What is the average force exerted by the buffer?

EEE

ek thedirocion ofthe o 3 e pskivediction,the il vocky of e trck .~ e aad
the final velocity is

Using  Ft = mv—mu gives
Fx3 = 12000 ~ 1200 x (~4)
> F = 1600
‘The average force exerted by the buffer is 1600 N.

5. A particle of mass 3 kg is moving along a straight line in the direction AB with
speed 6 ms~" when a force is applied to it. After 4 seconds the particle is moving
in the direction BA with speed 2 ms~'. Find the magnitude and direction of the
force.

6ms" 2mst

T —
e e 0 ___,,
Iy B e

Frewtons

In the direction AB

the initial momentum is 3 x 6 N's, _the final momentum is 3 x (-2) N's
and the impulse of the force is (—F) x 4 N

Using  Fr = mv—mu gives
~4F = —6-18 = F=6
The force is 6 N acting in the direction BA.

Alternatively we could take i as one unit in the direction AB and use F as the
force vector, leading to

4F = 3x(-20) - 3x6l = 4F = -24i
ie. F= -6
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6. A jet of water strikes a wall, at right angles to the jet, with a speed of 20 ms~".
The water does not bounce off the wall. Given that the average force exerted by
the wall in stopping the flow is 360 N, find the mass of water being delivered per
second.

In one second the amount of water that hits the wall is m kilograms.
Therefore the initial momentum of the water is 20m N's.
‘The time taken for m kg of water to be brought to rest is 1 second.

Using Ft = mv—mu gives
~360x 1 = 0—20m
= m o= ~360+(-20) = 18

The mass of water delivered per second is 18 kg.

Note that the force which the wall exerts on the water s equal and opposte to the force exerted by the
water on the wall.

EXERCISE 13a

Write down the momentum of

(a) a child of mass 40 kg running with a speed of 3 ms!
(®
(c) a missile of mass 92 kg travelling at 120 ms~!

a lorry of mass 1200 kg moving at 20 ms~"

(d) a train of mass 214 tonnes travelling at 55 ms~'

(¢) a bullet of mass 100 g travelling at 40 ms~'.

N

Find the magnitude of the impulse exerted by

(a) a force of 14 N acting for 65

(b) a force of 12 tonnes acting for 1 minute

(¢) a force that causes an increase in momentum of 88 N's
(d) the weight of a block of mass 20 kg acting for 30 .
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In questions 3 to 6 a force of magnitude F newtons acts in the direction AB on a
particle P of mass 2 kg. Initially the velocity of P is ums~ and 1 seconds later it
is vms~, each in the direction AB.

If u=4,

If u=7, v=4 and 1=3, find F.
If u=5, =4 and F=10, find .

If u=8, =5 and F=-4, findv.

If u=10, v=6 and F=-3, find 1.

In what time will a force of 12 N reduce the speed of a particle of mass 1.5 kg
from 36 ms~! to 12 ms~'?

A body of mass 5 kg is moving with a velocity of 10§ ms" when a force F is
applied to it for 4 seconds.  Find the velocity at the end of this time if
(a) F=200 (b) F=-20i.

A body of mass 4 kg is moving with speed 7 ms ! when a force is applied to
it for 8 seconds. Its speed then is again 7 ms~' but in the opposite direction.
Find the magnitude of the force that has caused this change.

. A dart of mass 40 g hits the dartboard at a speed of 16 ms ™. If the dart

comes to rest in the board in 0.02 seconds, find the average force exerted by the
board on the dart.

. A particle of mass 5 kg has a velocity 16 ms™' when a force —4i N begins

toact on it. Find the vellx:uv of the particle when the force has been acting
for (1) {s  (b)

At whstsimes il the speed of the partcle be 2 ms-

. A high pressure hose is being used o clean the wall of a town hall. The

20 ms". Find the average force exerted on the wall, assuming that the water
does not bounce back off the wall, i
(a) 8 kg of water is delivered per second

(b) the cross-sectional area of the hose plpe 1s 0.5 cm?.
(Take the density of water as 1000 kgm
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14. A stationary truck is shunted into a siding by a locomotive that exerts a

force of 2600 N on the truck for 12 seconds.

(a) What is the momentum of the truck at the end of this time?

The truck caries on without change of speed until it is brought to rest in
2 seconds when it hits the buffers at the end of the line.

(b) What is the magnitude of the impulsc exerted on the truck by the buffers?
(c) What is the average force exerted on the truck by the buffers?

IMPULSIVE FORCES

There are circumstances where a large force acts for a very short time, so that
neither the force nor the time for which it acts can easily be evaluated
separately, e.g. a cricket bat hitting the ball, a shot being fired, a footballer
kicking a ball, etc.

These are examples of unpulvw  forces and in such cases the impulse of the force
cannot be calculated using J = Fr. The change in momentum caused by the
impulse, however, can be used to evaluate the impulse.

Example 136

A cricket ball of mass 0.2 kg has a speed of 20 ms~' when the bat strikes it at
right angles and reverses the direction of the ball's flight. If the speed of the ball
immediately after being struck is 36 ms~', find the impulse given by the bat to the

ball.
Wms"
\—)zm o—b e
6ms!

The final momentum of the ball is 0.2 x 36 Ns =72 Ns
‘momentum of the ball is 0.2 x (~20) Ns =
Th: impulse, J Ns, given by the bat is given by

=72-(-4) = 112
Therefore the bat exerts an impulse of 11.2 Ns on the ball.

4Ns

EXERCISE 13b

In each question calculate the impulse given.

A ball of mass 1.1 kg strikes a wall at right angles with a speed of 6 ms~' and
bounces off at § ms~
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‘The speed of a tennis ball just before it hits the racquet is 38 ms~L. The
racquet strikes the ball at right angles, giving it a return speed of 30 ms~.
The mass of the ball is 0.15 kg.

A shot of mass 50 g, fired at 250 ms~", is stopped dead when it hits a steel
barrier.

A bird of mass 60 g is stunned when it flies at 12 ms™" directly into a window

pane.

A stone, of weight 24 N, dropped from a high window, hits the ground at
45 ms~! and does not bounce. (Take g as 10.)

COLLISION

‘Whenever two objects are in contact, they exert equal and apposite forces on each
other.

‘Whether they are in contact for a measurable time, or just for a split second, it is
clear that each is in contact with the other for the same time. Therefore they exert
equal and opposite impulses on each other.

Provided that neither object is fixed, these equal and opposite impulses produce
equal and opposite changes in momentum, so the overall change in momentum
of the two objects caused by the collision is zero. Hence, so long as no external
force acts on cither object, the total momentum of the two objects (which we
refer to as the system) remains constant.

“This property is known as The Principle of Conservation of Lincar Momentum
and is expressed formally as follows:

If in a specified direction, no external force affects the motion of a system,
the total momentum in that direction remains constant.

In some problems involving a collision the two colliding objects bounce and so
have individual velocities after impact. Other objects collide and join together
at impact, e.g. trucks which become coupled. Such objects are said to coalesce.

In cither case we are dealing with different velocities before and after impact so it
is advisable to draw separate ‘before’ and ‘after’ diagrams and to define the
chosen positive direction particularly carefully.
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JERK IN A STRING

Consider two particles A and B connected by an inextensible string of length /
and lying on a smooth table. The distance between A and B is less than /, so
the string is not taut.
A B
o0
Now if A is projected away from B it will move with constant velocity
until AB =/ At that instant the string jerks tight and suddenly exerts
equal and opposite impulsive tensions, J, on A and B.

54 P

‘These impulsive tensi Aand B and opj

in momentum. Therefore, just as in the case of col]mon dm (olx] momenlum ol'
the system is unchanged by the jerk, i.c. the principle of conservation of linear
momentum can be applied.

Now the impulse that acts on B jerks B into motion, while the impulse that acts
on A gives A a jerk backwards and, because the string is now taut, A and B begin
to move on with equal speeds.

Examples 13c

. A particle A of mass 3 kg, tra at 5ms~" collides head-on with a particle B
it mass 2 kg and traveing at 4 ma-". I, ate impact, B movesin the opposite
direction at 2 ms ', find the velocity of A.

Just bofore irmpact ._9 4_2.“

ums 2ms

o ar it > o—p

B

Total momentum before impact is 3x 5 + 2 x (~4) Ns
Total momentum after impact is 3u + 2x 2Ns

Using conservation of linear momentum gives
15-8 = 3u+4
= w=1

‘The velocity of A is 1 ms™ in the same direction as before.
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Note that in this example the direction of motion of A after collision is not given.
We guessed that it was o the right and got a positive value for u showing that
the guess was correct. Had we thought that A moved with speed u to the left, we
would have found that = ~1I; this also shows that A moves to the right. In
other words it does not matter in which direction we mark an unknown velocity;
the sign of the answer defines the correct direction.

A three-tonne truck is moving along a track at 8 ms' towards a five-tonne
truck travelling at 5 ms~" on the same track. If the trucks become coupled at
impact find the velocity at which they continue to move if they are travelling

(a) in the same direction  (b) in opposite directions.

&3 Bms™! L) Sms™!
B EEEP —e
e [~

Before impact, the momentum of A is 3000 x 8 Ns = 24000 Ns
the momentum of B is 5000 x SNs = 25000 Ns
the total momentum is 49000 N's

(a)

After impact,  the combined momentum is 8000 x v N's
Using conservation of linear momentum gives
8000y = 49000 = v = 6125

The velocity of the coupled trucks is 6.1 ms~' (2 sf).
(b) Sms Smat
s S

Before impact, the momentum of A is 3000 x 8 N's = 24000 N's
the momentum of Bis 5000 x (~5) Ns = —25000 Ns
the total momentum is ~ 1000 N's

After impact,  the combined momentum is 8000 x v N's
Using conservation of linear momentum gives
8000y = —1000 = v ~0.125

The velocity of the coupled trucks is 6.1 ms~' (2 sf) in the direction of
motion before impact of the heavier truck.



m Chapter 13

3. Two particles A and B, joined by a light inextensible string, are lying together
on a smooth horizontal plane. The masses of A and B are 1 kg and 1.5 kg
respectively. A s projected away from B with a speed of S ms'. Find the speed
of each particle after the string jerks taut.

st befor the ek @~ O—P>s
¢ A
o atr e ek @@

The momentum of the system before the jerk is 1x 5 Ns
When the string becomes taut, it ends have cqual specds, . A and B have equal spocds.
The momentum of the system after the jerk is (1+ 1.5)x v Ns
Conservation of linear momentum gives

5=25 = v=2
Each particle has a speed of 2 ms™" after the string jerks taut.

EXERCISE 13c

Keep your solutions to the questions in this exercise; you will need to refer to
them in a later exercise.

In each question from 1 to 5 a body A of mass my travelling with velocity ux,
collides directly with a body B of mass mp moving with velocity up.
‘They coalesce at impact. The velocity with which the combined body moves

onis v.
Justbetore impoct @—Poun &—pu
b4 b4

ALl

Just aier impact e
Tomy=4kg ua=4ms, mg=2kg up=1Ims'. Findv.
2.my=6kg, ux=1ms"', my=2kg, up=-3Ims". Findv.
3.my=9kg ux=5ms™, mp=dkg v=3ms". Findup.

4 my=3kg ur=16ms”, my=5kg v=6ms"'. Find

S uy=3ms™, my=6kg up=-5ms”', v=—-1ms'. Findma.

6. A bullet of mass 0.1 kg is fired horizontally, at 80 ms~", into a stationary

block of wood that is free to move on a smooth horizontal plane. The wooden
block, with the bullet embedded in it, moves off with speed 5 ms™'. Find the
‘mass of the block.
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A particle A of mass 5 kg travelling with speed 6 ms ", collides directly with
a stationary particle B of mass 10 kg. If A is brought to rest by the impact find
the speed with which B begins to move.

‘The masses of two particles, P and Q, are respectively 0.18 kg and 0.1 kg.

‘They are moving directly towards each other at speeds of 4ms~' and 12 ms™"
respectively. After they collide the direction of motion of each particle is reversed
and the speed of Q is 6 ms~!. Find P’s speed after impact.

A sphere P of mass 2 kg is moving at 4 ms~' when it collides with a sphere Q
of mass 1 kg moving in the same direction at 3 ms~'. After the impact, both P
and Q move on in the same direction as before, P at ums~' and Q at v ms~".
Given that 7u=2v, find u and ».

A ball of mass 0.2kg strikes a wal at right angles with a speed of 8ms~'. After
rebounding it has 25% of its initial kinetic energy.

(a) Find its speed after rebounding.
(b) Find the impulse it exerts on the wall.
(¢) it is contact with the wall for 001, find the average force it exerts on the wall.

Two skaters, a father and son, are standing at rest on the ice. The masses of the
father and son are 70kg and S0kg respectively. The father then slides a stone
over the ice giving it a velocity of 8ms~'. The son catches it. If the mass of the
stone is Skg find

(@) the speed with which the father starts to move backwards after releasing the
stone,

(b)  the common velocity of the son and the stone after he has caught it,

(c) the impulse exerted by the stone on the son.

State any assumptions you need to make to solve this problem.

In this diagram, A and B are particles resting on a smooth table and connected
by a slack light inextensible string. Use the diagram for questions 13 and 14.

s 2 N
b——O > &> —6—

. Ais of mass 2 kg and B is of mass 4 kg. B is projected with a speed of

10 ms~'. Find the common speed of A and B when the string jerks taut.

B is of mass 0.5 kg and is projected with speed 12 ms™'. The jerk when the
string becomes taut causes both particles to begin to move with a speed of
4ms". Find the mass of A.
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. Two particles A and B of equal mass m are connected by a light inextensible

string of length . Initially they are held at rest, side by side. A is then released

from rest.
A
U BQRet B ‘L
ot 4t

Just before: Just after
the jerk the jerk
(a) Find, in terms of / and g, A’s speed just as the string is about to jerk taut

(b) If B is released at this instant find, in terms of / and g, the common speed
with which A and B together begin to move.

LOSS IN KINETIC ENERGY

When there is a sudden change in the motion of a system, there is usually a
change in the total kinetic energy of the system.

Consider the system given in question 1 in Exercise 13c.

41 2
Jostbefore impact O—pams —Pims
ot mpact @@ —pims

You should have found the common speed after impact to be 3 ms™

Before impact the KE of Ais (4)(4?)J and that of Bis 1(2)(1?)J.
Therefore the total KE of the system is (32+ 1) J, ie. 33J

After impact the KE of Ais £(4)(3*)J and that of Bis £(2)(3')J.
Therefore the total KE of the system is (18 +9)J, ie.27J

From this we see that a loss in KE of 6 J has been caused by the collision.
This can be understood by remembering that when objects collide there is usually
a *bang), i.c. some mechanical energy is converted into sound encrgy; some may
also be converted into heat energy.
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FINDING THE IMPULSE

We know that when objects collide, equal and opposite impulses act on the two
objects. When we consider the system as a whole, these impulses cancel and do
not appear in our calculations.

If the magnitude of the impulses is required we must consider only one of the
colliding objects. The impulse which acts on one object causes the change in
momentum of that object alone.

In the same way the impulsive tension in a jerking string can be found by
considering its effect on the particle at one end only.

Looking again at question 1 in Exercise 13c:

3

Jbeforcimprt @—Pams! O—Pims
ke 2k

A INs INs

or— ‘08— pim:
For the body A alone:  the initial momentum is 4 x 4 N's
the final momentum is 4 x 3 Ns
B M@ —re @B
Using Impulse = Change in momentum gives
-J=12-16 = J=4
The impulse that acts on A is 4 Ns.
(The impulse that acts on B is also 4 N's but in the opposite direction. )
To find the impulse in a jerking string (often called an impulsive tension) a very
similar approach is used.
Suppose, for example, that a mass of 5 kg is projected at speed 2 ms™' away
from a mass of 4 kg to which it is attached by a slack inelastic string.

» A
Justbefore the jerk @ @——P>2ms™"
h4 e

INs INs

At jerk o—>——<—o0

sttt etk @—Pp——O——B
First we need the common speed, v ms~", after the string jerks tight

Using conservation of momentum, 5x2 = (5+4)y =
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Now for B alone we use Impulse = Change in momentum ~giving

B
Onurest J = final momentum — initial momentum
>N =4x(§)-0
the impulse in the string is 43 Ns.
0Pt
EXERCISE 13d

For parts (a), (b), (c), (d), (€) and (f), use your solutions to questions 2 to 5,
7and 8 in Exercise 13, to find in cach case

(i) the loss in kinetic energy caused by the impact

(if) the impulse exerted on cach object.

Using your solutions to questions 13 and 14 in Exercise 13c, find in each case
the impulse in the string when it jerks tight.

3. A truck A of mass 400 kg, moving at 2 ms”", runs into a stationary truck B.
The two trucks become coupled together and move on with speed 0.8 m s
Find
(a) the mass of truck B
(b) the impulse exerted on truck B by truck A
(¢) the loss in kinetic energy caused by the collision.

4. The masses of two particles A and B are m and 3m respectively. They lic at
rest on a smooth horizontal plane and are joined by a light inextensible string.
(a) Ais projected directly away from B with speed 4u.

(b) Bis projected directly away from A with speed 4u.

In each case find
(i) the common speed of A and B after the string jerks tight
(ii) the impulsive tension in the string

(i) the loss in kinctic cnergy caused by the jerk in the string.

An empty punt of mass S0kg s drifting down a river at 2ms'. It is approached
by a second punt moving at 3ms~' and, whcn they are level, a man of mass 70kg
steps across sideways into the empty punt. Find the velocity that he and his new
punt have just after he does this

(a) if he approaches by overtaking the empty punt
(b) if he approaches from the opposite direction.
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6. A sphere of mass 3 kg is dropped on 10 a horizontal plane from a height of

2 m above the plane. Take g as 10.

(a) Find the speed of the sphere when it hits the plane.

(b) If the sphere does not bounce find the impulse it exerts on the planc.

If the sphere rebounds to a height of 1.4 m, find

(c) the speed at which the sphere rises off the plane

(d) the impulse exerted by the plane on the sphere.

7. A particle A of mass 2kg lies on the edge of a table of height I m. It is
connected by a light inelastic string of length 0.65m to a sccond particle B of
mass 3kg which is lying on the table 0.25m from the edge (AB is perpendicular
1o the edge). If A is pushed gently over the edge find the velocity with which B
begins to move. Find also the impulsive tension in the string.



CHAPTER 14

COLLISIONS, LAW OF RESTITUTION

ELASTIC IMPACT
Most of the collisions that have been considered so far have resulted in the
objects coalescing at impact. Impacts of this type are called inelastic.
If; on the other hand, a bounce occurs at collision, we have an elastic impact and
the colliding object(s) are said to be elastic.
The simplest example of an elastic impact is a direct impact, i.e. an impact in
which the direction of motion just before impact is parallel to the impulses
that act at the instant of collision, e.g.
o—Pp« 4 o——Pu  o—D
] G e >

NEWTON'S LAW OF RESTITUTION

‘When two particles approach each other, collide directly and then move apart,
the speed with which they separate is usually less than the speed at which they
approached each other.

Experimental evidence suggests that, for two particular colliding particles, the
separation speed is always the same fraction of the approach speed. It was
from such evidence that Newton formulated a law known as Newton's Law of
Restitution, which states that

separation speed = e x approach speed

relative speed after impact = e x relative speed before impact
The quantity represented by e is called the coefficient of restitution and it is
constant for any two particular objects; its value depends upon the materials
of which the two objects are made.
For colliding particles, e can take any value from zero to 1.
I the particles coalesce the separation speed is zero, ie. e = 0.
If the relative speeds before and after impact are equal, e = 1, and we say
that the particles are perfectly elastic; we shall see later on that in this case
there is no loss in kinetic energy because of the impact.
Note that we have been referring only to particles colliding. A particle is
regarded as having no measurable size, so its shape cannot be distorted and
the time for which the particles are in contact is infinit

£

or
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A larger object however, such as a ball, can undergo distortion on impact and the
internal changes in its structure may be such that the basic methods for collision
are not completely accurate. It is, however, reasonable to model most balls as
clastic particles, as the results are accurate enough for most purposss.

Note also that when we refer to the speeds before and after impact, we mean the
speeds immediately before and after. If, for instance, a particle falls vertically
from a height above a fixed plane, its speed increases as it falls; the speed with
which it approaches the plane is understood to be the final speed a split sccond
before the collision with the plane.

Similarly the speed of separation from the planc i the initial speed with which the
particle begins to rise again.

COLLISION WITH A FIXED OBJECT

Consider first the case of a particle of mass m1, moving on a smooth horizontal
surface with speed u, towards a fixed block whose face is perpendicular to the
direction of motion of the particle. When the particle hits the block an
impulse J is exerted on the particle by the block and, if the impact is clastic,
the particle bounces off the block in the opposite direction with specd v, say.

R

The approach speed is , and the separation speed is v.

Therefore using the law of restitution gives v = eu

Now, taking the dircction of J as positive,

using impulse = final momentum — initial momentum

gives J = my—(~mu)

These are the two principles that can be applied to situations of this type in
which one of the mllldmg objects is fixed. The conservation of linear
momentum is not valid in such cases for the impulse applied to the particle
by the fixed surface is an external impulse; hence the momentum of the
panicle is changed but the momentum of the fixed object is not changed by
an cqual and opposite amount.
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Examples 14a
. During a game of squash the ball strikes the front wall at right angles, at a speed of
20ms~". At the moment of impact the ball is travelling horizontally. The
coefficient of restitution between the ball and the wall is 0.9. By modelling the
squash ball as an elastic particle, find
(a) the speed with which the ball bounces off the wall
(b)  the impulse exerted on the ball by the wall, given that the mass of the ball

is 0.085kg.

320...; ) 0085k

T

(a) Using the law of restitution, v = 0.9x20 = 1§
The ball leaves the wall at 18ms~".

(b) Using impulse = increase in momentum in the direction of J,

J = my—m(-20) = 0.085(18 +20)
The impulse exerted is 3.23Ns.
. A ball of mass 0.15kg is dropped from a height of 2.5m above horizontal ground.

After bouncing it rises to  height of 1.6m.

Stating any assumptions you need to make, find

() the coefficient of restitution between the ball and the ground

(b)  the ball’s loss in mechanical energy caused by the impact with the ground and
suggest a possible explanation for this loss.

Assumptions are: the ball can be regarded as an elastic particle; there is no air
resistance or wind; the ball rises vertically after impact with the ground.

A} © zero velocity

€4 @ merovelocity

7 16m

i ) 44 ot
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First find the specd of the ball at impact.

Using conservation of mechanical energy from A to B
mgh+0 = 04 ymd = 1 =2x98x25 =
the speed of the ball just before impact is 7ms.

Now find the speod of the ball immediately afer impact.
Using conservation of mechanical energy from B to C
Lm? = mg(16) = R=313 =
just after impact the speed of the ball is 5.6ms™".

(a) Using the law of restitution,
56 =Te = 0.8

(b)  The loss in mechanical encrgy due to the impact is the difference in kinetic energy immediately
before and after impact.

Loss in mechanical energy = $(0.15)(72) ~ $(0.15)(5.6)* joules
=132) (3s0)
This loss may have been converted into sound energy at impact.

Kinetic energy can also be converted into heat at impact.

EXERCISE 14a

In questions 1 to 4 a particle moves directly towards a fixed plane surface, strikes
it and rebounds. The coefficient of restitution is e.

If e=14, find 25 IZm:"E
() the specd after impact
(b) the impulse exerted by the particle on the plane. 4—o E
If e=3, find O '“""E
(a) the speed after impact
(b) the loss of kinetic energy. <4—o E
Given that e = 0, find 1k B ""‘"'E
(a) the speed afier impact
(b) the impulse exerted by the particle on the plane +—of

(c) the loss of kinetic energy.
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. An ice-hockey player is skating up the rink at a constant speed of 4ms
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Given that ¢ = 1, find
(a) the speed after impact
(b)  the impulse exerted by the particle on the plane 4—o E
(c) the loss of kinetic energy.

A small ball, of mass 002 kg, is dropped

from 4 height of 0.4m onto horizontal

mpact causcs the ball to
lose 75% of its mechanical energy. Find T

(a) its speed just before impact 04m

(b) its speed just after impact
(c) the coefficient of restitution
(d) the height to which it rebounds.

A sphere of mass 2kg falls from rest from a height of 10m above an elastic
horizontal plane. Find the height to which the sphere will risc again after its first
bounce, if the coefficient of restitution is }. Find also the impulse exerted by the
sphere on the planc.

In each qusstion rom 7 0 0 3 partice Ir.avelllng horzontally with velocy o,
strikes a vertical wall at right angles and rebounds with veloci

CoclTient of restittion i e, Draw a diagram to Mustrate G qn:slmn before
solving it.

() w=8i =075 Findv. (b) w= -5, v=2 Finde

(@) v=4i e=02 Findu (b) u=—6i+10j, e=05 Findv.

(a) w

Find . () w=6i-8j, v=-3i+4 Finde.

. A small sphere is dropped onto a horizontal plane from a height of 20m. The

cocflicient of restitution between the sphere and the planc is 1. (Use g = 10.)

e rises after each of the first, second and

(a) Fmd the height to which the part
hird impacts.

(b Shcw that the heights found in (a) are in geometric progression
(c) Find the total distance travelled by the sphere up to the fourth impact.

‘When
he is 10m from the end he strikes the puck, giving it a speed of 20ms ', The
puck hits the end boards and rebounds directly towards him so that he receives it
back one second after hitting it. Stating any simplifying assumptions which you
make, construct and use a mathematical model to find the coefficient of
restitution between the puck and the end boards.
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A light inextensible string AB, of length a, has the end A fixed to a vertical wall.
‘The end B is attached o a particle which is drawn away from the wall until the
string makes an angle of 60° with the wall. The particle is then released from
rest. I the value of e is 3., find

(a) the velocity of the particle just before impact with the wall
(b) the velocity of the particle just after impact

(c) the vertical distance through which the particle travels before it next comes
to instantancous rest.

. Some manufacturers are making a table game in
which a small disc is projected by a spring Back board

‘mechanism to slide over a horizontal surface, hit

a vertical back-board and rebound into areas Seoret oem
marked with scores. The mass of a disc is 0.1 kg.
The spring mechanism allows the disc to hit the Seore | 200m

back-board with speeds between 0.5ms~' and
3ms ! The coeflicient of friction between a disc
and the surface is 0.2. Dimensions are shown on Seore 2 20em
the diagram. Model the game by treating the disc
as a particle and assume that it strikes the back-
board at right-angles.

Seore 3 Wem

(a) In choosing material for the back-board it is
required that the coefficient of restitution, e,
should be such that the dise cannot rebound
past the line AB. Find the maximum possible Score 1 0em
value of e for this requirement to be satisfied

(b) Given that ¢ = 0.75, find the range of
speeds with which the disc can hit the
back-board when the score is 3. h W

Seore 0. Wem

COLLISION OF TWO OBJECTS BOTH FREE TO
MOVE

The principle of conservation of linear momentum can be applied to the direct
impact of particles both of which are free to move, as this is a case where the
pair of impulses at impact cause equal and opposite changes in momentum
and so have no overall effect on the total momentum of the system.

For this situation therefore, in addition to the law of restitution, we can also use
conservation of momentum.

Because we will now be dealing with more than one moving particle, it is
particularly important to choose a positive direction when dealing with
momentum of the system.
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Examples 14b

. A particle A, of mass 0.1 kg, is moving with velocity 2ms~" direetly towards
another particle B, of mass 0.2kg, which is at rest. Both particles are on a smooth
horizontal table. If the coefficient of restitution between A and B is 0.8, find the
velacity (i.c. the speed and direction of motion) of each particle after their collision.

o1k 021
AC—Diamst @b approschspeed = 2m s~
100> e poniive () dirction
ol 02
o—Pu @ P separstion speed = v~

We know that B moves in the +ve direction after impact, as B is at rest when an impalse acts on it in
that direction. However, we are not sure which way A will move after impact. We have marked its
velosity as ~+ve and the sign we get for u will determine whether or not this s the correct dircction.

Using conservation of momentum —

0.1%2 = 0.1u+02v
- usdr=2 &
Using the law of restitution

Ve

=08x2 £l

+Q gives Iv=36 =
Then from [I]  u=2-24 = -04
“The minus sign shows that A i, in fact, moving in the ~ve direction afler impact

after impact, the velocity of B is 1.2ms™" in the +ve direction
and the velocity of A is 0.4ms™" in the ~ve direction.
Note that it s asicr 10 combine the two cquations if equation [1] i arranged with u and v on the LHS.
At the moment of impact two equal and opposite impulses act, one on each of
the particles.  So if the magnitude of each impulse is required, we must
consider the clumgc in momentum of only one of the particles.

In the example above, for example, we would find the value of J by considering
the motion of B (easier than A as B has no initial momentum),

ie. J=02v-0
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. A particle P of mass 1kg, moving with speed 4ms~", collides directly with another
particle Q of mass 2kg moving in the opposite direction with speed 2ms~'. The
coefficient of restitution for these particles is 0.5. Find
() the velocity of each particle just after the collision
(b)  the magnitude of the impulses acting on impact
(c) the loss in inetic energy caused by the collision.

@ ke 2ms” 2k
Po—Pims <4—eq approach specd =4+ 2
1 €——00—>/ e (+ve) direction

E b Ebr pmn et
Using conservation of momentum —
1x4-2x2 = Ixu+ 2xv
= ut2v =0 m
Using the law of restitution
you=05(4+2) 2]

W+ gives 3v=3 = vy=1 and u=-2

iic. after impact P's speed is 2ms~! and Q's speed is 1ms~".
The direction of motion of both particles is reversed by the impact.

(b) Now consider the impulsc that acts on Q and the change in momentum it produces.

o—pims?
2ke

Impulse = final momentum — initial momentum
= J=2x1-2x(-2) =6
‘The magnitude of each impulse is 6 N's.
() KE before impact = [ x 1x(4)® +§x2x(2)’]J = 12
KE after impact = [§x 1x (27 + }x2x(17]J = 3J
the loss in KE due to the impact is 91
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3. A sphere of mass 1.5kg and speed 2ms" collides head-on with an identical sphere
of mass 0.5kg and speed 1ms ', As a result of the impact the direction of motion
of the lighter sphere is reversed and its speed becomes 3.5ms . Find

(a) the speed of the heavier sphere after impact
(b)  the coeflicient of restitution between the spheres

(c) the loss in kinetic energy due to the impact.

(d) What can you deduce from the answers to (b) and (c)?
(e) State an assumption that has been made.

15kg Tems ! 05k
o Prms "g-—o" spproach speed =2~ (~1) =3
Jg——00—>1 (Ve direction
15k o3k

O —pPu @ ——Pisms  separmtionspeed =35 - u

(a) Using conservation of momentum —
15x2-05x1 = L5u+05x35 = u=05
‘The speed of the heavier sphere is 0.5ms™

(

£

Using the law of restitution, 3.5 0.5 = 3

= e=1

(¢) KE before impact = 4 (1.5)(2)" + £ (0.5)(1)! = 3.25
KE after impact =  (1.5)(0.57 + § (0.5)(3.5) = 325

there is no loss in energy because of the impact.

(

&

From (b) we sc that in this problem the spheres are perfectly =Ins||c and,
from (c), that no kinetic energy is lost. We deduce that, in gener:

perfectly clastic impact causes no loss in kinetic energy. 1t (ollows m;u there
is no *bang’ when a perfectly elastic collision occurs.

(¢) It is assumed that the spheres can be modelled as particles and do not
distort on collision. This requires that the spheres are identical in size. If
they were not, the impulses might not act in the dircction of motion and so
would affect the momentum in a perpendicular direction also.
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EXERCISE 14b

In each question from 1 to 4, the diagram shows the velocities of two particles,
moving on a smooth horizontal surfuce, just before and just after they collide.

. The coefficient of restitution is J.

2 1
Justbefore impact Qb ——P10ms QP> amst

Atimpoct INs G——00——PINs

Justafet impact O—pPumst  @—Pyms

Find the values of «, v, and J.

2
Jostbeforeimpact 'O P> 165 O 3my !
[re— 0w o Prms
Find (2 thevalueof v (b) the coefficient of restitution.
Find also the kinctic encrgy lost at impact.
The cocflicient of restitution s 4.

1 25
Justbefore impoct | O——> Bms P TRR —

e wms 0 O——yms!

Find (@) u (b)) v (c) the kinetic energy lost at impact.

3 2%
Just before impact. O ——>1ms ! Sms G0
Justaferimpact wm s ' G——0 o—pims

Find (a) the coefficient of restitution  (b) the kinetic energy lost at impact.

A sphere A of mass 0.1 kg is moving with speed Sms~! when it collides directly
with a stationary sphere B. If A is brought to rest by the impact and e = .,
find the mass of B, its speed just after impact and the magnitude of the
instantaneous impulses.

When two spheres of equal mass collide directly at speeds of 4ms~' and 8ms '
in opposite directions, half the kinetic energy is Jost upon impact.
Prove that e = 3
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A car of mass 1000 kg is waiting at rest at traffic lights and its driver has
neglected to put the handbrake on. Another car, of mass 800 kg, approaches
from behind and, braking too late, is travelling at 25kmh~" when it hits the
stationary car, giving it an initial speed of 20kmh~".  Stating any assumptions
which you make, estimate the coeflicient of restitution between the cars.

A charged particle collides directly with a nucleus which is initially at rest. The
collision is perfectly elastic and the mass of the nucleus is 1840 times the mass of
the particle. What percentage of the particle’s initial kinetic energy is transferred
1o the nucleus?

Particles A and B both have mass m and are moving in the same direction along
aline, A with speed 3u and B with speed u. They collide and after the impact
they move in the same direction, A with speed u and B with speed ku. The
coefficient of restitution is e.

Sustbeforeimpact AO——> I BO——Pu
Just after impact Jy - — BO——P kn

(@) Show that ¢ =~

(b) Deduce that 1 €k <3,

(c) Find the loss of kinetic energy in terms of i, k and u.

A boy’s ball lands on a pond covered with thin ice. He attempts to push it to
the other side by throwing stones at it. The mass of the ball is 0.4kg and the
stones he selects all have a mass near 0.1 kg. The coeflicient of restitution
between the stones and the ball is 4 and he throws the stones so that they hit the
ball with a horizontal speed of 10ms~".

Find the speed of the ball after it has been struck by

(a) the first stone
(b) the second stone.

State any assumptions that have been made.

. A spacecraft, with the final stage of its rocket still attached, is travelling at

16000 m s~ when the rocket stage is detached by exploding a charge between it
and the spacecraft. The mass of the spacecraft is 4.5x 10'kg  and the mass of
the rocket stage is 8 10*ke.

‘The explosion gives an impulse of 225 x 10° N to each

Find the magnitudes and directions of the velocities of the two parts after
separation.
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A sphere of mass 0.2kg, moving at 10ms~", collides directly with another spherc,
of mass 0.5kg moving in the same direction at 8ms~". Their speeds after the
collision are u and v respectively and the coefficient of restitution is e.

(a) Find expressions for u and v in terms of e.

(b) Showthat ¥ <wu< % and find similar inequalities for ».

A particle A, of mass m moving with a speed u collides directly with a particle B,
of mass km, which is initially at rest. The direction of motion of A is reversed by
the impact. The coefficient of restitution is }

Giving answers in terms of m, k and u,
(a) find the speed of A after the impact.
(b) deduce that k>3

(¢) find the speed of B after the impact.
(d) find the impulse exerted by A on B.

A small sphere A, of mass m1, moving with speed ku (where k > 1) collides
directly with a small sphere B, of mass 3m, which is moving with speed u in the
same direction. The coefficient of restitution is §. Find in terms of k and u, an
expression for the velocity of A after the impact and hence show that if the
direction of motion of A is unchanged by the impact then k <9.

. Two particles P and Q, of masses m and 3m respectively, are connected by a light

elastic string of natural length / and modulus of elasticity 3mg. They are held at
rest on a smooth horizontal plane, with the string stretched to a length I, and
released from rest.

(a) By considering momentum, show that if ¥p and Vq are their speeds towards
cach other at any time between being reicased and colliding, then
Ve = kVq. where k is a constant, and state the value of k.

(b) By eons:denng energy find, in terms of g and /, their speeds just before
collisi

Given that they adhere to each other after the collision
(c) find their common velocity just after the impact
(d) find, in terms of m, g and /, the impulse cach exerts on the other at impact.
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MULTIPLE IMPACTS

Sometimes a collision between two objects leads to further collisions either with
another moveable object or with a fixed surface. In such cases each individual
impact can be dealt with by the methods already described. It is best to solve
one collision completely before starting on the next one, and to begin again
with a new set of diagrams. The positive direction can be chosen aftesh for
each collision - it need not be the same throughout.

Examples 14c

An unfortunate snooker player miscues when he strikes the cue ball, giving it a
speed of 8ms™!, so that it hits the brown ball directly and sets it moving towards,
and perpendicular to, the cushion. The direction of motion of the cue ball is
unaltered by the impact. After hitting the cushion the brown ball collides head-on
with the cue ball.

(a) Given that the coefficient of restitution between the balls is 0.9 and between
the ball and the cushion is 0.8, find the speed of the cue ball after its second
collisk

(b) Several assumptions have to be made. Name any three of them.
(a) lst impact (between the balls)
&—Dims &
100> e

Using conservation of momentum —
8m = muy + mv, =

Using the law of restitution
09x8=v-uw = T2=v-u

Adding gives 2w =152 = w =76 and w =04

=w+n

20d impact (with cushion)
o—Doimst 0P roms”
s
0 —Poimt wd—0
This i an externalimpact s0 momentum is not conserved.

Using the law of restitution,
08x76=w = w608
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3rd impact (between the balls)
B3——Poimst  oosms'G—8
I&—0o——> v

Using conservation of momentum +—

6.08m —04m = mus +mvy = S68 = uy+n
Using the law of restitution

09x648 =wm—vy = 582 =u-n
76 (3sf)

Adding gives 20 = 11512 = w =
The speed of the cue ball is 5.76ms~! (3 sf).

(

C4

The cue ball is not given any spin; the table and the cushion are smooth; the
balls are identical in size (so that the impulses are horizontal).  Also, as the
masses of the balls are not given, we must assume them to be equal.

Note that we used u for the specd of one ball and v for the other ball at every impact, then & suffix
denotes the impact that has just taken place, ¢.g. u is the specd of the cue bail after the first impact
« ‘ot appear as the cue ball was not involved in the second colliion). This notation is
particularly helpful when the number of impacts increases.

AblllAul’mmﬂlkgnmsmlaunmlhhodmnl:lpl.lntlnwlnklblllﬂ,nl
mass 0.2kg which is at rest, and strikes it directly with Tms™". Ball B then
moves with constant speed towards a third ball C, of mass 0.1kg, which is lyis
rest on B's line of motion. If the coefficient of restitution between A and B is 0.5
and that between B and C is 0.7, find the speed of each ball when no more collisions
can take place between them.

As several objects and several impacts are involved, we wil denote the specds of A, B and C by u, v and
the suflixes 1, 2, 3... to denote the number of the collision that has just taken place. It is
sometimes helpful to use s ctc. for the speeds before any impact has occurred.

1t collision (between A and B)

03 02k
o“‘_pumu o*
I & 00—/ ———ve
03k 21

Conservation of momentum —

03x1 =03 +020 =  3=3u+2n 0]
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Law of restitution
0Sxl=n-uw = 05=wn-u 2
0 +3x[2] gives 45=5n = =09 and u =04

2nd collision (between B and C)

02k olke

o —posmst @
" 1< oo > ————
02k o1kg
¢ &) g—b%
Conservation of momentum —
02x09 =020 401w, = 18=2n+w Bl
Law of restitution
07%09 = wp—n S 08 =wm-n “
B~ gives 117 =3 = 1 =039 and wy = 1.02

After the second impact the velocities of the balls are:

& posme &P o3omst P iomst
A’s speed is greater than B's so A will catch up with B and collide again.

3rd collision (between A and B)

03k 02k
O——P 04ms o——p owm!
x B
I&——00—>) —— e
03¢ 021
H“: H\u

Conservation of momentum —
03%04+02%039 = 03uy +02v = 0.198 = 03wy +02n  [5]
Law of restitution
0.5%001 = —u 6]
03x (6] + [5] gives 1995 =5y = v =039 and u = 0394

The velocities now are:
A B c
O——P03gtms —p 03wms o—p 1o2ms
Bs specd is greater than A's bul less than Cs 50 no further impacts can occur

The final speeds are:  A: 0.394ms™'  B: 0.39ms™  C: 1.02ms™



Coltisions, Law of Restitution 293

EXERCISE 14¢

In questions 1 to 3, two particles, A and B, lie on a smooth horizontal plane in a
line that is perpendicular to & vertical wall. Initially B is at rest when A strikes it
directly. B then goes on to strike the wall and rebounds.

ity AO——P  BOwmw
Justafier Itimpoct  AQ————P> BO— P
3

Justafir 2nd impact

. The mass of A is 1kg and it strikes B with speed 4ms'. B's mass is 8kg.

ke

1
itally  AQ-——f>ams'  BO

Justater Istimpact AQ———P> iy ms! BO—
Just after 20d impoct T E—-yY

Given that the coefficient of restitution at each impact is 4, find w, v and v,
Explain why there is no further collision.

The masses of A and B are 2kg and 1 kg respectively. A strikes B with speed
9ms". The coefficient of restitution between A and B is 1, and that between B
and the wall is .
21g e
ity AC——Poamst 8O
Jostsher gt AO———> ums! BO——Pvms!
Just after 20d impact ms G———OB

(a) Find the values of u; and v.

(b) Show that there is a second collision between A and B and find their
velocities after it. Is there a further collision?
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3. Particle A, of mass 1 kg, strikes B, also of mass 1kg, at 9ms~'. The coefficient
of restitution between A and B is |, and that between B and the wall is §.

4

Find the velocities of A and B after cach impact until no further collisions can
occur,

e |
Justeor e s impact AG-——P>9m " B

In questions 4 to 7 three small smooth spheres, all with the same radius, lic in a
straight line on a smooth horizontal plane. A is projected directly towards B
which is at rest and after that collision B goes on to collide dircctly with C, also

4. The masses of A, B and C are 1kg, 2kg and | kg respectively. The coeflicient of
restitution between A and Bis 1 and that between B and C is §.

| 24 '
iy A puome 56 e

Jutater ltimpact O——Dumst O——Pumst @

Just afes 20d impact O—Pums! o ——pums' g Powms

Find the velocities of each sphere after each possible impact.
5. The situation just before the first collision is shown in the diagram.
25 1 21
AO——Psms! BO (atrest) C® (atrest)

At each impact the coefficient of restitution is }. Find the velocities of A, B and
C after cach of the collisions that can occur.

6. The masses of A, B and C are mkg, mkg and kmkg respectively and A’s initial
speed is ums~. At each impact the coefficient of resttution is 1.

kg ke ke
Jostbeforethe frst impact AO~———P>ums ! BO @y Co
(a) Find, in terms of , the velocities of A and B after the first collision.

(b) Find, in terms of u and k, the velocities of B and C after the second collision.

(c) State, with reasons, whether there will be further collisions if
() k>1 (i) k<l
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Oblique Collision Between Two Moving Objects

If two spheres, of equal radii, are free to move on a horizontal surface and
collide when their velocities are not in the same straight line, the two
impulses that act on impact are perpendicular to the common tangent of the
spheres and so lie on the linc joining the centres of the sphercs.

Therefore, for each sphere there is a change in momentum (and hence speed)
along this line of centres but not perpendicular to it.

The unchanged components can be imorpomwd in a working diagram; then
along the line of centres the calculation is exactly the same as for dircct

ie. conservation of momentum and the law of restitution can be
applmd in this direction.

Note that the line of centres is horizontal because the spheres have equal
radii.

‘Two smooth spheres, A of mass m and B of mass 3m, are free to move on a
horizontal table. A is projected towards B, which is at rest, and strikes B with

2u. On impact the line through theic centres makes an angle of 60° with
the velocity of A before impact.

If the coefficient of restitution between the spheres is 4 find, in terms of u, the
magnitude and direction of the velocity of each sphere just after impact.

‘We will resolie the velocity of A along and perpendicular 10 the line of centres. B i struck along the line
of centres so after impact it moves in this direction.
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OO0 DO~

S
Just before impact Aimpact Just after impact

Conservation of moment — gives mu+0 = mu; + 3my,

= PR m
Law of restitution gives tu=n-w @
m+pl fu=dn

and  w
i of e 8
PO g e o e 1 obl
For A, the velocity is of magnitude uy/3 g

perpendicular to the line of centres.

. Two smooth spheres, A and B, with equal radii, lie on a horizontal plane. The mass
of B is twice that of A. The spheres are projected towards each other and
collide when the line joining their centres is in the direction of the unit vector i. The
velocity vectors of A and B just before impact are represented by the vectors 21+
and i—j respectively. If the coefficient of restitution is }, find their velocity
Vectors just after impact. Find also the Kinetic energy lost due to the collision.

Lt the mass of A be m so that the mass of B is .

Just before impact Avimpact Just aftr

Conservation of momentum —» gives
Wt 2m = k2 S A=uilde m
Law of restitution gives

1e-D=v-u = 2
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U+@laves — 3=3

v=} and u=1

]
S @i
?—D

After impact the velocity vector of A is i +]

and the velocity vector of Bis i —j

The velosky componest i the dirston of | ar sachanged by the impact 1, fd te o in KE,
ouly the componcats in th

Initial KE = $m(2)'+(2m) (1) = 3m
Final KE = {m(1¥ +}(2m)(3)* =
Lossin KEis {m

EXERCISE 14d

A smoothsphere is projcted along horizontal ground and colides obliguely with
a vertical wall. It hits the wall when moving at o the
wall.Find the velocity of the sphere just after impact with the wall if

@ e=4 ®e=1 (©e=0

A smooth sphere travelling on horizontal ground impinges obliquely on a vertical
wall and rebounds at right angles to its original direction of motion.
sphere is moving at 60° to the wall before impact, find the value of .

Two smooth spheres A and B of equal radius and mass are moving on a
horizontal table with velocity vectors i+2j, ~3i+j respectively and collide
when the line joining their centres is parallel ot Find e velocity vectors of A
and B afe the impact if

(a) e (b) e =1, (c) the collision is inelastic.

Two smooth spheres A and B of equal radius and mass lie on a horizontal surface.
Bis at rest and A is projected towards B with velocity vector 4i+3j and they
collide when their line of centres is parallel to the vector i._If B moves off with
speed 3 units, find the value of e and the velocity vector of A after impact.
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A red ball is stationary on a rectangular billiard table OABC. It is then struck
by a white ball of equal mass and equal radius with velocity u(~2i + 11j)
where i and j are unit vectors along OA and OC respectively. After impact the
red and white balls have velocities parallel to the vectors —3i+4j, 2i +4j
respectively. Prove that the coefficient of restitution between the two balls is 1.

Two uniform smooth spheres, each of mass m and radius a, collide when moving
on a horizontal plane. Just before impact the spheres are moving with speeds 2u
and u as shown in the diagram, their centres moving in parallel lines which are at

a distance $a apart. The coefficient of restitution between the spheres is }

(a) Find the angle 0
(b) Find the speeds of the spheres after impact
(¢) Show that the angle between their paths is then approximately 27°.

A ball is thrown down towards a smooth horizontal plane. 1t strikes the plane
when it is travelling at 4y/2ms~! at 45° to the plane. If the coefficient of
restitution between ball and plane is §, find

(a) the height above the plane to which the ball rises after impact (use g = 10),
(b)  the time for which the ball s in the air before it strikes the plane again,

(c) the distance between the first and second impacts with the plane.

A smooth sphere of mass  sliding on a horizontal plane collides obliquely with
a sphere of mass 2m and of equal radius at rest on the plane. At the moment of
impact the velocity u of the moving sphere makes an angle a with the line of
centres, and after impact the speed of the heavier sphere is (3)u cos @. Find the
coefficient of restitution between the spheres.

. A gas molecule having a velocity 300ims™" collides with another molecule of the

same mass which is initially at rest. After the collision the first molecule has
velocity 2251+ 130jms~. Find, in the form ai+bj, ~the velocity of the
second molecule after the collision.
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MOTION IN A HORIZONTAL CIRCLE

ANGULAR VELOCITY

Consider a particle that moves round the circumference of a circle with centre O.
If the particle moves from a point P on the circumference to an adjacent point Q
and the angle POQ is 0 radians, then the rate at which 0 is increasing is d0/dz.
‘This is the angular speed of the particle and is often denoted by the symbol .

el
a‘

»

If we also state the direction of rotation ( clockwise or anticlockwise ), then we are
giving the angular velocity of the particie.

We use a_positive sign to denote the anticlockwise direction of rotation and @
negative sign for clockwise rotation.

5 Con

For example, the seconds hand of a clock rotates through | revolution in
1 minute s0 we can say:

its angular speed is 1 revmin™*
and its angular velocity is I revmin~! clockwise, or —1revmin™'.
Angular velocity can be measured in revolutions per second, but is more usually
given in radians per second. Either of these units can be converted to the other
by using
| revolution = 2r radians.
302
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EXERCISE 15a

. Express  (a) 0.2 radians per minute in revolutions per hour

(b) 100 revolutions per minute in radians per second.
Find the angular velocity, in radians per second, of the minute hand of a clock.

Find the angular speed of the earth about its axis
(a) in revolutions per minute  (b) in radians per second.
A disc is rotating about its centre with angular velocity @rads™'. Point P is on

the disc at a distance of d metres from the centre and has speed v metres per
second.

(@) ®=6 d=02 findv.
(b) v=5 d=04; findo.
© v=10, =25 findd.

A fairground Big Wheel carriage is 8 m from the centre of the wheel, which is
rotating at 10 revolutions per minute. Find the speed of the carriage.

Find the speed, in kmh~", of a point on the equator of the carth, assuming the
equator to be a circle of radius 6400 km.

DIY power drill has a top rotational speed of 2500 revolutions per minute. A
dill bit of diameter 3mm has been inserted. Find the speed of the cutting edge
of this drill.

A playground roundabout has a diameter of 3m. A man puts his child onto it at
a distance of 1 m from the centre and runs round pushing the edge of the
roundabout with a speed of 24ms~".

(a) Find the angular speed in rads™
(b) Find the speed with which the child is moving.

At a well a bucket is attached to a thin rope

which is wound round a cylinder. The

bucket is raised and lowered by turning the

cylinder. The cylinder has a radius of 10cm.

(a) 1If the cylinder is turned at 1 revolution
per second, at what speed, in ms~", will
the bucket ascend?

(b) The well owners decide to change the
cylinder so that when it is turned at
Irev/second, the bucket will ascend at
Ims~'. What should be the radius of
the new cylinder?

State any assumptions you make in solving this problem.
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ACCELERATION

1f the velocity of a moving object is changing, that ob}ec\ has an acceleration. As
velocity is a vector, it can change in magnitude or in direction or both. It is easy
to accept that changing speed involves acceleration but it not so easy to see that,
for example, a car going round a corner at constant speed is accelerating because
its direction is changing.

A change in speed is caused by a force that acts i the direction of motion of the
object to which it s applied.

;.‘——bv
——>>a

A force of this type cannot produce a chang: in the direction of the velocity so, if
no other force is acting, the object continues to move in a straight line. The
acceleration produced is a change in speed, i.c. a change in the magnitude of
the velocity.

This type of acceleration was covered in detail in Chapter 2.

A force that s perpendicular to the direction of motion of an object will push o
pull the object off it previous line of motion but cannot alter the speed.

The acceleration in this case is a change in the direction of the velocity and the
object therefore moves in a curve of some sort; the actual curve described
depends upon the particular force acting.

A force that is neither parallel nor perpendicular to the direction of motion of an
object has a component in each of these directions. Therefore it causes a change
both in the speed and in the direction of motion of the object and the object
‘moves with varying speed on a curved path.
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MOTION IN A CIRCLE WITH CONSTANT SPEED

‘The direction of motion of a particle moving in a circle is constantly changing, so
there must be a force acting perpendicular to the direction of motion of the
particle at any instant.

If the particle is moving with constant speed there is no force acting in the
direction of motion, i.c. no tangential force.

At any point on its path the particle is moving in the direction of the tangent at
that point. A force that is perpendicular to this direction acts along the radius at
that point. Further, because it is moving the particle from the tangent on to the
circumference, the force must act inwards along the radius.

‘The force that produces circular motion with constant speed
is at any instant acting radially inwards on the particle,
producing a radial acceleration.

The Magnitude of the Radial Acceleration

Consider a particle moving at constant speed v, round a circle of centre O and
radius 7. Suppose that, in a time o, the particle moves from a point P to a
nearby point Q, through a small angle 66 measured in radians. For reasons
of clarity, 86 is not drawn as a very small angle in the diagram below.

The length of the arc PQ is 60 and, as
this arc is covered in time ot at speed v,
its length is also vét.

Therefore  réf) = vét

= ==
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Taking the earth to be a sphere of radius 3200 km
6400 km, calculate the acceleration, in ms~2, B
due to the carth’s rotation of

(a) aperson A who is standing on the A

equator
(b) a person B who is at a point which is

3200km from the earth’s axis of rotation.
Show on a diagram the direction of the acceleration in each case.
An aicraft waiting to land at a busy airport s circling at a constant height, at

500kmh~'. The passengers experience an acceleration of 0.4gms™2. Find the
radius of the circle.

. A machine is designed to test astronauts in conditions of great acceleration.

The astronaut is strapped into a chair which is then moved round in a horizontal
circle of radius Sm. If he can withstand accelerations up to 9gms~2, what is the
‘maximum permissible angular velocity?

Passengers on a fairground ride are whirled round in a horizontal circle of radius
6m, experiencing a radial acceleration of 15ms 2. At what speed are they moving?

. A quarter-scale railway line is to be laid for a model train. It has been decided

that the children who ride on the train should not be subjected to a radial
acceleration greater than 8ms~2. By treating the bends in the line as arcs of
circles, find the speed limit you would recommend if the radius of the sharpest
bend is 10m.

MOTION IN A HORIZONTAL CIRCLE

We know that when a circle is described at constant speed, there is an
acoeleration of constant magnitude '/r or ra? towards the centre of the
circle and no acceleration tangentially. There must therefore be

(a) no tangential force acting

(b) a force of constant magnitude acting towards the centre.

‘These conditions can be achieved when the circle is in a horizontal plane because
the weight of the particle, being a vertical force, has no component in the
direction of motion of the particle. So it is possible for the circular motion to
be performed at a constant speed. (In a vertical plane, on the other hand, as
a particle moves in a circular path the tangential component of the weight
varies, causing the speed of the particle to vary.)

There are many ways in which the necessary force towards the centre can be
provided, eg. by a rotating string with one end fixed at the centre or by
friction with the road surface as a car turns round a bend. Some of the
possibilities are illustrated in the following examples.
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Examples 15¢

One end of a light inelastic string of length a s fixed to a point O on a horizontal
plane. A particle P of mass m, attached to the other end of the string, is given a
blow which sets it moving in a circle on the plane, with constant angular velocity .

(a) Find the tension in the string and the force exerted on P by the table.
(b) Explain an assumption that has been made in the question about a certain
ible force.

R,
T
P
me
blan Sertical section

Vertcally there is no acceleration; horizontally there is an acccleration of au? towards O.

(a) Resolving ! R-mg=0 n
Using Newton's Law — T = mao? 2
The tension is maw® and the reaction exerted by the table is mg.

(b) As P travels with constant speed it is assumed that there is no tangential
force, i.e. that there is no friction between the particle and the plane.

A small block A, of mass mkg, lies on a horizontal disc which is rotating about its
centre B at 3rads' and A is 0.8m from B. If the block does not move relative to
the disc, find the least possible value of i, the coefficient of friction, between the
block and the disc.

The frictional force F acing on A is towards the centre of the circle because A has t0 be given a central
tioa in order to trave in a circle; there is no friction tangentially because A has no tendency to
move in that direction. Also, as the block s small we treat it as a parici.
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Resolving | R-mg=0 = R=mg
Using Newton's Law — F=m? = F=m03)0) =7T2m
Now F<uR =  12mo? < pmg

72
ie. we
72 .
the least value of s =5 iie. 0735 (3sf).

. Katie is hoping to prepare her pony, Ben, for showing in a ring. As part of the
training programme she is holding one end of an extensible rope and the other end s
fastened to Ben's bridle. The rope has an unstretched length of 8.6m and a
modulus of elasticity 740N,

(a) Ben is very obediently trotting at a steady speed of 2.5ms ! in 1 circle of
m.
Find (i) the tension in the rope (i) Ben’s mass.

(b) The rope ceases to obey Hooke's Law if the extension exceeds 3m.
Find the greatest speed that Ben should be asked to achieve.

‘assume that Ben's hooves do not create any frction radially.
s these assumptions are fairly rough, answers corrected o 3 s are not appropriate.

(@) A

(i) The rope is extended by 2.4m therefore Hooke's Law, T = % gives

The tension in the rope is 210N (2 sf).

. . . » . 625
(ii) Ben’s acceleration towards K is given by s soitis T ms~*.
Now using Newton's Law, T = ma, gives
:mx%% = m=3634..

Ben's mass is 360kg (2 s1).

206.5...
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(b) v

740 x 3
86

When the extension is 3m, the tension becomes N

. _m? Tr _ T40x3x(86+3)
Then using 7= ™ gives ¢t = 1= SRR R loa )
= v=287...

Itis dangerous to give the speed correcied 10 21, as that increases the result slighty. So instead we will
truncate the calculated figure to 2 sf.

Ben should not exceed a speed of 2.8ms ™"

EXERCISE 15¢

In questions 1 and 2, one end A of an inelastic string AB is
fixed to a point on a smooth table. A particle P is attached
1o the other end B, and moves on the table in a horizontal
circle with centre A.

1. The particle is of mass 1.5kg and its speed is 4ms
is 2.4m, find the tension in the string.

+ If the length of the string

2. The mass of the particle is 8kg and it is moving with speed Sms™". Find the
length of the string given that the tension in it is 12N. .

Questions 3 and 4 are about a situation similar to that described above, except
that the string AB is elastic.

3. The elastic string AB has a natural length of 2.5m P s ie)
and its modulus of elasticity is 40N. The mass of
Pis Skg. If the string is extended by 0.5m, find
the speed of P.

4. When P has a mass of 1.5kg, and is moving with a speed of 6ms -, the string is
extended by 0.4m. Given that the natural length of the string is 2m, find its
‘modulus of elasticity.

5. A circular tray of radius 0.2m has a smooth vertical rim round the edge. The
tray is fixed on a horizontal table and a small ball of mass 0.1 kg is set moving
round the inside of the rim of the tray with speed 4ms™'. Calculate the
horizontal force exerted on the ball by the rim of the tray.
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A particle P is moving on the inner surface of a smooth hemispherical bowl with
centre O and radius 2a. The particle is describing a horizontal circle, centre C,

with angular speed (/5.
Find

(a) the magnitude of the force exerted on P by the surface of the bowl
(b) the depth of C below O,

(

B

For the forces acting on P,

Resolving | gives

Recos0—mg =0

Newton's Law — gives

R sin 0 = mre?
= m2asin 0) ()
- R = 2mg ]

‘The force exerted on P is 2mg.

(b) In AOPC, OC = 2acos 0
From 1] and [2], cos = §
oC =a

The depth of C below O is a.

A smooth ring R, of mass m, is threaded on to a light inextensible string of length
L14m. The ends of the string are fixed to two points A and B, distant 1m apart in
2 vertical line. When the ring is set rotating in a horizontal circle with angular
speed o radians per second, the distance of the ring from the upper fixed point, A,
is 0.8m.

(a) Show that ARB is a right angle and hence write down the values of sin 0 and
cos 0 where 0 is ABR.

(b) Find the radius, rm, of the horizontal circle.
(c) Find the value of w, corrected to 2 significant figures.
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The mass of the particle P is 2kg and P
is rotating in a circle of radius 0.3m.
Given that the string is inclined at 25° to
the vertical find

(a)  the tension in the string

(b)  the angular speed of P.

The particle P is rotating in a circle with an angular speed of Srads~'. Find the
depth below A of the plane of this circle.

Questions 4 and  are about a situation similar to that described for questions |
10 3, except that the string AB is clastic.

The mass of the particle P is 2kg. The I3
elastic string AB has a natural length of 0.4m

|
and its modulus of clasticity is 12N. 1 \\osm
Given that when P rotates in a circle the 1

extension of the string is 0.1m find \

(8) the tension in the string ! 1o
(b)  the angular speed of P. 24

The mass of the particle P is 0.5kg and P s rotating in a circle with an angular
speed of 2rads~". The modulus of elasticity of the string AB is 3N.

Given that the string is inclined at 60° to the vertical find

(a) the tension  (b) the extended length  (c) the natural length.

A particle of mass m, attached to the end A of a light incxtensible string
describes a horizontal circle on a smooth horizontal plane with angular speed o.
“The string is of length 2/ and the other end B is fixed,

(a) to a point on the plane

(b) to a point which is at a height / above the plane.

Find, in each case, the tension in the string and the reaction between the particle
and the plane, giving your answers in terms of m, I, g and o.
One end of a light inextensible string of 4
length 3a is attached t0 a fixed point A, =
and the other end to a point B which is

at a distance 2a vertically below A. 221 )
A small bead, P, of mass m, is fastened v

to the midpoint of the string and moves in

a horizontal circle with speed

(a) (i) Find the sine of the angle 0 between the sinng and the horizontal.
(ii) Express the radius of the circle in terms of 6.
(b) Find the tensions in the two halves of the string.



*10.

. Two boys decide to add interest to a train
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Suppose that, in question 7, the bead is threaded on to the string (ot fastened )
and moves in a horizontal circle with centre R. The string is taut and BR = % a.
Find the speed of P.

A boy has a ball of mass 0.15kg on an elastic string of natural length 30cm. He
whirls the ball in a horizontal circle of radius 25cm with the string at 50° to the
vertical. Find

(a) the tension in the string
(b)  the speed of the ball

(c) the extended length of the string

(d)  the modulus of elasticity of the string.

A powered model aircraft of mass 0.25kg is »
attached by a wire of length 10m to a point A on

the ground. The plane flies in a horizontal circle,
of radius Sm, centred above the point A. It is
rotating at 12 revolutions per minute. The motion
through the air produces a vertical lift force,

P newtons, on the plane. Find

(a) the angle between the wire and the ground
(b)  the tension in the wire \
(¢) the lift force P. A

journey by doing an experiment with a
pendulum, which they hang from the luggage
rack. When the train has constant velocity the
pendulum hangs vertically, as shown in the
diagram. When the train goes round a bend at
vms~!, the pendulum deviates through an angle
0 from this position.

Consider the bend to be an arc of a circle. Show
on a diagram the position of the pendulum when
the train is going round the bend shown.

The boys can calculate 0 by measuring the distance of the pendulum bob, B,

from the side of the train. They intend to cstimate the radius, r metres, of cach

bend from a map and use r and 0 to calculate .

(a) Obtain a formula for v in terms of r and 0.

(b) On one bend they observe that 0 = 5° and estimate r as 800m. Find, in
kmh~, the value they obtain for the speed of the train.

(c) I the train accelerates on a straight section of track, describe how the
pendulum behaves.
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EXERCISE 15e

In this exercise use a mathematical model to solve the problems. Describe the
model, state the assumptions that are made and comment on their validity.

A space station is planned in the shape of a wheel.
‘The astronauts are to live and work in the space

corresponding to the position of a tyre. The

station has an overall diameter of S0m. To

provide a simulation of gravity the station will be

made to rotate about its centre C. Find the

angular velocity necessary to produce an

acceleration of 9.8ms 2 at a point 25m from the
centre, e.g. point P on the diagram.

. An object of mass 0.3kg is placed on a horizontal turntable, which is rotating at

a constant rate, at a distance of 0.2m from the axis. The coefficient of friction
between the object and the turntable is 0.4. Find the greatest possible value for
the angular velocity if the object is not to slip outward from its position.

A car of mass 800k is traveiling round a bend of radius 150m.

(a) Find the frictional force on the tyres when the speed is 30ms

(b) The coefficient of friction is 0.7. Find the maximum speed at which the car
can go without skidding outwards.

A van is carrying a parcel of mass Skg. When the van goes round a corner the
parcel, provided that it does not slip, follows a path which is to be treated as an
arc of a circle.
(a) If the radius of the arc on which the

parcel moves is 3.8m and the van is

comnering at 30kmh !, find the frictional

force on the parcel, assuming that it does

not slip.

(b) In fact parcels have been sliding about and ot}
it is decided to provide a rougher surface 8!
inside the van. Find the least coefficient o8>

of friction for which the parcel described
above will not

(c) A surface coating is provided for which
the coefficient of friction is 2. If the driver
takes a bend at a speed of SOkmh~!, with
the parcel moving on an arc of radius
10.5m, will the parcel now slip?
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A ride at a funfair consists of cars which are made to move in a horizontal circle,
of radius 4m, at a rate of 0.3 revolutions per second. A girl of m:

riding in a car. Find the horizontal and vertical components of the force exerted
by the car on the girl.

On a fairground ride, people stand against
the sides of a cylinder, of radius r metres,
which then starts to rotate about its axis
which s vertical. When a suitable angular
velocity wrads™! is reached and maintained
constant, the floor descends and the people
are held in place by the friction between them
and the wall. The coeflicient of friction is j.
A man of mass m kilograms takes the ride.

(a) Find the normal reaction force from the wall on the man.
(b) Find the frictional force necessary to prevent him from sliding down the wall.
(c) Find the least angular speed at which the floor can be lowered.

(d) Evaluate this angular speed for the case r = 2.5, = 0.4, and find the
speed with which the man is then moving.

Aaron, Beth, Carol and Dipak are skating.
They hold hands, in this order, with their Awm Ben  Cel  Dipsk

arms outstretched. They are of similar size.

Their average span from left hand to right

hand is 150cm and each of their masses is

approximately S0kg. Aaron stays on a spot

and the others skate round him in circles, S Mt Smee el S

with the same angular velocity and staying in

a straight line along a radius.

(a) If the angular velocity is wrads™", find the speeds of Beth, Carol and Dipak
in terms of o

(b) By modelling the skaters as particles and assuming that they are not using
their skates to provide any force towards the centre, find in terms of o,
(i) the force T; which Carol exerts on Dipak  Awwn Betn  Car  Dipak
(ii) the force T3 which Beth exerts on Carol >sersers
(iii) the force Ty which Aaron exerts on Beth.

A girl is swinging on a rope, of length Sm, attached to a swivel on top of a pole.

It takes her s to complete a circle around the pole. Her mass is 40kg. Find

(a) the tension in the rope
(b)  the angle between the rope and the pole

(c) the radius of the circle.
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BANKED TRACKS

‘When racing cars, cycles, motorbikes, etc. are rounding the bends of a track at high
speeds the available frictional force alone is unlikely to be sufficient to prevent the
the track soa’ force has
“Thisis done by banking the track, .. by raising the outside of the curve above the
level of the inside. This has the effect of ‘tipping’ the normal contact force that the
ground exerts on the vehicle, away from the vertical so that it has a horizontal
component. This component then forms part of the resultant force towards the
centre. At the same time, however, only part of the frictional force (the
horizontal component ) now acts along the radius.

Consider a car of mass m kg, racing on a track that has curved bends with a radius of
rmetres. The curved sections are banked at an angle 8 (i.c. at 8 to the horizontal ).

0

If the car travels round the bends at a speed of v metres per second, such that a
Irictional force acts down the slope, the following relationships can be formed.

i of curve.

Resolving | Rcos 0~ Fsin—mg =0
Newton's Law — Rsin 0+ Fcos § = mv'/r

Also F<pr

These equations provide the means of solving various problems, c.g. the
‘maximum possible speed for a given angle of banking can be found.

In particular the angle at which the track should be banked for a specified design
speed (ie. the speed at which there is no tendency to slip and therefore no
frictional force is needed ), can be estimated.
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Note that any such values can only be estimates, as a number of assumptions
have been made, e.g. the car is modelled as a particle;

the difference between the outer and inner radius is ignored;

constant speed is assumed round the curve.

When a car moves at the design speed
it has no tendency to slip sideways on
the track so there is no friction up or
down the banked track. o friction

If the car’s speed is higher than the
design speed it tends o slip up the
track and friction therefore acts down
the track, i.e. it has a component
towards the centre of the curve.
F

I the car’s speed is lower than the F
design speed it tends to slip down, and

friction therefore acts up the track,

iie. it has a component away from the

centre of the curve.

Bends on a railway track are dealt with in a similar way, the outer rail being
raised above the level of the inner rail. The difference is that no friction is
involved in this case, as movement up or down the banked track is prevented
by the lateral force exerted by the rails on the flanges of the wheels.

=

tendency 1o tendency o
move inwards move out

In the case of trains moving round banked curved iracks it is much morc
reasonable to assume constant speed and to ignore the difference in radii as
cither radius is very large.
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Examples 15f

. A curved section of a race track, where the radius is 120m, is banked at 40°. By
‘modelling a car that drives round the track as a particle, show that the design speed
for this section, ¥'ms~", is independent of the mass of the car and find its value.

IF there is no tendency 1o sip there is no lateral frictional force

Resolving] R cos 40° — mg = 0 m
2
Newton'sLaw—  Rsin 40° = m-e @
120

Rsindo® _ my? v
Rcos40® 120 120g

= 120g x tan 40° which is independent of m.

The design speed is 31ms ' (2sf) ie. 110kmh™' (2sf)

Hence

mg =

. A railway li round a Ttis expected that
trains will travel over this section of the track at a speed of 45 kilometres per hour. Find
(a) the foree exerted by the outer rail on the flanges of the wheels if the track is

level and the mass of the train is 35 tonnes.

(b) Mkrgm-lwhkhlbenul:rnllsh-nl‘lh:umdlbmcﬂummlln
re that there is no pressure on the wheel flanges at the expected speed,
Fiven that the gauge of the tack is 1.5m (. the ralls are 1.5m part.

0 centreof curve.
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If the car in Example 1 is of mass 840 kg and drives round the curved section of the
track at 36ms", find the magnitude and direction of the lateral frictional force
exerted by the track on the car.

36ms~ is grater than the design speed of 31.4ms~ so friction acts down th rack.

N

840g

Resolving] R cos 40° — F sin 40° - 840g = 0

i Rcos 40° ~ Fsin 40° = §232 n
2
Newton's Law — Rsin 40° + F cos 40° = 840 x %
= 9072 2]
[2] % cos 40° — [1] x sin 40° gives

Foos® 40° + F sin’ 40° = 9072 cos 40° — 8232 sin 40°
F(cos® 40° + sin® 40°) = 1658

But cos? 40° +sin? 40" = |
F=1700 (251)

‘The frictional force is 1.7kN acting down the banked track.

EXERCISE 15f

In this exercise give numerical answers corrected (o 2 significant figures.

. A train of mass 50 tonnes travels at 18ms~' round a bend which is an arc of a

circle of radius 1.5km. The track is horizontal.

(a) Find the force exerted on the side of a rail.

(b) On which rail does this act?

A locomotive is travelling at 80kmh~', on a horizontal track, round a bend

which is an arc of a circle. The locomotive has a mass of 10 tonnes. The lateral
force exerted on a rail by the wheel flanges is 8000 N.

(a) On which rail is this force acting?
(b) Find the radius of the bend.
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A road banked at 10° goes round a bend of radius 70m. At what speed can a
car travel round the bend without tending to side-slip?

On a level section of a race track a car can just go round a bend of radius 80m
at a speed of 20ms™" without skidding.

(a) Find the coefficient of friction.

On a section of the track that is banked at an angle 0 to the horizontal a speed
of 30ms™" can just be reached without skidding, the coefficient of friction being
the same in both cases. Taking the value of g as 10,

cosf+2sin0 _ 9

(b) show that TeosT—sin® = §

(¢) find 6 to the nearest degree

A circular race track is banked at 45° and has a radius of 200m. At what speed
does a car have no tendency to side-slip? If the coefficient of friction between
the wheels and the track is %. find the maximum speed at which the car can
travel round the track without skidding.

An engine of mass 80000kg travels at 40kmh ! round a bend of radius 1200m.
If the track is level, calculate the lateral thrust on the outer rail. At what height
above the inner rail should the outer rail be raised to eliminate lateral thrust at
this speed if the distance between the rails is 1.4m?

A race track has a circular bend of radius S0m and is banked at 40° to the
horizontal. If the coefficient of friction between the car wheels and the track
is 4, find within what speed limits a car can travel round the bend without
slipping either inwards or outwards.

A bend of a race track is banked at 45°. The coefficient of friction between the
wheels of a car and this track is }. The maximum speed at which the car can go
round the bend without skidding is V.

(a) Find the radius of bend in terms of V.
(b) Find the design speed in terms of V.

The ‘wall of death’ at a fairground is in the form of the curved surface of a
cylinder, of internal diameter 8 m, with s axis vertical. A motoreyclist rides
round the wall on a path which is a horizontal circle. The coefficient of fri
between wall and tyres is 0.9. Find the minimum speed he must maintain to stay
on his circular path without slipping down the wall. State any assumptions you
make in modelling this problem.




CHAPTER 16

MOTION IN A VERTICAL CIRCLE

MOTION ON A CURVE WITH VARIABLE SPEED

We saw in Chapter 15 that when a particle describes a curved path at constant
speed, the particle has no acceleration in the direction of motion, ie. no
acceleration in the direction of the tangent to the curve at any instant. There
is, however, an acceleration perpendicular to the direction of motion which is a
‘measure of the rate of change of the direction of the velocity.

If we now consider motion on a curve when the speed is nor constant it is clear
at

(a) again there is an acceleration component perpendicular o the tangential
direction,

(b) there is also an acceleration component in the direction of motion which is a
measure of the rate of change of the magnitude of the velocity, and which
can be expressed as dv/dt (or ¥).

e

In order to produce these two acceleration components, the force acting on the
particle must also have two components that are in the directions of the
acceleration components.

331
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This is the situation for a particle describing a curved path in a vertical plane; the
weight always acts vertically downwards so, as the direction of motion changes,
the weight can be resolved into two components, one along, and one
perpendicular to, the direction of motion.

mgcos 0
mg sin 0
mg

MOTION ON A CIRCLE IN A VERTICAL PLANE

When the path is a circle we know that the component of acceleration towards
the centre is v'/r or rot.

There are various ways by which an object can be made to travel in a vertical
circular path. In some cases an object is controlled by a machine which
involves technical knowledge beyond the scope of this book. In other cases
the particle, once it is set moving, moves under the action of its own weight.
1t is situations of this type that we deal with here.

Motion Restricted to a Circular Path

Consider di d 0, thatis
fixed in a vertical p]ane ‘We will model the bead as a paruclc and the wire as being
friction-free. Suppose that the bead has been set moving round the wire so that it
passes through the lowest point A of the wire with speed u and that the speed of
the bead is v when it reaches a point B on the wire, where angle AOB is 0.

@ o)
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Diagram (i) shows the forces acting on the bead, and the acceleration
components produced, as the bead passes through B.

Newtons Law, F = ma, can beapplied towards O and along the tangent at B.
Using Newton's Law at B gives

'\R—mgcosll:% n
J mgsin0 = m% ]

The only external force that acts on the bead, other than its weight, is the normal
reaction R. Now R is always perpendicular to the direction of motion so it does
no work. Therefore conservation of mechanical energy can be applied and
diagram (i) is useful here.
Taking the PE to be zero at the level of the centre O, we have:

Total MEatAis  tmud —mga

Total ME at Bis v — mga cos 0
Using conservation of mechanical energy from A to B gives

Lmé - mga = Lm? — mga cos 0 ]

These equations provide a solution to most problems, in fact equations 1] and [3]
are very often all that are required.

Note that the level of A could have been chosen as the PE zero level, but
‘measuring heights relative to the level of the centre is often more straightforward.

Noteal he wirei B i o

complete circles or it can oscillate through an arc. In either case the path is at all
times on a circle because the bead is physically prevented from leaving the wire.

Note also that the normal reaction acting on the bead can be either towards the
centre of the circle or away from it, e.g.
&

mg
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. The bead is projected from the lowest point of
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EXERCISE 16a

Questions 1 to 4 are about a bead P, of mass 1 kg, threaded on to a smooth
circular wire, of radius 0.2m, that is fixed in a vertical plane.

the wire with a speed of 3ms~". Find the
speed of P, vms™', when

(@) 0=60" (b) 0=90" (c) O=180°

For each part of question 1, find the value of R where R newtons is the normal
reaction of the wire on the bead. State in each case whether R is acting towards
or away from the centre.

P is slightly displaced from rest at the highest
point. Find v when
(a) 0= 60" (b) 0 =90°
(c) 6 = 180" (d) 0= 360"

P is projected from the lowest point at 2.5ms ™.
Find the angle through which OP has rotated when
the reaction between the wire and the bead is zero.

A particle P is fastened to one end of a light
rod of length 1.4m. The other end of the rod is
smoothly pivoted o a fixed point O. The rod
is released from rest when OP is horizontal.

Find the speed of P, vms~", when OP has
rotated through  (a) 60°  (b) 90°.

2ero velocity

If in question § the mass of P is 1 kg, find for each angle the force 7 newtons
that the rod exerts on the particle, stating whether the force is a tension or a

. thrust.
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MOTION NOT RESTRICTED TO A CIRCULAR PATH

So far we have considered situations where all the motion took place on a circular
path, whether complete circles or oscillations were performed. There are other
cases however in which an object begins by moving on a circle but then moves
on a different path. Consider, for example, a particle fastened to one end of
an inelastic string whose other end is fixed.

If the particle is set moving in a vertical plane it
may, as in the cases considered earlier, rotate in
complete circles

or it may oscillate through an arc that is less than
a semicircle.

But there is now a third possibility. If the string .
goes slack during the motion, the particle will ‘fall

inside’ the circular path and travel for a time L4
under the action only of its weight.

The reason for the third case is that the string, unlike a light rod, cannot exert a
thrust; it can only pull. So motion in a circle at the end of a string can take place
only as long as the string is taut, i.e. as long as the tension, T, is greater than, or
equal to, zero. At the instant when the particle is about to leave its circular
path, T =0.

If the particle is to describe complete circles we must ensure that 7> 0 when
0 = 180°. (It is no longer sufficient to say that v>0 when 0 = 180°,
because this is true even if the particle has left the circular path.)

A particle set moving on the inside of a circular surface gives rise to a similar
situation. The particle moves on a circle as long as it is in contact with the
surface, ie. as long as there is a positive inward contact force, R. If the
particle loses contact with the surface its path falls inside the circle as shown
above. At the point on the surface where contact is lost, R = 0.

If there is to be no loss of contact, i.e. complete circles are to be performed,
then R>0 at the top.
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Examples 16b

. A particle of mass m is attached to one end of a light inelastic string of length @
whose other end is fixed to a point O. When the particle is hanging at rest it is
given a horizontal blow which causes it to begin to move in a vertical plane with
initial speed V. Find the ranges of values of ¥ for which the particle at no time
leaves a circular path.

The particle will move in a circular path provided that the string does fot go slack.

One situation in which the string cannot go slack is when the particle oscllates
through no more than 180

of

e

“The tension is always perpendicular Lo the direction of motion so it does no work.

Dy

Using conservation of mechanical energy from A to P,

AmV? —mga = ym? - mga cos 0 m
For oscillations through not more than 180°,

v=0 when 0<90°, . when cosf >0
Hence, from (1] mgacos 6 = mga—tmV? >0
= V< Via
The other situation in which the string does not go slack is when the particle
describes complete circles. For this to happen the tension must be greater than
or equal to zero when 0 = 180",
Using 0 = 180" in [I] gives {mb? —mga = Lm — mga(~1)
= Ve V2 dga
Using Newton's Law towards the centre at the highest point gives

T4mg = "‘"2 = =" (¥ aga)-mg

a
When 6=180°,T20 = (V2 _4ga)-mg>0
a
= V> Viga »v
The particle will not leave the circular path if ¥ < v2ga or V > J/5ga
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Assuming that there is no resistance to the motion of the car, we can use
conservation of mechanical energy from A to B.

mglsin 30°+0 = 0+ {mp?
= V= val
Model the car as a particle and the circular track as smooth. Assume that

the velocity of the car at lowest point on the circular loop is equal to that at
the foot of the incline.

B ‘
v : PE=0

‘The normal reaction R does no work.

Using conservation of ME from B to C gives
AmP? 40 = Im? +m(9.8)(0.5)

= S8l = 12 +49

= ¥ =98(/1-1) m

IF the car loses contact with the track, it will be when the contact force disappears, so the.
condition we want is that R0 at the highest point.

Using Newton's Law towards the centre at C gives

K
R+m(98) = m(ﬁ)

R20 = #3245

from (1] 98(/—1) > 245
= 13125
The least value of / is 125
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. The mass of P is 1 kg and the radius of the
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‘The particle, of mass m, is projected vertically v Y
upwards from a point level with the centre of
the cylinder, with speed 7ga. If the radius of
the cylinder is a, find
(a) the speed when P reaches the highest point
on the surface,

(b) the normal reaction at that point,

A particle P is hanging at rest at the end of a
light inextensible string of length am. The
other end of the string is fixed at a point O.

P is then projected horizontally with specd
Vms~. When OP has rotated through 120°,
the string becomes slack (i.¢. the tension is
zer0). Giving answers in terms of a and g find,

(a) the speed of P at this instant
(b) the value of V.

A particle is held in contact with the smooth v

inner surface of a cylinder of radius 0.08m, at B¢

the point A as shown. It is then given a speed

of 4ms~" vertically downwards and rotates R
until, at point B, the normal reaction becomes 7

zero. Find the height of B above A and the 4 .
speed of the particle at B. Vims

An aircraft is looping the loop on a path which is a vertical circle of radius
400m. Find the minimum speed at the top of the loop for which the pilot would
remain in contact with the seat without wearing a seat belt.

Questions 10 and 11 are about a particle P, set moving in a vertical plane on the
smooth outer surface of a fixed sphere.

058 g pumec
sphere is 2m. P is projected horizontally with

speed ums~! from the highest point on the

sphere and loses contact with the surface when

it has descended a vertical distance 0.5m.

Find the value of x.
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. The sphere, whose radius is 2m, is fixed on a horizontal plane and P is just

displaced from rest at the highest point. Find

(a) the height of P above the plane when contact with the sphere is lost,
(b) P's specd at this instant,

(c) P's speed when it reaches the plane (use an energy method ).

A child whirls a basket containing an apple, of mass m kilograms, in a vertical
circle of radius 0.6m. The speed of the apple at the highest point is v metres per
second.

(a) Find, in terms of m and v, the force exerted by the basket on the apple
when the apple is at the highest point.

(b) Find the least value v can have if the apple is not to lose contact with the
basket.

Ono very cold winers day the doma
of St Paul’s Cathedral becomes icy.
pigeon tries o land gently on the
dome but immediately it comes to rest
on the surface it finds itself sliding
down. Surprised, but interested in
this new experience, it sits tight until it
loses contact and then flies away. The
dome is to be modelled as a
hemisphere, of radius 15m, and its icy
surface as frictionless. The pigeon’s
initial position on the roof is at an
angular displacement of 10° from

the highest point of the hemisphere.

(a) Find the distance it slides over the roof before losing contact.
(b) Find its speed just before it starts to fly.

HARDER PROBLEMS

‘There are many different types of situation involving motion on a circular path in
a vertical plane, some requiring ideas that have not been used so far in this
chapter. The examples that follow give an indication of the variety of
questions that you might meet and the next exercise includes more of them.



us Chapter 16

Examples 16¢
. A magnet of mass 2mkeg is attached to one end of a string of length am. The other
0 ofthe iing o fixed . polat A, The ungat i bk, with th o b, ot

a point B level with A, and is released from rest from that position. When
mpeli.llhhmpnlnllhmﬂmhpkhwnmﬂmnylm-ﬂudnf
mass mkg. Find the height to which the combined mass rises.

First find the speed of the magnet just before it picks up the iron block.

B A

< = D
Using conservation of mechanical energy from B to C gives
2mga = {(2m)d = w= (2a)
Just before impact 2'0"—9 =
Justafter impact om—p
Using conservation of momentum at impact gives
20 =3m > v=3u=3vZ%a

Now we will consider energy again as the mass I riss 0 an unknown height Am above C.

Using wnservluon of mechanical energy N
from C to D gi
13m)¥ = 3mgh <
- A=t (L) (m) °
2 2/\9 g
im .
The combined mass rises to a height of §a. c d

In most of the problems in this chapter an object has been travelling on a vertical
circle under the action of ts own weight, and therefore with varying speed. There
are situations however in which a vertical circular path is described at constant
speed, e.g. the motion of a ‘Big Wheel’ once all the passengers are aboard.
The next example illustrates the special features of this case.
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A thin metal spoke, of length 1.2m, carries a small

load of mass 0.7kg at one end and is pivoted at the

other end to a fixed point O. The spoke is being

rotated manually in a vertical plane at a constant
second.

angular speed of 1 revolution per
(a) Explain why the conservation of mechanical energy cannot be used.

What is the acceleration of the load towards O when the spoke is

(i) horizontal (i) vertically above O (iii) vertically below O.
Find the force exerted by the spoke on the load in each of the positions defined
in part (b), stating whether the spoke is in tension or compression.

(b)

(©)

(a)

(b)

(c)

U7

External work is being done by whatever is producing the manual rotation so
as o maintain a constant angular speed. This causes a change in mechanical
energy, o the total mechanical energy of the system is not constant.

(Note that the external drive must be 4 torque (turning effect) and not a linear force )

‘The angular speed of the spoke and load is I revs™

ic. 2nrads”.

‘The angular speed of the load, and the radius of the circl, are the same at every point s0 r?,

the central acelertion, i ks the same at cvery point.
In each of the given positions

the acceleration towards O is 1.2 x (22)*ms~2
ie. 47ms? (2sf)

3
s
asa
7
o ; o
agm
e
@ me o)
We will apply Newton's Law towards O in each case. IS
(i) Ti = (0.7)(482%) = 3.36x> = 33.16...
[(0)
the tension is 33N (2sf).
(ii) Ty+07g =336 = Th=263... pA

the tension is 26N (2 sf).
(i) Ty-07g =336x = Ty =4002...
the tension is 40N (2 sf).
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3. Panl s playing with a conker of mass 30g, fastened to the end of a string 20cm
long. He holds the end of the string in one hand A and holds the conker, C, in the
other hand so that the string is taut with AC horizontal. When Paul releases the
conker, he intends to watch and see whether it goes right round to be level with his

stationary hand but, after he has let the conker go, one of his friends pushes a
stick in the way so that, just as the string becomes vertical, the middie of the string
hits the stick at right angles. The conker continues to rotate about the stick as
centre.

Make a mathematical model for this situation, stating the assumptions made, and
use it to

(a) find the speed of the conker just before the string hits the stick and the tension
in the string at this instant

(b) explain why the speed of the coaker does not change when the string hits the
stick

(c) find the tension in the string immediately after it hits the stick
(d) determine whether or not the conker will describe a complete circle about the
stick as centre.

Model the conker as a particl, the string as light and inextensible, the stick as
having negligible diameter, the end of the string in Paul's hand is perfectly
stationary, no resistance to motion, no wind.

() c 02m

A A
o—wm 4
o
s
@.ick sick
v T 2
2 T
7. l'.
c P »
e g

i) i)
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Using conservation of mechanical energy from (i) to (i)
003x98x02 = (4)(003) = v =392
198 (3sf)
Using F=ma in (i) gives

= v

Tomg ="

= T:(o.os)(

The tension is 0.88N (2 sf)

(b) When the string strikes the stick, the radius of the circle being described
changes suddenly causing a change in the central acceleration and hene in the
tension. However, this is h: in tension is 1o the
direction of motion of the conker so the speed of the conker is unchanged.

(c) The radius of the circle being described is now 0.1 m so the tension changes.

m?

Ty -mg =

T
lc . = Ti= (om)(a.so m—)
The new tension is SN (2 sf).

(d) The conker will describe a complete circle
about the stick provided that the conker
passes through the highest point of that circle,
i.c. after 180 rotation the string is still taut.

Supposing that the conker can describe a complete circle then,

at the highest point,

conservation of ME would give §mv —mg(0.1) ={mV? +mg(0.1) (1]
2

and using F=ma towards S would give T+ mg= "'V 2

From [1}, ¥? =+ -04g=392-392 = V_o

Hence from [2] T'=—~mg which is not possible as tension in a string

cannot be negative,

iie. the string is o taut after rotation of 180°.

‘we were wrong in supposing that the conker can describe a complete circle.
‘The conker does not perform complete circles about the stick as centre.
Aticrmatively w could find the aagle o rotaion 0 for which th tension i 2cr0 and show that 0 is

180"
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A particle of mass 1.5kg is lying at the lowest point of the inner surface of a
hollow sphere of radius 0.5m when it is given a horizontal impulse. Find the
‘magnitude of the impulse

(a) if the particle subsequently describes complete vertical circles,
(b) if the particle loses contact with the sphere after rotating through 120°.

One end of a light inextensible string AB of length / s fixed at A and a particle
of mass m is attached at B. B is held a distance / vertically above A and is
projected horizontally from this position with speed y2gl. When AB is
horizontal, a point C on the string strikes a fixed smooth peg so that the radial
acceleration of the particle is instantancously doubled. Express the length of CB
in terms of /.

‘The particle continues to describe vertical circles about C as centre. Compare the
greatest and least tensions in the string during this motion.

A pair of trapeze artists are performing

" their act. There is a catcher and a flicr.

The catcher, of mass 75 kg swings on an

arc of radius 7m and his speed is zero

when the trapeze ropes are at 70° to the m
vertical.

When he reaches the lowest point of his

path he catches the flier, who has a

mass of 55kg and is ;\pvpmnchmg him

with a horizontal velocity of 2ms~". e

Stating all assumptions hich you make,

find

(a) the speed of the catcher just before they connect,
(b) their common velocity just afer connecting,
(c) the force with which the catcher must grip the trapeze just after connecting,

(d) the angle the trapeze ropes will make with the vertical when they first come
to instantancous rest.

A ballistic pendulum is an instrument used to measure the speed of a bullet. In
this problem such a pendulum consists of a bob, of mass Skg. suspended by a
thin light rod from a fixed point. The bob swings on an arc of a circle of radius
0.6m against a scale which measures its rotation from the vertical. While the
pendulum is hanging vertically at rest a bullet, of mass 0.01 kg is fired
horizontally into it. The bob with the bullet embedded in it is observed to swing
to & maximum deflection of 24° from the vertical.

(a) Find the common velocity of the bob and bullet just after impact.
(b) Find the tension in the rod just after impact.
(c) Find the velocity of the bullet before hitting the bob.
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SUMMARY

Motion in a Horizontal Circle

‘The angular velocity of a particle describing a circle is represented by d6/d¢ or
o, and is measured in radians per second or revolutions per second.

A particle travelling in a circle of radius r metres, with a constant angular velocity
wrads™, has a speed round the circumference of roms'.

When a particle describes a circle of radius r at a constant speed v (or constant

angular velocity ).

® the acceleration is directed towards the centre of the circle and is of magnitude
e’ or V/r,

@ a force of magnitude mre' or mv?/r must act towards the centre.

A string fixed at one end and carrying at the other end a particle performing

horizontal circles, is known as a conical pendulum.

The force that enables a vehicle to travel on a horizontal circular path can be

provided by friction, or by pressure from rail flanges, or by banking the track

on which it moves.

Motion in a Vertical Circle

A particle travelling round a circular path in a vertical plane has

@ an acceleration component towards the centre, of ro* where e is not usually
constant,

® a tangential acceleration component of r (‘:1,20)
If the particle cannot leave the circular path ( e.g. a bead on a circular wire ) it can
describe either complete circles or an arc of any size. For the particle to perform
complete circles there must be a positive velocity at the highest point of the circle.
Finding the condition for this 1o apply requires using only the conservation of
‘mechanical energy (provided that no extemal work is being done).

354
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If there is nothing physical to prevent the particle from leaving the circle, e.g. if it
is rotating at the end of a string which can go slack, the particle may describe
complete circles or it may oscillate through an arc that is less than a semicircle,
o it may leave the circular path and then travel as a projectile.

The condition for complete circles to be described is found by checking that the
force, other than the weight, acting along the radius towards the centre (e.g. the
tension in the string) does not become zero before the highest point of the circle is
reached, (e.g.that 7> 0 at the highest point of the circle).

Momentum and Impulse

The momentum of a body of mass m and velocity v is my.
The impulse of a force F acting for a time  is Fr.

Impulse = Change in momentum

Impulse and momentum are measured in the same unit, the newton second, Ns.

At the instant of a collision or a jerk, an instantaneous impulse occurs. The value
of an instantaneous impulse can be found only from the change in momentum it
produces.

Elastic Impact
If a collision results in a bounce, the impact is elastic.
Newton's Law of Restitution states that, for two particular colliding particles, the
ratio of their relative speed after impact to their relative speed before impact is
constant, i.c.

separation speed = e x approach speed
where e is the coefficient of restitution between the two particles.
In general o<e<1
If e =0 theimpact is inelastic and the particles do not bounce.
If e =1 theimpact s said to be perfectly elastic and no loss in KE is caused
by the collision.
At any impact an impulse acts on each colliding object; the magnitude of the
impulse is found by considering the change in momentum of one object only.
When both of the colliding objects are free to move, the total momentum in any
specified direction is unchanged by the impact.
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MISCELLANEOUS EXERCISE D

In this exercise use g = 9.8 unless another instruction is given.

. A brick of mass 3 kg falls from rest at a vertical height of 8 m above firm

horizontal ground. It does not rebound.
Calculate the impulse of the force exerted on the ground by the brick.  (AEB)

A body of mass 2 kg, moving alnng a straight line with speed 5 ms~!, collides

with a body of mass | kg moving in the same direction along the same straight
line with speed 2 ms*!. On collision the bodics adhere and move on together.

Calculate

(a) their common speed immediately after the collision
(b) the kinetic energy lost during the collision. (NEAB)

A cricket ball, of mass 0.14 kg, is moving horizontally with speed 27 ms™
when it hits a vertically held cricket bat. The ball rebounds horizontally with
speed 15 ms™".

Calculate the magnitude of the impulse, in N, of the force exerted by the ball on
the bat. (ULEAC)

A particle P, of mass 1 kg, is connected to a light inextensible string 0.5m long.
The other end of the string is tied to a fixed point O on a smooth horizontal
plane. P moves on the plane in a horizontal circle, centre O, with uniform speed.
Given that the string will break when the tension exceeds § N, show that P can
rotate at 38 revolutions per minute without breaking the string.

N

N

(ULEAC)

3

The conical pendulms, shown n the disgoam, consis of o light inertznalblo
string which has one end attached to a fixed point A. A particle P, of mass m, is
attached to the other end of the string. The particle P moves wm‘ constant speed
completing 2 orbits of its circular path every second and the tension in the string
is 2mg.

Find, to the nearest cm,
(a) the radius of the circular path of P,
(b) the length of the string. (ULEAC)
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“Two lightstrings, AB and BC, are cach attached at B to a particle
of mass m. The string AB s elastic, of natural length 2a and
modulus ng. The rlog BC s inexisnsbleand f ength . The
ends A and C are fixed with C vertically below A and A

The particle moves with constant speed in a horizontal circle,
with both strings taut and AB = da, as shown in the figure.

(2) Find the tension in the string AB.
(b) Find the tension in the string BC.
(c) Show that the speed of the particle is

/ 44
s (ULEAC)

Y

A particle of mass 1.8 grams is attached to a fixed point A by a string | metre
long and describes a horizontal circle below A. Given that the breaking tension
of the string is 3 newtons, find the greatest possible number of revolutions per
second (SMP),

. A car undergoing trials is moving on a horizontal surface around a circular bend

of radius 50m at a steady speed of 14ms~'. Calculate the least value of the
coeflicient of friction between the tyres of the car and the surface. Find the angle
to the horizontal at which this bend should be banked in order that the car can
move in a horizontal circle of radius S0m around it at 14ms ' without any
tendency to side-slip.

Another section of the test area s circular and is banked at 30° o the horizontal.
The coefTicient of friction between the tyres of the car and the surface of this test
area is 0.6, Calculate the greatest speed at which the car can move in a
horizontal circle of radius 70m around this banked test area.

(Take the acceleration due to gravity to be 10ms 2.) (AEB)

. A child of mass 30kg keeps herself amused by swinging on a Sm rope attached

t0 an overhanging tree. She is holding on to the lower end of the rope and
“swinging’ in a horizontal circle of radius 3m

(a) Draw a diagram to show the forces acting on the girl.

(b) Find the tension in the rope.

(c) Show that the time she takes to complete a circle is approximately
4 seconds.

(d) State any assumptions that you have made about the rope.

(¢) The girl's older brother then swings, on his own, on the rope in a horizontal
circle of the same radius. Show that the tension in the rope is now Smg/d
where m s his mass.

Find the time that it takes for him to complete one circle. (AEB)
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. A bead is threaded onto a circular wire fixed

Consolidation D 359

a vertical plane. The bead
travels freely round the wire. The acceleration of the bead is

A towards the centre and constant

B along the tangent and variable

€ made up of two components one radial and one tangential
D

away from the centre and variable.

. A smooth hollow cylinder of radius a is fixed with its

axis horizontal. A particle of mass m is projected from
the lowest point of the inner surface with speed u
If u=yTa the particle will

A oscillate through 90°

B perform complete circles

C leave the cylinder .
D osillate through 180°.

. A particle of mass m, travelling in a vertical circle at the end of an inelastic string,

of length [, will describe complete circles provided that

A the kinetic energy at the lowest point exceeds 2mgl

B the string never goes slack

€ the potential energy at the highest point is greater than 2mg/
D

the tension in the string is constant.

A particle P of mass m lies inside a fixed smooth hollow sphere with centre O
and internal radius a. When P is at rest at the lowest point A of the sphere, it is
given a horizontal impulse of magnitude mu.

where  /AOB =

(a) Show that « = }ga.

(b) Find the greatest height above B reached by P. (ULEAC),

The particle P loses contact with the inner surface of the sphere at the point B,
120°.

. Two particles A and B, of masses m and 2m respectively, are attached to the

ends of a light inextensible string which passes over a smooth fixed pulley.

The particles are released from rest with the parts of the string on each side of
the pulley hanging vertically. When particle B has moved a distance h it receives
an impulse which brings it momentarily to rest. Find, in terms of m, g and h, the
magnitude of this impulse. (AEB)
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of mass 1500 kg, is moving at a speed of 6 ms~!
along a horizontal track. It collides with a stationary empty truck, of mass
500 kg. The two trucks immediately couple together and move on together.
Calculate

(a) the speed, in ms~' of the pair of trucks immediately after the collision
(b)  the total loss of kinetic energy, in J, due to the collision

(¢

the magnitude of the impulse, in N's, on the stationary truck due to the
collision. (ULEAC)

. A small sphere R, of mass 0.08 kg, moving with speed 1.5 ms™, collides

directly with another small sphere S, of mass 0.12 kg, moving in the same
dircction with speed 1 ms!. Immediately after the collision R and § contio to
move in the same dirsction with speeds U s~ and ¥ ms”" respeciv

Given that U:V = 21:

(a) show that V=13,

(b) find the magnitude of the impulse, in Ns, received by R as a result of the
collision. (ULEAC)

A child of mass Mkg sits on one of the
seats of a ‘rotating swing’, and moves in
a horizontal circle of radius 10m with
constant speed. completing one circuit
every 5s. Each scat has mass mkg.
Find the angle between the single chain
supporting the seat and the vertical.

Give a reason why the chains are all at
the same angle to the vertical,
irrespective of the mass of the occupant. (UCLES),

. In this question a situation is described and is followed by several statements.

State, with reasons where possible, whether each of the statements is true (T) or
false (F).

—pu o8

2
A sphere A, of mass m, is moving with speed 2u. It collides dircctly with another
sphere B, also of mass m, which is initially at rest. The coefficient of restitution is § .

(i) After impact A’s speed is zero.

(ii) There is no loss in kinetic energy at impact.
The impulse that A exerts on B is twice the impulse that B exerts on A.
(iv) After impact B's speed is greater than A’s.
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. A ball is dropped from a height of 10m on to level ground. When it bounces, it

leaves the ground with speed 10.5ms! travelling vertically upwards. The mass
of the ball is 0.1 kg. Air resistance may be neglected.

(i) Find the speed with which the ball first hits the ground.
(ii) Show that the coefficient of restitution between the ball and the ground is }.
(iii) Find the impulse on the ball when it first hits the ground.
(iv) Find the energy lost by the ball on its first bounce
(v) Explain why the ball leaves the ground after the second bounce with a
speed of 14 x ()7 ms"

“This model for the behaviour of the ball breaks down when the speed of the bal
at impact i less than 0.1 ms~

(vi) On which impact does the model break down? (MEI)

. The diagram shows the shape of a ‘slide’ for a children’s playground. The

section DE is straight and BCD is a circular arc of radius Sm. C is the highest
point of the arc and CD subtends an angle of 30° at the centre.

For safety reasons, children should not be sliding so fast that they lose contact
with the slide at any point. Neglecting any resistances to motion, fing
(i) the child's speed as it passes through C., given that it is on the point of

losing contact at C,

(ii) the child's speed as it passes through D, given that it is on the point of
losing contact as it reaches

Find the greatest possible height of the starting point A of the slide above the

level of D, if a child starting rom rest at A is not to lose contact with the slide at

any point.

Explain briefly whether taking resistances into account would lead to a larger or
smaller value for the greatest ‘safe height’ above D. (UCLES),




CHAPTER 17

THREE-FORCE EQUILIBRIUM
MOMENT COUPLES

COPLANAR FORCES IN EQUILIBRIUM

When any number of forces acting on a body are in equilibrium they cause no
change of any sort in the motion of the body, i.e.

(a) the resultant force is zero

(b) the set of forces has no turning effect.

In Chapter 6 we considered a particle in equilibrium under the action of any
number of forces. A particle is regarded as a mass at a point so the forces
acting on it all pass through that pomL i.e. they are concurrent and therefore
cannot have any turning effect.

So, as we saw in that chapter, for a particle to be in equilibrium we need only to
ensure that the resultant force in each of two directions is zero.

In certain circumstances there are alternative methods for dealmg with the
equilibrium of a particle and we now take a look at two special cases.

Two Forces in Equilibrium
‘The resultant of the |wo forces is zero so they must be of equal magnitude and

act in opposite directi
But if the forces act along parallel lines they have a turning effect.

£

)

So, for equilibrium, the forces must act in the same straight line.

F
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Twhusmq%nmmbeqﬂmlam&
and act in the same straight line.

THREE FORCES IN EQUILIBRIUM

Consider first the resultant of two non-collinear forces P and Q. We know that
when lines representing 2 and Q are drawn to scale, one after the other, the line
joining the starting point to the end point represents the resultant in magnitude
and direction; the actual posmon of the resultant however is through the point of
intersection of P and Q.

VS F

Now if a force R is added to P and Q so that the three forces are in equilibrium,
R must cancel out the effect of the resultant of P and Q. Hence R is equal and
opposite to this resultant and passes through the point of intersection of P and Q.

A

7

Therefore

ﬂlmfoluslnequillbnml must be concurrent and
be represented in magnitude and direction
Iryﬂlesldsnhn'ung!ehkuninwdu.

This triangle is known as a friangle of forces and it can be used to solve a problem
if, in the diagram, there already is a triangle whose sides are parallel to the forces
acting. Sucha triangle is similar to the triangle of forces so the lengths of its sides
are to the of the ing forces.

Do not expect that there always will be a suitable triangle in the diagram. If you
cannot spot one, the method used in Chapter 6, of collecting the components in
two perpendicular directions and equating to zero in each case, can also be used.
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In Chapter 18 we will see how the ‘triangle of forces’ method can be applied to a
rigid body that is in equilibrium under the action of three coplanar forces,
(remembering that those forces must be concurrent) but first we will apply it
to forces acting on a particle.

Example 17a

A string of length 1 m is fixed at one end to a point A on a wall; the other end is
attached o a particle of weight 12 N. The particle is pulled aside by a horizontal
force F newtons until it is 0.6 m from the wall. Find the tension in the string and
the value of F.

The forces acting on the particle are -

In AABC, AB is in the dir
BC is in the direction of the force
CA is in the direction of the tension
. AABC s similar to the triangle of forces. Bl
2 _F _ T

AB BC CA

tion of the weight N

AABC is @ 34,5 triangle s AB = 08
12 _F _T

0806 1
= F=I2_9 aa T=15

‘The tension in the string is 15 N and the value of Fis 9.
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EXERCISE 17a

In cach question a particie of weight 10 N is attached to one end A of a light
inextensible string. The other end of the string is attached to a fixed point B.

e particle s held in the given position by the force shown in the diagram.
Cops the diagram and mark the forcs actng on the paril. 1deatiy a sutable
triangle of forces and hence find the magnitudes of the force and the tension in
the string. (You may need to extend one or more of the force lines ).

B 5.
o8m
2
6m
o 6 4
IF
m
1\ fosm
hn £
A
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LAMI'S THEOREM

“The triangle of foroes is useful only when we know some of the lengths involved
in the problem. There is an alternative method however, which is applicable
when the angles between the forces are known rather than any lengths. This
method is based on the sine rule.

Consider again three concurrent forces P, Q and R that are in equilibrium, and
the corresponding triangle of forces ABC in which BC represents P, CA
represents Q and AB represents R.

The angles o, f and  between the forces are equal to the exterior angles of
AABC as shown.

o

®

Using the sine rule in AABC gives

P _ ) _ R
sin (180°—a)  sin (180°— )  sin (180°—7)

Then, as sin (180° — ) = sin a, we have

P 0 R
sina

Tsnp sy
‘This relationship is known as Lami’s Theorem and can be expressed in words as
follows.

If three forces are in equilibrium they must be concurrent
and each force is proportional
the sine of the angle between the other two forces.

Lami’s Theorem can give a neat solution to many three-force problems in which
all the angles are known.
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Choice of Method
‘There are pros and cons for each of the methods we now have for solving three-
force equilibrium problems. Here are some points to consider.

@ If two of the three forces are perpendicular it is easy to resolve in these two
directions and equate the collected components to zero.

@ If the given information includes all relevant lengths, and a suitable triangle is
present in the diagram, using the triangle of forces is quick and easy.

@ If all the relevant angles are given, Lami’s Theorem at once gives a separate
equation for cach unknown force.

There is no best method for everyone, as individual preference varies, so just
remember that all the methods work.

EXERCISE 17¢
Answer each question by consciously choosing the method you think best and

then using it.
; 3. 4
em N
Wem d
16

Find 7 and Q. Find P and 0. Find P and 0.
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NON-CONCURRENT FORCES

So far we have dealt only with the equilibrium of a particle, i.e. a situation in
which the forces are bound to be concurrent; concurrent forces cannot cause
rotation so up to now we have not had to worry about turning effect.

‘When forces act on a rigid body of significant size however, there is no longer any
physical reason why these forces should be concurrent. It therefore follows that
they are capable of producing rotation and we must now take this into account
when considering the equilibrium of a set of forces acting on a rigid body.

First we must take a look at how to measure turning effect.

Consider a rod pivoted at its midpoint P. Ifitis P A
perfectly uniform, the rod can hang in a zzzz777777772)
horizontal position.

When a downward force F is applied at one

end A the rod rotates clockwise as shown. The \L’
force has not made the rod move bodily "Q%DZD
downwards, it has caused the rod to turn about A
the pivot.

It can be shown experimentally that an additional

force 2F, applied downwards halfiway along PB,
will maintain the rod in its original position. Each
force exerts a turning effect on the rod and together 8 A
they restore the balance of the rod.

The two forces applied to the rod are not equal however, so clearly the turning
effect of a force does not depend entirely on its magnitude.

‘The other factor is the distance from the pivot of the pofnt of application of the
force; a smaller force, further from the pivot can balance a larger force nearer to
the pivot.

Experiments show that

the tuming effect of a force is given by
‘magnitude of force x perpendicular distance from pivot

To give a full description of the turing effect of a force we must also give the
sense of rotation, i.e. clockwise or anticle



34 Chapter 17
THE MOMENT OF A FORCE

The turning effect of a force is called the moment of the force (or sometimes
torque ). °

Not all objects rotate about a pivot, they may turn about a hinge or a fulcrum
etc. The general name axis of rotation applies to all cases. This name emphasises
the fact that rotation does not take place about a point bm about a line. The line
(axis) is perpendicular to the plane in which the forces

So in the examples used above we should really say that um rod rotates about ‘a
horizontal axis through P’. However it is common practice to refer to rotation
about a point: it is then taken for granted that the axis of rotation passes
through that point and is perpendicular to the plane of the force system.

The Unit of Moment

'l'hemmmkofﬂnmmmahl’ml’ acting at a perpendicular distance d
axis of rotation, is given by F x d

The unit in which it is measured is the newton metre, Nm.

It may appear at first sight that this unit could apply in another context, as the
work done by a force in moving a particle through a linear distance is also the
product of force and distance, suggesting the newton metre as the unit.
However, as we always use the joule as the unit of work there is no confusion
over the Nm which is used exclusively for moments.

The Sign of a Moment
Earlier, when we were collecting components of forces, we chose a positive
direction; components in that direction had a + sign while components in the
opposite direction took a negative sign.

In the same way, we choose a positive sense of rotation when dealing with a
system of moments. If, for example, we decide to make anticlockwise the
positive sense, an anticlockwise moment has a +sign while a clockwise
moment has a —sign. The resultant moment of a number of forces is then the
algebraic sum of the separate moments.

The positive sense does not always have to be anticlockwise ; an individual choice
can be made for each problem.

Zero Moment

‘When a force passes through the axis of rotation, its distance from that axis is
zero. Therefore the moment of the force about that axis is zero.
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Determining the Sense of Rotation
Most people looking at a diagram can see immediately the sense of rotation that
a particular force would cause. From experience however we know that there are
a few who have a ‘blind spot’ here. There is a simple ploy for any readers who
have this problem:
stick a pin into the point on the diagram about which turning will take place
and pull the page (gently!) in the direction of the force. You will then see the
rotation happening.

Examples 17d

ABCD is a square lamina subjected to the forces shown in the diagram. Find the
clockwise moment of each of the forces about an axis through

(@) B () A (o) E

(a

Magnitude of force I IN l 2N J 3N I 4N LﬁN
L distance from B [ o [ o em[2m[im
0 0 |-6Nm|8Nm|6Nm

clockwise moment about B |

(b) Magnitude of force | IN | 2N | 3N | 4N | 6N
L distance from A [ o J2m[2m [0 [im
Cclockwise moment abowt A | 0 | 4Nm |-6Nm| 0 |-6Nm

(€)  Magnitude of force | IN J 2N ‘ 3N | 4N ‘ 6N
L distance from E [ o [im[2m[1m ] o
clockwise moment about E | 0 | 2Nm |-6Nm| 4Nm | 0
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. The diagram shows a rod AB, free to rotate about the end A. Taking the
anticlockwise sense as positive, find the moment about A of each of the forces
acting on the rod. Hence find the resultant (total) moment of the forces about A.

= 4Nm
The moment of the 7 N force is —(7x4)Nm = —28Nm

The moment of the 4 N forceis (4 x 1)Nm
The moment of the 5 N force is (5% 6) Nm 30Nm

“The perpendicular distance from A to the force of 8 N is AB sin 30°, ie. 10 sin 30"
The moment of the § N force is —(8 x 105in 30°)Nm = 40 Nm

The resultant moment is 4+ ( —28)+30+(~40)Nm ie. -34Nm

The resultant moment about A is 34 Nm clockwise.

‘When the collected moments of a number of forces are required about an axis
through A, say, we say we are faking moments about A. This is denoted by
the symbol AD; the sense of the curved arrow indicates the positive sense of
rotation, so A means taking anticlockwise moments about A.

. A force P, represented by 4i +2j, acts through the point whose position is given by
the vector 6i-+j, and a second force Q, represented by i — 3j, acts through the
‘point with position vector 2i. Given that the units are newtons and metres, find the
‘magnitude and sense of the resultant moment of P and Q about O.

For each force the components in the i and § directions are marked on the diagram so that the moment

of cach component can be found;  Pis L3 and @is 7>

0) gives 4x1 = 2x6+ 1x0+3x2=

The resultant moment about O is 2 N'm anticlockwise.
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EXERCISE 17d
1 Fnd the magitude and sease ofthe oment ofthe given free sbou the

(d) A force, in newtons, represented by 5i—7j and acting through the point
with position vector §+3j.

2. Fiod, in mapntude nd senke, the seutaat moment o the gven fores sbout
the point A.

(@) N (@) &
inlgm _im A
A Tm
N
& e
®) ()
[, van
VWA
n
(© 2N ® ay
m
IN 1 m) N
i A
P N
13

(g) Forces, in newtons, represented by 2i~7j and -3+ 4], acting through
the points with position vectors 6§ +J and 4j respectively, where i and §
are unit vectors and A is the origin.

ABCD is a square of side [ m. Find the magnitude ax .
and sense of the resultant moment of the given forces
about  (a) A b) D.
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I
The diagram shows an equilateral triangle of side 2 m.
in,,y  Find the resultant anticlockwise moment of the forces
shown about
@ A () C
AN

. (a) Find the resultant clockwise moment about a honzomal axis through A, of
the forces acting on the beam AB shown in the di
It
[E0Y TN AT e
N
AN N
(b) When a force F newtons is applied at B, perpendicular to the beam, the
resultant moment is zero. Find the value of F.

A force represented by 7i+4) acts through
the point with position vector . The units
are newtons and metres. Find the anti
moment of the force about an axis through the
point with position vector 2i+j.

. Four forces, measured in newtons, are represented by 4i+2J, Si, i— 6,
and —3. They act respectively through points with position vectors measured

in metres and represented by §—J, i+J, 4i and 3.

Find the magnitude and sense of their resultant moment about

(a) the origin O (b) the point (I, 1).

COUPLES

Consider two forces, of equal magnitude P, that act in opposite directions along
parallel lines distant d apart.

Resolving 1 givss P—P =0
So the linear resultant of the pair of forces is zero.

But taking moments about A shows that the turning effect of the pair of forces
is Pd clockwise, ie. the resultant moment is not zero.
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‘Therefore the effect of two equal and opposite parallel forces is to produce pure
rotation.
Such a pair of forces is called a couple.

When a couple acts on a body there is no change in the lincar motion of the body
but there is a change in its rotation.

Constant Moment of a Couple

Consider again the couple comprising two equal and opposite parallel forces of
magnitude P and distant d apart.

¥/ 4 c

PR

i

We will take moments about three different axes, through A, B and C

IS clockwise moment = P(a-+d) — Pa = Pd
B clockwise moment = P(d— b)+ Pb = Pd
(&) clockwise moment = P(c +d)~ Pc = Pd

As A, B and C represent any points in the plane of the couple, we see that
the moment of a couple is the same
about any axis perpendicular to its plane

‘The magnitude of the moment, or torque, of a couple is often called simply
the magnitude of the couple.

The Characteristics of a Couple

@ The lincar resultant of a couple is zero.
® The moment of a couple is ror zero and has the same magnitude regardiess of
the position of the chosen axis.

A set of coplanar forces that satisfies these two conditions is said to
ice to a couple.
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Examples 17

. Show that the following forces reduce o a couple and find its magnitude.
= —di+ 3 acting through the point 2 j

Fr = 6i—7j acting through the point —3i+j

Fy = ~2044] acting through the point 4)

The resultant force is  Xi+ ¥j
where X = -446-2=0
and  Y=3-7+4=0

‘The resultant force is therefore zero.

The rsultant turing ffct about O (iaking aniclackwise a posive)
is (3%x2-4x1)4(Tx3-6x1)+(2x4) =

Since the resultant force is zero and the resultant turning effect is not zero, the
forces reduce to a couple of magnitude 25 units anticlockwise.

ABCD is a square of side a. Forces of magnitudes 1, 2, 3, P and Q units act along
AB, BC, CD, DA and AC respectively. Find the values of P and Q if the set of
five forces reduces to a couple.

1 the forces redice to a caupe the lincar resultant must be zro,
Resolving — gives 14+Qcosd5~3=0 = Q=2y2

Resolving | gives 24 QsindS'—P =0 = P=4

The linear resultant of the given forces is zero if P =4 and Q = 2y2

s not sullicient 10 eosure that the forces reduce 10 a couple; we must also show that their turning
ot 7ero. By choosing an axis through A the moments of forces P, Q and 1 are not involved.

AD gives 2a-+3a which is not zero.
Therefore the forces reduce to a couple if P =4 and Q =22

‘The magnitude of the couple is Sa anticlockwise.
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Examples 17f

. The diagram shows a uniform beam of length 3 m and weight 40 N, suspended in
equilibrium in a horizoatal position by two vertical ropes, one attached at the end A

and the other at C, 1 m from the other end B. Find the tension in each rope. (The
weight of a uniform beam acts through the midpoint. )

T3 T T

“There are no horizontal forces 50 no information is given by rsolving horizontally, but s there are only
will h A and €.

w0 unknowns we need only two cquations.  We wil choose to take momenis about batl
A Tyx2 - 40x15 =0 m
o Tix2 - 40%05 = 0 2
From (1] 7 =30
From [2) =10

The tensions in the two ropes are 30 N and 10 N.
Check: Resolving 1 gives 30+10-40 = 0

. A uniform plank of weight ¥ and length 6a rests on two supports at points B
and C as shown in the diagram. The plank carrics a load 2J¥ at the end A and a
load 3 at the end D. Find, in terms of ¥, the force exerted by each support.

B gives Wxa+ Faxda - Wx2a - 3WxSa =0 m
1 gives Fit+Fy=2W—W-3W = 0 @
From (1] Fr = 15Wa<3a = SW

From [2) Fo=6W-F =

The supporting forces at B and C are W and SW respectively.

Cheek: €3 gives

2Wxda - Fixda+ Wxa—3Wx2a = (8-=3+1-6)Wa =0
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3. A scaffold board of weight 50 N and length 4 m lies partly on a flat roof and
the other end A. lllhwzlq,hlo(dumlloﬂhﬂd.mﬂlmnpﬂmlnrmn

the end A, what is the value of the least force needed?

The least force will just prevent the board from toppling when it is about to lose. mnuﬂ wlm the roof
except at the dg, 50 the reaction betwcen the board and the roof ats a the cdge o

In this problem only the magnitude of the force at A is required and not R. So if we take moments
about M. in order o avoid introducing R, only this one cquation is needed.

M) gives 30x2 - 50x1 - Fx2 =0

= F=5

S0 the least force needed is 5 N.

Check: A) gives S0x1 — Rx2+30x4=0 = R=8
1 gives R-F-50-30=0 = F=5
EXERCISE 17f

In cach quenion from | to 4. light beam (i, the weight s negligble) rets i 3
horizontal position on two supports, onc at A and the other at B, and cas
loads as shown. Find the force exerted at cach support.

Im__1Sm_os

15N 10N
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A see-saw consists of a light plank of length 4 m, balanced on a fulerum at

the centre. A child of weight 220 N sits on one end.

(a) How far from the other end should another child, of weight 280 N, sit if the
see-saw is to be balanced?

(b) What force is exerted by the fulcrum?

Questions 6 to 9 concern a horizontal uniform beam supported by vertical ropes.
In cach case find the tensions in the ropes.

PR L VN 9
L A

T T 9. i 7.

v
In questions 10 to 12, state any assumptions that are made.

A non-uniform plank of wood 3 m long is being carried by two men, one at
cach end of the plank. Mick is taking a load of 42 N and Tom at the other end
is supporting 22 N Find the distance from Mick's end of the point through
which the weight of the plank acts.

2N 2N

A boy builds a simple bridge over a stream by supporting a uniform plank
of wood symmetrically on two small brick piers, one on each bank. The piers are
2.6 m apart, the weight of the plank is 300 N and the boy’s weight is 420 N.

Find the force exerted by each pier when the boy stands
(a) over onc of the piers

(b) 1 m from one pier

(c) in the centre of the bridge.
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. The scales in the diagram consist of

a uniform beam ABC of mass A 8
0.5kg, which s pivoted at B, with sm
AB = 0.5m and BC = 0.3m. ot

A scale plan of mass 0.4kg is weight
attached at C and a sliding counter

weight can move on the section AB

in such a way that its centre of

mass can be placed exactly at A. It

is required that masses of up to

m':: can be weighed when Zlnmﬂ | S—
centrally in the scale pan.

(a) Find the least possible mass for the counter weight.
(b) Find the distance from B of the centre of mass of the counter weight for the
scales 10 balance when the scale pan is empty.

. A trolley is made of thin metal bars, with central cross-section ABC.

Angle ABC = 90°, AB = 0.3m and BC = 1.2m. Its wheels are on an axle
passing through B.' A packing case, of mass 150kg has a rectangular cross-
section measuring 0.6m by 0.8m and it is packed so that the centre of mass is at
its centre. The case is placed on the trolley as shown in the diagram and a porter
supports the trolley, with BC at an angle 0 to the vertical, by exerting a force

P newtons vertically upwards at C. Assume that the weight of the trolley is
negligible.

(a) If the porter can place the trolley in a position where it just balances,
without any force P holding it at C, find the value of 0.

(b) If 0=35 find P.




CHAPTER 18

COPLANAR FORCES IN EQUILIBRIUM

GENERAL CONDITIONS FOR EQUILIBRIUM IN A
PLANE

We know that if the forces shown

in the diagram act on a body, \

that body will be in equilibrium Xl,, /I"

only if both the resultant force and s /

the resultant moment are zero. e

Now the forces acting on the object are not parallel so the resultant force has
components in the directions of both Ox and Oy.
‘Therefore, if the object is to be in equilibrium the sum of the components in each
of the directions Ox and Oy must be zero.
So now we can give the general conditions necessary for an object to be in
equilibrium under the action of a set of non-parallel coplanar forces, i.e.

the resultant force in the direction Ox is zero

the resultant force in the direction Oy is zero

the resultant moment about any axis is zero
Applying these conditions to a pamculm problem gives three equations, so three
unknown quantities can be fous
In some problems it is more convenient to use an alternative set of three
independent equations, i.c.

the resultant in the direction Ox (or Oy but not both ) is zero
the resultant moment about a particular axis is zero
the resultant moment about a different axis is also zero
The following Examples and Exercise illustrate the use of both of these methods
as applied 1o a variety of questions.
Note that another way to produce three independent equations is to take
moments about each of three axes provided that these axes are not in line.
(If they are collinear, the third resultant moment would simply be a combination
of the first two and not an independent fact.)
388
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Examples 18a

5N The diagram shows a set of forces in equilibrium.
o BCDE is a square of side 0.5 m.
¢ g Calculate P, Q and d.

-— 2N

T
First we will resove parallel 0 BC and CD

- P-2-7=0 = P=9
1 Q+1-5=0 = Q=4

Now taking moments about B gives a simple equation for d.
B) Oxd+ 5%x05 - 7x05 =0
= 4d-1=0 = d=025

Almnrm4mﬂwnw“_mmqmmﬂnm'mA

‘ground and resting against a vertical wall at the top B. The ladder is
ﬂmmlﬂnumhmmwmmhmkwu
the coefficient of friction is §. Find the angle 0 between the ladder and the wall
when the ladder is on the point of slipping.

“The ladde is about o slip 50 friction i lmiting and F = uR.
Resolving horizontally and vertically gives

~  S-4rR=0

1 R-W=0

Hence R=W and S={W

The third necessary equation is given by taking moments about any axis. The best choice of axis is
through A because both F and R pass through A and therefore have zer0 moment.
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A)  Sxdcosh - Wx2sin0 =0 = S§=4iWian0

W= iWune = wnd =}

The angle between the ladder and the wall is 34° (nearest degree).

. The end A of a uniform rod AB of length 2 and weight I is smoothly pivoted to a
fixed point on a wall. The end B carries a load of weight 2J¥. The rod s held in a
horizontal position by a light string joining the midpoint G of the rod o a point C
on the wall, vertically above A. The string s inclined at 60° to the wall. Find, in
terms of I, the tension in the string and the horizontal and vertical components of
the force exerted by the pivot on the rod.

We wil represent the components of the force at the pivot by X and ¥ as shown.

“There arc threc unknown quantitis, X, ¥ and 7, so we ned three equations and will resolve in two.
directions and take moments about an axis

Resolving — X = Tsin 60° = 0 n

Resolving | Y4+ Teos 60°— W21 = 0 el

1 we take moments about A, X and ¥ are not involvd.

A Wxa+2Wx2a~Txasin30° = 0 €]

From (3], Ta(}) = SWa = T = 10W

Using this value of T in [2] gives
YHIOW(E) -3 =0 =

2w
and [1] gives pmw%:u S X=s5wy3

‘Therefore the tension in the string is 10
The vertical component of the pivot force is 2 downwards.
“The horizontal component of the pivot forceis  SWy/3  acting away from the wall.

I required, the magnitude and direction of the resultant force
at the pivot can be found from the triangle of forces, 2w w
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5. The diagram shows a drawbridge
over a moat. It is pivoted along
one end and chains are attached to
the outside corners of the other
end. These chains pass over
pulleys, immediately above the
gate, to a winch. Normally the
drawbridge is raised by operating
the winch, but unfortunately it has
broken down and soldiers in the
castle have been detailed to raise
the bridge by pulling the chains
vertically downwards.

Choose a model which will allow you to calculate, in terms of the weight W of the
drawbridge, the least total pull needed when the drawbridge has been raised through
30°. State, with comments on their suitability, any assumptions made.

We will model the drawbridge as a uniform plank (this is rough and ready but
not unreasonable), and treat the chains as light strings (this s not very accurate
as the weight of the chains would cause sagging and also increase the pull
needed). We will also assume that equal pulls are exerted on each side so that
the tensions are equal and the resultant pull acts in the middle. Further, it is
assumed that the height of the pulleys s equal to the length of the drawbridge
i.e. that the drawbridge fills the ‘hole’.

c
O

|
i
|
|
i
A B

InAABC, AB=AC=/ = ABC=ACB=60° = BAD =30

‘The hinge exerts on the drawbridge a force that is unknown both in magnitude
and direction but it can be avoided if we only take moments about A.

AY W x }1cos 30° — T x [ cos 30° =
= T= }W
Now we will assume that the tension is unchanged by passing over the pulley

(not very reliable as there is certain to be some friction at the pulley which would
increase the tension on the other side ).
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In questions 7 to 10 a uniform rod PQ of length 2 m and weight 24 N is hinged
at the end P t0 a fixed point and is in equilibrium. R is a point vertically
above P.

&

3
|

¥
2N

PQ is kept horizontal by a support at Q. Find the magnitude of the
supporting force and the magnitude and direction of the force exerted on the rod
by the hinge.

PQ s held at an angle of 60° to the upward vertical through P, by a light
string joining Q to R. Given that QR =2m,

(a) the tension in the string

(b)  the magnitude of the reaction at the hinge.

PQ is held at an angle of 60° to the downward vertical through P by a
horizontal force F newtons applied at the end Q. Find the value of F.

PQ s horizontal. A light string of length 2.5 m connects Q to R and a load
of 20 N is applied to the rod at the end Q. Find

(a) the tension in the string

(b)  the magnitude and direction of the force acting on the rod at the hinge.

. A uniform rod AB of length 4a rests with the

end A in rough contact with level ground where
the coefficient of friction is §. A point C on the
rod, distant 3a from A, rests against a smooth
peg. The rod is in limiting equilibrium when it is
at 30° to the ground. Find, in terms of W

(a) the reaction at the peg

(b)  the frictional force

‘The diagram shows a central cross-section AB of a
uniform window which has a mass of 4kg. The window
is held at an angle of 30° to the vertical by a light rod
BC, which is attached to the window frame at C.

AB

0.3m and angle ABC = 90°. Find

(a) the tension in BC

(b)  the magnitude and direction of the reaction at
the hinge.




13. A uniform rod XY whose mid point is M,

]

is in equilibrium in a vertical plane as

shown in the diagram.

The rod rests on a rough peg at Z and a

force F acts at X as shown.
If YZ=27M and tanz =4, fi

find
|h= :ocl'ﬁclcm of friction at Z and lhc

In the diagram AB is a uniform table top, of
weight 49 N, hinged to a vertical wall at A.
The table top is supported by a light rod CD,
which is hinged to the wall at D.

AC = CB = 03m and AD = 0.4m.

A boy leans on the table at B exerting a force
of 8N vertically downwards. Find

(a) the thrust exerted on the table top by
the rod CD

(b)  the magnitude and direction of the
reaction at the hinge A.

. A uniform rod XY, whose weight is W,

is in equilibrium in a vertical plane. The
midpoint of the rod is at M. The rod is
supported on a plane inclined at 30° to
the horizontal, by a string attached to
the end X and held vertically. The rod,
whose weight is I, is inclined to the
plane at 30° as shown in the diagram.
i

(a) the tension in the string in terms
of W

(b) the coeficient of friction between
the rod and the plane.

of frict

Chapter 18

. A light ladder, of length 4m stands on rough horizontal ground, with cocflicient
ion 0.25, and its upper cnd rests against a smooth vertical wall. Th

ladder is inclined at 65° (o the horizontal. The end rungs are cach 0.3m from an
end of the ladder. A man, of mass 80kg, stands on the top rung and another

., of mass mkeg, stands on the bottom rung. Find the least value of m which
will prevent the ladder from slipping. State any assumptions made and comment

on how reasonable they are.
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. The diagram shows a uniform rectangular shelf ABCD, of rass Skg. It is hinged

to a wall along the edge AD and supported by light rods BK and CL, which arc
attached to the wall at K and L. AB = 0.4m and AK = DL =

Find

(a) the tension in each of the rods BK and CL

(b) the magnitude and direction of the reaction at the hinge.

Central cross-section

03m

USING ‘THREE-FORCE EQUILIBRIUM'

‘The equilibrium problems in the previous exercise were solved by the general
‘method which uses resolving and taking moments.

There are, however, altemative methods for solving problems involving the
equilibrium of a rigid body under the action of three — or sometimes more
than three - coplanar forces.

‘We know that if three forces are in equilibrium they must be concurrent. So if a
rigid body is in equilibrium under the action of three forces, and the point of
intersection of two of the forces is known, the third force must pass through
the same point. In this way a force whose direction is not normally known
(e.g. the force at a hinge) can be located on a diagram.

‘This principle can be extended to cover some problems where more than three
forces are involved initially but can be reduced in number.

At a point of rough contact, for example, s
when friction is limiting, the resultant

reaction can be used instead of normal .

reaction plus frictional force, so reducing the I3

number of forces acting.

Once it is established that three forces are keeping a body in equilibrium, the
triangle of forces or Lami's theorem can be applied, providing some elegant
solutions as well as variety of method.
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Examples 18b

The first example shows how the resultant reaction at a point of rough contact
can be used to reduce a four-force problem to a three-force case allowing the
angle of friction to be found.

A uniform ladder AB, resting with B in rough contact with the ground and A in
‘smooth contact with a wall, is just about to sllp ‘when inclined at 30° to the wall.
Find the coefficient of friction at the grow

2 ol

If we use the resultant reaction at B the three forces then acting on the ladder are concurrent at C. CG
and DB are parallel and G bisccts AB (the rod is uniform), so C bisects Al

As P is the resultant of R and R, angle CBD is the angle of friction.

CD_3AD e

ani=ixk =L =y

The coefficient of friction is .

The second example shows how the direction of a force that is not generally
known can be located in a three-force problem and mensuration used to find
this direction.

A uniform rod is hinged at one end A to a wall. The other end B is pulled aside
by a horizontal force until the rod is in equilibrium at 60° to the wall. Find the
direction of the hinge force.

“The weight of a uniform rod acts through the midpoint of the rod. The horizontal force and the weight
of the rod meet at the point C. Three forces in equilibrium must be concurrent, so the hinge force also
acts through C, ie. the dircction of H is along CA.
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(a) Draw a general diagram and on it mark three forces that keep the rod in
limiting equilibrium and the angle of friction.

(b) Write down Lami’s Theorem for the three forces.

A uniform rod AB has one end B in rough
contact with the ground. The rod rests
spaisst 8 smooth il C i about 0 .
If tna=} and p=}, show that the
resultan redetion at B and the reaction at ¢
are equal in magnitude.

For questions 5 to 8 use this diagram, in which AB is a uniform ladder of
weight ¥ and is just about o slip.

Vi

Contact at A is smooth, contact at B is rough and 1= $. Find 0 and the
reaction at A.

Both contacts are rough and 8= 45°. Find t. (The ladder will not slip until
limiting friction is reached at both ends.)

Both contacts are rough with = 4. Find .

Explain why it is impossible for a ladder to rest in equilibrium at any angle to
a wall if the wall and the ground are both smooth.

The diagram shows a uniform rod AB of weight ¥,

held at right-angles to a wall by a string BC which is
inclined at 30° to the wall. Contact with the wall is

rough and friction is limiting.

(a) Mark on a diagram the forces acting on the rod,
using the resultant reaction at

(b) Find the angle of friction 2 and hence the value of 4, "
the coefficient of friction between the rod and the
wall. (Remember that = tan 2)

(¢) Find, in terms of W, the tension in the string.
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1f we consider the framework as a whole, the forces in the rods occur in equal and
opposite pairs and so do not affect the overall equilibrium. However the weight
of the load and the two supporting forces are external forces and they must keep
the framework in equilibrium. The magnitudes of R and S can be found by
taking moments about A and C for the external forces only.

Now at each joint a number of forces act ( three in this example ) and unless these
forces are in equilibrium the joint will break.

Ata joint the force at only one end of each rod is involved, so now we must deal
with the equilibrium of the concurrent forces that act at each joint individually
until all the internal forces have been evaluated.

(It is not always obvious which rods are ties and which are struts; if in doubt
mark all forces as thrusts, then any value that tums out to be negative
indicates a tension. )

Example 18¢c

A framework consists of three light rods, each of length 2a, smoothly jointed to
form a triangle ABC. The framework is smoothly hinged at B to a smooth vertical
wall and carries a weight W at A. It rests in equilibrium with C restiog on the wall
at a point vertically below A. Find the reaction at C and the force in each rod.

“The wallis smooth 50 the reaction at C is horizontal. The reaction at B is unknown in both magnitude
‘and direction but it is not wanied and can be avoided by taking moments about B. We will mark the
forces in cach rod as thrusts.

5
Considering external forces:

B)  gives Wx2asin60’ ~ Rx2a =0
= R=4{Wy3

Now resolving the forces at C

- R-Tysin60° =0 = Ty=W
! Tyt Tacos60° =0 = Ty = 4w

(negative denotes tension)




@
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. A lamp of weight 60N is attached to the outside wall

408 Chapter 18

Now resolving the forces at the joint at A.
(T4 T)sin60° = 0

= T=-Th = -W

The reaction at Cis +Wy/3 away from the wall.

The force in AC s a thrust of magnitude W, the force in AB is a tension of
magnitude W and that in BC is a tension of magnitude § V.

Note that we did not use joint B; we would have done had the reaction at the hinge been wanted.

EXERCISE 18¢

State whether each member s a tie or a strut and make use of symmetry
whenever this is possible.

of a pub by two light rods, AB of length 0.8m and
BC of length 0.4m, smoothly hinged to the wall.
‘The rods are smoothly jointed at B where the lamp
is suspended. Find the forces in the rods.

‘The diagram shows a roof truss made up of a B

triangular framework of smoothly jointed beams,

supported at A and C. The weight, 2400N, of a

chimney acts through B. Find the reactions at A %, <
and C and the foree in each beam.

One end of a footbridge is supported on the
symmetrical structure of smoothly jointed members
shown in the diagram. Find, in terms of I, the
force in each member,

‘The symmetrical roof support shown in the diagram

is constructed from jointed members and is supported
on a wall at each end. Find the force in each member.
(Hint. At B resolve parallel to AB and BF.)
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CENTRE OF GRAVITY AND
CENTRE OF MASS

CENTRE OF GRAVITY

‘When we consider a rod of weight W, it is obvious that the rod is made up of a
large number of very short lengths of material, each with its own weight.

WWWWW

However, when dealing with an equilibrium problem involving a rod we usually
mark a singe weight acting at a particular point on the rod which we Tave
froquenty referred to a5 e point through which the weight of the rod acts’.

= v ]

WA W

Ww

Now if we want to replace all the components of weight by a single weight we
must ensure that it has exactly the same effect on the rod as the separate
components have, i.c.
the total weight is the sum of all the component weights
and
the single weight acts through a point such that the moment of the single
‘weight about any axis is equal to the resultant moment of the components.

The point through which the resultant weight of a body acts is called
the centre of gravity of the body and is very often denoted by G

and its coordinates by (%, 7).
‘The position of the centre of gravity of any object can be found by equating the
resultant moment of all the parts, to the moment about the same axis of the total
weight acting through the centre of gravity.
‘This principle applies to any object of any size, shape or dimension but we will
look at a slmplc example of a set of separate particles.

w05
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Consider thre particles, A, B and C, of weights 4 N, 2 N and 3 N respectivly,
attached to points on a light rod PQ as shown in the diagram below.

A A

‘We know that, about any axis, the total moment of the weights of the particles is
equal to the moment of the total weight.

Choosing (o take moments about P we have
4x24+2x5 4+ 3x6 = (4+243)xX
Hene % =4

This approach can be extended to any number of weights, W,, Wy, Wi, ...,
at distances x,, X;, X3, ... from the chosen axis.

- B
I
bbb v
W VW Vi, W,
P) Wixx + Waxx + Waxxy + ... =Ix (Wi +Wy+Wy+...)
ie. ©IW,x, = XIW,

( means “the sum of terms of this form when n takes values 1,2,3...')

CENTRE OF MASS

Using W =mg in the equation XW,x, = XTW, gives
Zm,gx, = XTmg
If we take the value of g as constant and cancel it from each term in the moment

equation above, we get Zm,x, =XZm, in which each term is of the form
mass x its distance from a particular axis.

‘The solution of this equation is the location of the point G which we have so far
called the centre of gravity, i.c. the point about which the weight of an object is
cvenly distributed.

However, as we now see, the mass also is evenly distributed about G which
therefore can also be called the centre of mass.
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This argument depends on the assumption that the value of g is the same for all
the masses (and so can be cancelled ). However, provided that we are not dealing
with bodies (e.g. a mountain) that are so high that the value of g changes
between the highest and lowest parts, we can make this assumption, i.e.

for an object of I size, th f i ith the f gravity
Hence, to find the centre of mass of a particular object we form an equation in

which, on one side we have the sum of terms like m, x x;, and on the other side
the sum of all the masses multiplied by X. This equation can be written

Zmx, = ¥Im,

Examples 19a
. The diagram shows a set of three particles of masses 5 kg, 2 kg and 4 kg
attached to a light rod at the given positions. Find the distance from O of the
of mass, G, of the particles.

ste e oY
-—lm
—m
I x
Stg Tk ne = Mg
Using Emx, = XEm, gives
Sx142x5+4%10 = ¥x(5+2+4)
= ¥=5

The distance of G from O is 5 m.

Particles of masses 3m, 2m, 6m, and am are attached to a light rod AB at
distances 3d, 4d, 84, and 12d from A respectively. If G, the centre of mass of the
particles, i distant 7d from A find the value of a.

Aoy My L AW Gy
i on e Giram
Using Emx, = XEm, gives

Imx3d + 2mx4d + 6mx8d + amx12d = (11 +a)ynx7d
(65-+12a)md = (11 +aynx7d
(12-7)a = 77-65 =
a=24

4

13
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EXERCISE 19a

1. Find the distance from P of the centre of mass, G, of two particles placed at P
and Q, where PQ is of length 24 cm, if the masses of the particles are respectively

(a) Tkgand2kg (c) 3kgand 8 kg (c) mand Im
(b) 3kgand I kg (d) 6kgand 4 kg (f) 8mand 6m.

In cach question from 2 to 10 find the distance from A of the centre of mass of
the given set of particles.

2 M oy 3 ga . 2 o
n o £ ) 1
3 aga a0, 2 6. o 2
om .. - b
4. 3 aga 7. a0 a
1 o (4 o
8 o 9. A 0. g
“ e 5
om oSJ i
m oJ 4
s Sm
a M
™
g m

1. Three particles whose masses are 2 kg, 5 kg and x kg are placed at points
with coordinates (1, 0), (2, 0) and (6, 0) respectively.

() If G, the centre of mass of the particles, is at the point (3, 0), find x.

(b) A fourth particle of mass 2 kg is placed at the point (5, 0). Find the centre
of mass of the set of four particles.

12. A light rod AB is 80 cm long. Three particles, cach with mass 2 kg, are
attached at points distant 20 cm, 36 cm and 48 cm from the end A.

(a) Find the distance from A to G, the centre of mass of the particles.

(b) A fourth particle s attached at B. Find its mass if the centre of mass of the
four particies is at the midpoint of the rod.

(¢) 1f the particle distant 48 cm from A is then removed, find-the distance of
the centre of mass of the remaining three particles from A.
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THE CENTRE OF MASS OF A UNIFORM LAMINA

The number of particles that make up a lamina is infinitely large, so clearly it is
not practical to locate its centre of mass in the same way as for a small number of
distinct particles. However there are alternative methods for dealing with some
uniform laminas (the mass per unit area of a uniform lamina is constant
throughout). One of these methods uses the properties of symmetry.

1f a uniform lamina has a symmetrical shape, the mass is equally distributed
about the line of symmetry. Therefore the centre of mass must lie somewhere
on the line of symmetry. If there is more than one axis of symmetry, it
follows that G is located at the point of intersection of these axes.

The Centre of Mass of a Uniform Rod

s —1
G

The midpoint of a uniform rod is clearly its centre of mass, as the masses of the
two halves are equal and equally distributed.

The Centre of Mass of a Uniform Square Lamina

From symmetry, the centre of mass of the square lics somewhere on the line AB
that bisects the square because the distribution of the mass is the same on both
sides of this line. Similarly the centre of mass lies on CD and therefore is at the
midpoint of each of these lines, which is the geometric centre of the square.

The Centre of Mass of a Uniform Rectangular Lamina

Using symmetry aswe did above, the centre of mass is at the point of intersection
of AB and ClI . the poml where the bisectors of the sides meet.
(Note that this is also the point of intersection of the diagonals of the rectangle. )
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The Centre of Mass of a Uniform Triangular Lamina

A

c ¥ B
As there is no line of symmetry, we will divide the triangle into strips parallel to
one side, BC say, and regard each strip as a ‘rod”.
The centre of mass of cach strip is at its midpoint, so the centre of mass of the
triangle, G, lies on the line passing through all these midpoints, ie. on the
median AL.
Now using strips parallel to AC shows that G also lies on the median BM.
So G is at the point of intersection of the medians of the triangle.
It is a geometric property of a triangle that its medians intersect at a point which
is 4 of the way from base to vertex on any median. This point is called the
centroid of a triangle so we can say that the centre of mass of a uniform
triangular lamina is at the centroid of the triangle.
Hence for a right-angled triangle, G is | of the way from the right-angle along
each of the perpendicular sides, c.g.

&

:
b
}

If the lamina is not uniform its centre of mass is unlikely to be at the centroid. In
other words, the centroid of a triangle is always 4 of the way up any median, but
the centre of mass of a triangular lamina is not necessarily at the centroid.
Readers may occasionally find centroid used as though it meant centre of mass.
This is not so. The centroid is a geometric point and does not change if the
density of the shape varies, whereas the centre of mass is a property of balance
and does depend on the distribution of the mass.

]

THE CENTRE OF MASS OF A COMPOUND LAMINA

Now that the position of the centres of mass of a number of common laminas are
known, they can be used to find the centre of mass of a uniform lamina that is
made up of these shapes.
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For each part of the lamina, the mass can be expressed as the product of area and
mass per unit area, ie. mass = area x density.

1t follows that the mass of each part, and hence the mass of the whole, is a
multiple of p, where p (pronounced ro) is the symbol for density.

Examples 19¢
. Find the centre of mass of the uniform lamina OABCDEF.
e
.
4a . 2. £
2
o W )

Lt p be the mass per unit arca of the lamina and let G(¥, ) be the ceatre of mass of the whole lamina.

The mass of OAEF is 16a% and its centre of mags is at (2a, 2a)
The mass of ABCD is 4a’p and its centre of mass is at ( 5a, a)
The mass of OABCDEF is 16a%p + da’p = 20a%p

Using Em,x, = XEm, gives
16a%p x 2a + 4a’p x Sa = 20a°p x ¥
Now da’p cancels giving ¥ =l

H

Similarly using Em,y, = yEm, we have

16a%p x 2a + 4a’p x a = 20a’p x 7 = 2

y=3
The centre of mass of the whole lamina is the point (132, %)

The solution of this example can be set down more concisely by using a table as
shown below.

Coords of G

Portion Mass | x y mx my

+ OAEF 16a%p | 2a 2 | 16px2 | 16apx 2
+ ABCD 4ap Sa a ddp xSa | 4a’pxa

OABCDEF | 20a% | % 7 | 0% x3 | 20apx¥

The plus signs are a reminder that the two parts are added to give the whole.
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Working down the Sth column 16a’p x 2a + 4a’p x Sa = 20a*p x X
= ¥ =l

Working down the 6th column 16a%p x 2a + 4apxa = Wapx§
- y=%

The tabular layout is recommended for all problems of this type.

Find the centre of mass of the uniform lamina ABCDE shown in the diagram.
%

fu3a c

e

The siapa o symmenical aboutte e hroh C tat tacs AR 10 By on this
this line the x-axis. Only the x-coor of the centre of mass is unknow

. We will make

Portion Mass | xcoord. of G | mqx,
+ABDE | 4d’p a 4apxa
+BCD 3ap 2a+a 3a’p % 3a
ABCDE Talp x Tap x ¥

Emyx, = $Em,, ic. working down the last column gives
4dpxa + dapx3a = Tatpx X

= PRy

The centre of mass of the lamina is on the line that biscets AE and DB and

distant 43¢ from AE.

The diagram shows a uniform rectangular Iamina
ABCD of mass SM. A particle of mass 2M is

sy attached to B and a particle of mass 3M to C. Find
@20 the distances from AB and AD of the centre of mass
of the lamina complete with s loads.
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Coords of G
Portion Mass [ x [y [ mx | my
+ ABCD M| a | 2 | sMa| 10Ma
+ Particle B M 2a o 4Ma o
+ Particle C M 2a da 6Ma | 12Ma
Loaded lamina | 10M | X | ¥ | 10Mx | 10My

Using Emyx, = XEm, gives
SMa+4Ma+6Ma = 10MX =

Using Em,y, = FEm, gives
0Ma+0+12Ma = 10My = 3 =22

‘The centre of mass is distant 1.5 from AD and 2.2a from AB.

A L] B A uniform wire is bent into the shape of three sides
{u of a trapezium, as shown in the diagram. Find the
ta c coordinates of the centre of mass of the shape.

L ————
centre of mass of each section of the wire i at the midpoint and the mass of the wire s proportional
10 its length. We will use k as a constant of proportion.

Coords of G
Portion | Mass | «x ¥ mx my
+0A dax k o 2a 4ka x 0 4ka x 2a
+AB 6axk 3a da 6ka x 3a 6ka x 4a
+BC |2axk| 6a 3 | Zax6a | axla
OABC | 12k | x F | 12akx¥ | 12akxy

Using Emx = YEm, where Im = (4+6+2)ak, gives
4kax 0 + 6kax 3a + 2kax 6a = 12ka¥
= =4
Using Emy = 3Em gives
4kax 2a + 6kax 4a + 2kax 3a = 12%kay
= §=ln
The coordinates of the centre of mass are (%, 122).



Centre of Gravity and Centre of Mass

Find the centre of gravity of each framework of rods. All rods are of equal
density.

7 T 8 )
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Find the centre of gravity of each lamina
y 0.
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FURTHER PROBLEMS

In the exercise above all the compound objects involved relatively simple
sections.

Now we look at some problems that involve finding the centre of mass of more
complex compound bodies.

Examples 19d

. The diagram shows a uniform lamina, whose
density is 1.2kg per square metre, in the
shape of a square ABCD, of side 2m. A
circular hole of radius 0.5m is cut from it.
‘The centre of the hole is distant 0.8m from m
both AB and AD. A thin uniform [e-osm.

strip is attached to the edge BC. 7
Given that the mass of the strip is 1.5kg,
find the distances of the centre of mass
of the lamina from AB and from AD.

[P —

D is 2x12kg ie 48kg and the mass removed for the hole

The mass of Al
is 7(0.5)'x 12ke. ie. 09425k (using 4 sf during the working ).

Distance of C of M
Portion | Mass | x from AD | y from AB | Massxx | Massxy
+ABCD | 48 1 1 48 48
~Hole | 09425 08 08 0754 0.754
+Stip | 1S 2 1 3 K}
Whole | 5.358 * 5 sassx | s3ssy

Using Smx = ¥5m gives (48 -0754+3) = 5358%
= X = 1315
Using Smy = jEm gives (4807544 15) = 5358y

= 1035

“The centre of mass is 1.32m from AD and 1.04m from AB (3 sf).



2

2. A ‘modern art’ wall plaque, shown in

BC = BD = 0.6m. A lead motif

is attached at C.

‘The mass of the copper triangle s 1kg
and that of the aluminium triangle is

0dkg.

‘The artist intends the plaque to hang from A with BC horizontal and to achieve this
its centre of gravity must lie on the perpendicular bisector of BC. What must the
mass of the motif be for this to be achieved.

Only the x-coordinate of the centre of mass is needed and this is known 10 be 0.3

Portion | Mass (m) | xatCofM mx
ABC 1 03 03
BCD 04 02 0.08
Motif M 0.6 0.6M
Plaque | (14+M) 03 (144 M)(03)
Using Emx Tm gives  03+0.08+0.6M = (1.4+M)(03)

038

004 = M=0133...
The mass of the motif should be 0.133kg (3 sf).

EXERCISE 18d
M
1. A uniform lamina has the shape of a square s0em/N\aoem
ABCD, of side 30cm, joined along the side CE to E, c
an equilateral triangle CDE. Find the distance of
the centre of mass from AB. e
A b

2. The density of the lamina described in question 1 is 0.25 g/cm?. The centre of
mass is to be relocated on the line CE by attaching a particle of mass mg at the
point D. Find m.

3. The centre of mass of the lamina in question 1 is brought on to the line CE by
making a different adjustment. This time the density of the triangular section is
increased while the density of the square section remains at 0.25 g/em?.  Find the
density of the triangular section.
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A circular lamina of radius 10cm, with diameter AB,
has a circular hole, of radius rem, cut in it. The
centre of the hole is at a point C on AB,

where  AC = xem. It is required that after making
this hole the centre of mass of the remainder should
lie at a distance of 8cm from A. By finding the
necessary value for x in each case, decide whether
this can be done

(a) if r=Sem,
(b) if r=6em.
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CENTRE OF MASS OF A RIGID BODY

So far we have been finding the centres of mass of laminas, i.e. two dimensional
objects. Therefore only two coordinates were needed to locate the centre of mass.
Now we are going to consider rigid three-dimensional objects and the location of
their centres of mass clearly requires three coordinates. In all the cases we deal
with at this level, however, the body will have either an axis or a plane of
symmetry so that at least one of the coordinates is obvious.

o

For example, a solid right cone has an axis of
symmetry from the vertex to the centre of the
base so its centre of mass, G, is somewhere on this
ling; it remains only to find one coordinate, i.e.
the distance of G from the vertex (or the base).

Whenever the centre of mass of a symmetrical solid object s to be found, the line
of symmetry should be chosen as one of the axes of coordinates.

FINDING A CENTRE OF MASS BY INTEGRATION

When an object can be divided into a small number of parts, the mass and centre
of mass of each part being known, the centre of mass of the whole object can be
found by using  Tm,x, = ¥ Em, with similar expressions for j and z when
the object is three-dimensional.

Some bodies cannot be divided up in this way, but can be divided into a very
large number of very small parls whose masses and centres of mass are
known. In cases like this, it may be possible to evaluate ©m,x, and Em,
by using integration.

Suppose that we are asked to find the position of the centre of mass of a uniform
solid right circular cone with height 4 and base radius a.

We will take the axis of symmetry as the x-axis. Therefore the centre of mass G
lies on the x-axis and only the x-coordinate of G has to be found. For a reason
that will become clear during the calculation we place the origin at the vertex.

a
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The cone can be divided into thin slices, each parallel to the base and each being
approximately a thin circular disc with its centre of mass on the x-axis.

o
(3.3 wy

Considering one typical slie, called an elemen,
we see that i is approximately a disc for which:

the radius is approximately y,
the thickness is a small increase in x, ie. ox,

hence the mass, m,, is approximately (my?0x)p,
where p is the mass per unit volume,

the distance of the centre of mass from O is approximately x,,
hence m, x, is approximately (mp)?dx)x

Therefore ~ Em, x, = Sapyixox
Now it Srpy’xox = any’x dx
Therefore as ox—0 S, x, — any’x dx
“The mass of the whole cone is ¥p where ¥ is the volume of the cone,
$Sm = Vpx
Then using £, x, = ¥ Sm, gives
Jupy’x dx = Vpx G

It is important to appreciate that equation (1] applies to any solid that is
symmetrical about the x-axis and can be divided into disc-like elements.
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THE CENTRE OF MASS OF A SEMICIRCLE

‘The integration method can also be used to find the centre of mass of a uniform
semicircular lami

Consider such a lamina, bounded by the y-axis and part of the curve with

equation x?+)* = &, divided into vertical strips as shown. The x-axis is
a line of symmetry so the centre of mass lies on it.

y y
SR
@.9)
OH%U' 0%.

For one elemental strip of width dx,

the length is 2y so the arca is approximately ~2ydx,
the mass is approximately 2ypdx  where p is the mass per unit area,
the distance of the centre of mass from the y-axis is approximately x

Thercfore mx % (2ypdx)x, ie. Zeyplx
Now we can sum allthe clements using Tmx = £Zm where

Somx =Y 2xp8x

§ g
As the width of the elemental strips approaches zero,

the lmit as dx — 0 of 3 2uypbx = J 2ypdx

- R

and the imit as 8x — 0 of Sm is the mas of the semicirc, Le. Lnap
Now ¥ +) =d = y=H@-¥)

Therefore Zﬂl',\"/(n" — %) dx = impa'x
o

= z[-;(ai-xl)”’]

o
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EXERCISE 20a

. The shape of a uniform lamina is that of thc

area bounded by the x-axis, the curve y =
and the line x = 2
(a) Find the area of the lamina

(b) Find the x-coordinate of the centre of
mass of the lamina, o

For a uniform lamina in the shape of the area
in the first quadrant between the curve y = x!
and the line y = 4, find

(a) the area

(b) the y-coordinate of the centre of mass (use
clemental strips parallel to the x-axis ). o

a1

In the questions that follow, assume that each solid of revolution is uniform.

In questions 3 to 10 a solid of revolution is formed when the area bounded by
the given lines and part of the line or curve with given equation, is rotated about

the  x-axis. Find the distance from O of the centre of mass.

x=

The arca bounded by the line y = 2x, the x-axis and the lines x = 2 and

The area between the line y = ax and the x-axis, from x = h to x = 2h.

“The area in the first quadrant bounded by y = %, the x-axis and the line x
‘The area bounded by y = x* + 2, the x-axis, the y-axis and the line x =

The arca bounded by y = V&, x = 1, x = 4 and the x-axis.

The area bounded by y = \/x T4, the x-axis
and the lines x = 0 and x =

The arca bounded by y = ¢*, x = | and the x and y axes.

‘The area bounded by y the x-axis,

Va1’

the y-axis and the line x = 5,

|_
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COMPOUND SOLIDS

We are now going to consider finding the centre of mass of a solid body that is
made up of two (or more) parts, each of whose volume and centre of mass is
known or can easily be found.

The centres of mass you can quote, in addition to the obvious cases of a cuboid
and a sphere, are given in the table below.

Body ‘ Position of G

Halfway up the centre line.
Hemisphere | On the radius of symmetry, § of the way from the centre of the plane
fce.

one On the axis of symmetry, } of the perpendicular height above the base.
Pyramid As for & cone.

The method we use when dealing with compound solids s the same as that used
for compound laminas, i.c. the mass and location of centre of mass (C of M) of
cach part, and of the whole body, are tabulated, providing the data necessary to
apply T, x, = xSm,

Examples 20b

‘The cross-section of a uniform solid prism of length /,
is the trapezium shown in the diagram. Find the
centre of mass of the prism.
T

The plane that divides the prism into equal halves is a plane of symmetry, so the centre of mass G les in
this plane which we wil take as the xy plane.

Taking p as the mass per unit volume we have:

Portion with Coords of C of M
crosssection | Mass m x ¥y mx my
+ABE 10)6)lp 2 2 180 181
+BCDE (2)(6)p 4 3 48lp 36lp
+ABCDE | (9+12)lp * y 2lps 2 bpy




Using  Em,x, = xEm, gives
18lp+48p = 2lpx = x=%

Using  moy, = 7 Sm, gives

180p+36p = 21lp5 =

Therefore G lies on the plane of symmetry at the point distant % cm and % em
from A in the directions of AC and CD respectively.

Note that when 4 prism has @ lan of symmetey, finding e cenr of mass amouts 10 idin the
re of mass of 3 lamina in the shape of the cross section,

. A child’s toy is made up of a uniform solid
hemisphere of radius a with ts plane face
fixed to the base of a solid right circular
cone of base radius a and height 4a. Find
the distance of G, the eentre of mass of
the toy, from the centre of the common
face.

‘ '
‘The hemisphere and cone have a common axis of symmetry so the centre of mass

lies on it.

Taking O as the centre of the common face and the positive x-axis through the
vertex of the cone, the following table can be compiled

Section Mass, m xatCof M mx

Cone Tna (4a)p a {ndp
Hemisphere aa'p “Ja “yma'p
‘Whole body 2nd’p E 2na’px

Using  £m,x, = XEm, gives
$natp + (~ymatp) = 2nadpx
- Ba=2s
“The posiie sign for % shows that G i i the cone and not the sphers.

Therefore G is on the axis of symmetry of the cone, distant  {a from the
common face.
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3. The diagram shows a uniform solid body
formed from a cube of edge da with a
cube of edge 2a removed from one corner.
Find the position of the centre of mass of
the sol

‘The most convenicat choice of origin s the ‘comer” that has been removed because this point is at the
‘corner of both of the cubes we conside

There is an axis of symmetry, passing through
0, Aand B. The centre of mass, G, is therefore
on OAB and is equidistant from the three faces
that meet at O. Therefore we need find only
one of these distances.

Section Mass, m xatCof M mx
+ Large cube (4a)'p 2a 1284 p
(complete)
— Small cube (2a)'p a $a'p
Remaining body | (4 -2")a’p x 560’ st

Using  Em,x, = £Xm, gives 128a%p —8a‘p = 56a°p%
= 1200 = 568 = %= La

The centre of mass of the sol
each of the edges.

is distant a from the removed corner, along

Note that by using the ratio of volumes of similar solids, the table can be made
even simpler. The ratio of the volumes, and therefore the masses, of the two
cubesis (da)':(2a)’, ie. 8:1

‘Therefore, taking M as the mass of the removed cube, the table becomes:

Section Mass m xat Cof M mx
+ Large cube [ 2 16aM
— Small cube M a aM
Remaining body ™ x ™z
giving 16aM —aM = TMx = Ya

For those readers who arc comfortable with using similarity, this method, where
appropriate, is obviously neater,
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. A concrete bollard comprises a solid cylinder, of radius 8 cm and height 46 cm,
surmounted by a cone of equal radis and height 24cm. The weight per unit mass
of the concrete from which the cylindrical section is made is twice that of the mix in
the conical section. Find the height of the centre of mass of the bollard.

2em

46 cm

Let the density of the material in the cone be p so that the material i the cylinder is of density 2p.

Portion Mass m yatCof M my
Cylinder w(8) (46)(2p) 23 92 x 23(8) np
Cone =87 (24)p 46+6 8x 52(8) np
Bollard (92+8)(8) mp ¥ 100(8) zpy
Emy? = yEm
= 92 23(8) np +8 x 52(8)'xp = 100(8)’npy
= ¥ = 2532,

The centre of mass of the bollard is 25.3cm from the base (3 sf).

Useful Points to Consider When Finding the Centre
of Mass of a Solid Body

® If there i a planc of symmetry use it if possible as the xy plane (i.c. the plane
containing the x and y axes.)

® If there is an axis of symmetry, use it as the x-axis (or the y-axis)

® Place Ot a point from which the centre of mass of cach section isasy to locate.

© 1§ O is inside the solid, remember that some value(s) of x will be negative.

@ If the body is made up of similar sections, the ratio of masses can be found
from the ratio of volumes.
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EXERCISE 20b

A stool has a top that is 30cm square and 2cm thick. At each corner there is a
leg. 20cm long and with a cross-section tha is a 3cm square. The top and legs

are made from the same material. Find the distance from the top of the stool to
the centre of mass of the stool.

m?
Tl

Questions 2 to 4 are about a uniform solid
made by joining a right circular cone to a

] B
cylinder. Take the centre of the common face
as origin and the x-axis along the line of

A

symmetry as shown.

Find the distance of the centre of mass from the common face in each case.

(a) < (b)
2em
By
!! 2
A ey
¥ san
The centre of mass lics in the common face of the cone and the cylinder. If k is

the height of the cone and H is the height of the cylinder, show that #* = 6H?.

Given the dimensions in the diagram, find the
distance of the centre of mass from the
common face. Give your answer in terms of h.
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SUSPENDED BODIES
SLIDING AND TOPPLING

SUSPENDED LAMINAS

When an object is suspended by a string attached
to one point of the object, two forces act on the
object; the tension in the string vertically upwards
and the weight of the object vertically downwards.
If the object hangs at rest it is in equilibrium and
the two forces must therefore be in the same line,
i.e. the centre of gravity, and therefore the centre
of mass, is vertically below the point of
suspension. w

Now if the object is one whose centre of mass is
known, a right-angled triangular lamina for
example, the position in which the lamina will
hang can be found by joining the point of
suspension, A say, to G.

In equilibrium, AG is vertical.

Suppose that we are asked to find the angle between the vertical and one of the
sides of the lamina.

Itis not always casy to sce how to calculate this angle from the diagram of the
lamina in its suspended position. It i often more straightforward, if it is possible,
to draw the lamina so that two of its sides arc horizontal and vertical, and on this
diagram mark the line which would be vertical.

As an cxample consider the right-angled triangle shown abov.
4“4
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We know that AG is vertical and that G is
distant a from both BA and BC.
Therefore to find the angle 6 between AB and

the vertical we use
ang =2 =L
2 2
= 6 = 27° (nearest degree)

In this example, because the centre of mass of a triangular lamina is quotable, the
position of G is known at the outset.

Now consider the compound lamina given in the first worked problem in
Examples 19c.

Clearly the suspended position cannot be dealt with until G is located, ic. all the
work done in the example has to be carried out before we can begin to consider
how it hangs in equilibrium when suspended freely from a specified point, O say.
Now we have almdy drawn a diagram to locate G and, on the same diagram, we
can draw OG, i

It is immediately clear that tan 0 = 2
X

bt

Although there may be some readers who prefer to work with the *suspended
position’ diagram, many will find it casier to use the approach given above.

Examples 21a

A uniform lamina ABCD is in the shape of a mpmnm in which  AB = da,
AD=3a, DC=a and angle DAB is 9"

(a) Find the distance of G, the centre of mass of the lamina, from AB and AD.

(b) The lamina is suspended from A and hangs freely. What is the angle between
AB and the vertical ?
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(@) Coords of Centre of Mass|
Portion Mass x ¥ mx my
FAECD | 3ap ta Ja | 3fpxla | 3pxia
+ EBC $ap 2a a $apx2a| $apxa
ABCD Lap X ¥ Lapxx | Yalpxy
Using Emyx, = XEm,

=

3pxta + Japx2a = Baipx¥

Ta
5

Using Em,y, = yEm,

39 x3a + $adoxa

tan @

= distance of G from AD

= $apxy

distance of G from AB

a = 41° (nearest degree)
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SUSPENDED SOLID BODIES

Just as in the case of a suspended lamina, a body suspended from a point P hangs
in equilibrium with its centre of mass, G, vertically below P.

If the body has a plane of symmetry in which P is located and the position of G is
known, the equilibrium position of the body can be found in the same way as if
that section were a lamina.

A solid right circular cone, of height 4a and base radius a, is suspended freely from

a point P on the circumference of the base. Find the angle a between PO and the
vertical, where O is the centre of the base.

The centre of mass of a solid cone is known 10 be on the line of symmetry, } of the way from the vertex.
(0 the base.

3

‘When the cone hangs in equilibrium, PG is vertical.
G is distant 3a from the vertex and a from O.

Therefore  tanz = SO = 4
oP

The angle between OP and the vertical is 45°.

. A sculpture s in the form of a uniform solid cylinder of radius 2cm and mass 4M,
with a small lead bead of mass M let in at a point A on the rim of the base. If the
sculpture is suspended from the point B, directly above A on the upper rim, AB is

ined to the vertical at an angle a whose tangent is 4. Find the height, AB, of

the sculpture.

Al

Let the height of the cylinder be 2 centimetres.
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First we necd (o find the cenire of mass of the sculpture.

Coords of C of M
Portion Mass x ¥ Emx Smy
Cylinder aM 2 ” M Mk
Lead bead M 0 0 0 0
Sculpture M 5 y SMx SMy

Using Smx = xSm gives 8M =SMx = x=1}
Using  Smy = yEm gives aMh=SM = j=

Now consider the plane of symmetry through A

BG is vertical therefore ABG is a. o
%5 [
tana Nod.th
5
But  tanx=}
by

‘The height of the sculpture is 8cm.

EXERCISE 21a
. When it is freely suspended from A, find the angle between AB and the vertical,

for the lamina given in Exercise I

(a) question3  (b) questiond  (c) question 5.

. When the lamina shown in the diagram is frecly
suspended from A, AB hangs at an angle « 10 the
vertical where tan @ = 42
(a) Find, in terms of a and d the coordinates of the

centre of the mass of the lamina

(b) Express d in terms of a
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BODIES RESTING IN EQUILIBRIUM ON A
HORIZONTAL PLANE

Consider a lamina or a solid body resting with one face on a horizontal plane.
Depending on the shape of the cross-section, the body may have a tendency to
topple over. The solid whose cross-section is shown in the following
diagrams, for example, could topple over about B to rest on the edge through
C, but whether or not it does fall over depends on the relative positions of B
and G.

W
® o) i)

In diagram (i) the weight W of the body acts through a point within the face
through AB and the normal contact force R also acts through the same point,
5o the body can remain in equilibrium.

In the extreme position, diagram (ii), W and R act through B itself, keeping the
body just in equilibrium. N

If we consider moments about an axis
through B, both W and R have zero moment.
In this case we can see that the weight of the
shaded part exerts an overturning moment,
while the weight of the unshaded portion
exerts a restoring moment about B and these . N
must be equal.

v
Now in diagram (iii ) on the other hand, if AB cou/d remain in contact with the
plane, R would act through some point on AB and therefore the moments of W
and R about B would both be in the overturning sense. Therefore the body will
topple over (there will then be two normal reactions, one through B and another
through C).

So the question of whether the body will rest in the given position can be
answered either by checking the resultant moment about B or by checking that
the overall weight passes through a point within the base of contact ( this may
involve having to find the centre of gravity of the object).



(d) The weight of the wood acts vertically
downwards through G and passes
through the point H,

OH = 0G cos x
e OH=%x%=103cm

(¢) OH = 103cm and OA = l0cm, ie. OA<OH
5o H is a point inside the line of contact between the wood and the plane.

Therefore the wood will not topple over when placed on the plane.

The examples we have looked at so far have had either a plane or a line in
contact with the horizontal plane. If an object with a spherical surface rests in
contact with a plane, there is only a point of contact. The normal contact
force therefore must pass through this point so the situation is similar to that
of suspension, i.e. the point of contact must be vertically below the centre of
gravity. Additionally we know that, because the horizontal plane is tangential
to the circular cross-section, the normal reaction must pass through the centre
of the circle.

Examples 21b (continued)

. The diagram shows the central cross-section of &
casting in the shape of a hemisphere of radius
8cm, with a hemispherical depression, of radius
dcm. When the casting rests in equilibrium with
its curved surface touching a horizontal surface,
find the inclination to the horizontal of the line
of symmetry (OAB) of the plane face.

First we wil find the centre of mass of the casting, knowing that it les in the section of symmetry shown
in the diagram.

s0 their masses are in

“The two hemispheres are similar with a linear ratio
the ratio 8: 1.

Coords of G
Portion Mass x ¥ mx my
+ Large hemisphere M 8 ix8 64M 24M
— Small hemisphere | M 4 ixa | am | M
Casting ™ B 7 Mz | My
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Using  Emx = $Tm gives 64M —4M = TMx
Using  Smy = ySm gives 24M —3M = TMy
@

= 9 and

ten the casing et i equibium 0 & horizontal plae, towhin at P, GP i vrical. Abo 38 the
plane is tangential to the large hemisphere, GP passes through is cenre A

Therefore ang = X8 _4.45
¥ 7714

@ = 10° to the nearest degree.

EXERCISE 21b

. The diagram shows the cross-section through
the centre of mass of a uniform prism. The c 6em
prism has been placed with the face
ning AB in contact with a horizontal dem

(@) Find the distance of the centre of mass
of the prism from

(b) Can the prism rest in eq
without toppling over?

ABCDE is a cross-section through the centre -~
of mass of a uniform prism, which is placed
with the face containing AB in contact with a
horizontal plane.

3
mL o
(a) Find the distance of the centre of mass
of the prism from AE.
(b) Determine whether the prism will rest in
equilibrium or will topple. P




"

»

o

~

. The solid in the diagram consists of a cylinder and a
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The prism described in question 2 is altered by reducing AB to 8em without
changing the other dimensions. Find out whether it can now rest in equilibrium
with AB on the horizontal plane.

‘The diagram shows a piece of a wooden puzzle.

(a) Find, in terms of d, the distance from AF Al s

of its centre of mass
‘The picce of puzzle is now placed in a vertical el
plane with AB in contact with a horizntal c 2em
planc. Jtcm
(b) Wil the piece topple when d = 27 ¥ e
Calculate the range of values of d for which the wooden puzzle piece in
question 4 can rest in equilibrium with AB on a horizontal planc.
ABCDEF is a cross-section through the [ T
centre of mass of a prism. The prism is 1 B kumgxm
placed with this cross-section in a vertical P '\
plane and the face containing AB in contact ["liosn,
with a horizontal planc. JEA
(a) Find, in terms of &, the distance of the

centre of mass of the prism from AF.

(b) Determine whether the prism can stay in equilibrium in this position without
toppling if (i) k=5 (ii) k = 2

(c) Find the range of values of k for which equilibrium is possible.

cone attached to each other at their common plane
faces. The centre of mass is at the point G, where
15 em. Determine whether the solid will
remain in equilibrium when it is placed with BC in
contact with a horizontal plane, or will topple over
on to AB.

Questions 8 and 9 refer to this diagram of a uniform e} A2
solid in the shape of a frustum of a cone. 12em

(a) Find the distance from V of its centre of mass.

(b) The frustum is placed with its curved surface in contact with a  berizontl
plane. Will it remain in equilibrium in this position if & =

Use the result of 8a to show that the frustum is on the point of toppling when
costa = B3
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EQUILIBRIUM ON AN INCLINED PLANE

One of the properties necessary for the equilibrium of a body resting on a
horizontal plane, applies also to a body in equilibrium on an inclined plane,
namely,

if there is a plane or a line of contact, the weight, which acts vertically
downwards through G, must pass through a point within that region
of contact; the normal reaction acts through that point.

On an inclined plane however, the normal reaction, which is perpendicular to the
inclined plane, is not vertical and is therefore not collinear with the weight. The
normal reaction has a horizontal component but the weight of the body does not.
Therefore cquilibrium is not possible unless another force with a horizontal
component acts on the body. So, unless an extra supporting force is applied
1o the body, there must be friction between the body and the plane.

T
..
G or
(
W w

Note that, in either case, the three forces are concurrent at a point on the line of
action of the weight.

Note also that if a body has a spherical surface, it has contact with the plane at
only one point so the weight must pass through that point.

‘When friction maintains equilibrium, the resultant contact force S
(iie. the resultant of the friction and the normal reaction)
balances the weight; it is therefore vertical and must
pass through G.
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In general, then, if a body is placed on an inclined plane without any supporting
force, its equilibrium depends not only upon the position of G relative to the
contact region, but also on whether slipping can occur.

When slippingis about to ocer, it can be seen from the diagram that the angle of
friction ( between R and S) s equal to a.

Examples 21c

. A uniform solid cylinder, with radius a and height 3, is resting in equilibrium with

one end on a rough plane inclined at an angle  to the horizontal. The inclination

of the plane is gradually increased until the cylinder is just on the point of toppling

over.

(a) Find the greatest possible value of a.

(b) Find the least value of the coefficient of friction between the plane and the
cylinder.

l @
w

The cylinder is in equilibrium under the action of two forces, its weight and the resultant contact force,
therefore these two forces are collinear. The cylinder is on the point of toppling over 50 the contact
forces act through the lowest point P of its plane face.

From diagram (i) we see that AGP =

In AAGP, tnax=a+ja=3% = a=336.

Therefore, to the nearest degree, the largest angle at which the plane can be
elevated without making the cylinder topple over is 33° (34° would cause
toppling).



N

‘Suspended Bodies. Sliding and Toppling 455
(b) In diagram (ii) we sec that F = R tan x
But F<uR = p>tna

Therefore just to prevent slipping at the maximum clevation, 4 = §

At a warehouse, packages of goods are delivered from the first floor store to the
ground floor for despatch, by placing them on a moving ramp. All the goods in one
section are packaged in boxes that are cuboids, all with a base 1.6m square but of
varying heights. The ramp, which is rough enough for there to be no possibility of a
box slipping, slopes down at 40° to the horizontal. By modelling the boxes as
uniform cuboids, find the maximum permitted height of a box for safe delivery.

State, with reasons, whether you think um the model is appropriate and suggest
ways, if any, in which it might be impr

The boses cannot slip, 5o the only restriction necessary is 10 ensure that o box fopples over.

‘The weight acts through the centre of mass G and, for equilibrium, the resultant contact force must act
in the same line.

N

»

For equilibrium, the angle AGC must be greater than or equal to 40°
ic.  tan AGC > tan 40°

Taking the height of a box as 2k gives tan AGC = % - OTB > tan 40°

= h<095 (to2sf, rounded down for safety)
Therefore the maximum permitted height should be 1.9 m.

The suitability of the model depends on whether the contents of a box are always
such that the centre of mass is halfway up. Also the conveyor belt may not run
smoothly and jerks could make toppling more likely even at “safe’ heights.

Taking a centre of mass at, say, 60% of the height of the box might give more
reliable results.
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3. The diagram shows the cross-section of a uniform solid
brass ornament in the shape of a hemisphere with a cone
attached to its plane face. The radius of both hemisphere
and cone is 2a.

(a) Sketch the ornament if the height of the cone is (i) @ (ii) 6a and mark on
each sketch an estimate of the position of the centre of mass, G, of the
ornament.

(b) Itis intended to display the ornament with its
hemi surface resting on a velvet covered
inclined shelf as shown.

Use your estimated positions for G to explain, by
‘marking on a diageam the forces that act on the
ornament in each case, that equilibrium is possible
in only one of these cases.

(@ () (i)

TN

Mass of cone < mass of hemisphere  Mass of cone > mass of hemisphere
G lies within the hemisphere less G lies within the cone,
than }a from the centre. less than }a from its base.

(b)  Assume that contact with the velvet is rough cnough to prevent slipping

The normal reaction passes through the centre of the common base and
friction acts up the plane. So the resultant contact force, S, is inclined
“uphill’ from P.
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10. The frustum given in question 9 is now placed with its smaller circular face on
the inclined plane and 0 is again increased gradually untl the frustum is about to
topple. Find the value of 0 at this instant

11, The diagram shows a solid formed by
joining the plane faces of & cone, of radius a
and height a, to a hemisphere of radius a.

‘The centre of mass of the compound body
is distant }a from O. The body rests in
cquilibrium with its axis of symmetry
horizontal on a rough inclined plane as
shown.

Find the value of 6. a

FURTHER PROBLEMS

In this section we look at some problems involving rigid bodies which, while
using the same mechanical principles as have been applied so far, involve more
analysis and arc a little harder. Anyone who enjoys dipping a little deeper
into a subject wil find them interesting and rewarding.

‘We give a few examples to illustrate some of the possibilities, and the exercise that
follows includes more variations.

Examples 21d

1. A uniform solid consists of a hemisphere of radius  and a right circular cone of
base radius r fixed together so that their plane faces coincide. If the solid can rest
in equilibrium with any point of the curved surface of the hemisphere in contact with
a horizontal plane, find the height of the cone in terms of r.

v

The plane is tangential to the hemisphere so the normal reaction acting at the
point of contact, C, passes through O no matter where C is on the surface of the
hemisphere.
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The only two forces acting on the body are its weight and the normal reaction.

As two forces that are in equilibrium must be collinear, the weight of the solid
must also pass through O for all positions of C,

ie the centre of mass of the solid must be at O.

Therefore, if we take moments about an axis through O, the moments of the cone
and the hemisphere must be equal and opposite,

ie.  (4arhp) () = (3x0p) (§r) = H =37

h=ry3
A circular disc with centre O, radius 2 and weight ¥, rests in a vertical plane on
two rough pegs A and B. OA and OB are inclined to the vertical at 60° and 30°
respectively. Given that the coefficient of friction is § at each peg, find the greatest
force that can be applied tangentially at the highest point of the disc without
causing rotation. Give the answer, in surd form, in terms of I.

When rotation is about to take place the disc is about to slip at both pegs, i.c.
friction is limiting at both pegs,

ra 1

2a+ayT
TN

%

P

Resolving in any direction is not partcularly simple. On the other hand it i simple 10 take moments
about A, B and O. As these are not collinear we will use this method 1o form the three independent
quations we need.

A Fxda+Sx2a-Wxay3-4Sx2 =0
= S = 3IW-3F U]
B Fx(2+y3)a+Wxa—Rx2a-4{Rx2 =0
= 3R=W+FQ2+v3) [
o Fx2a-4Sx2-4Rx2a =0

= 2F = S4R Bl
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Using (1] and [2] in (3] x 3 gives
6F = 3\/3W —9F + W+2F+ \/3F
= F(13-y3) = W(3y3+1)
GB+HW
(13-3)
Note that taking moments about three different axes gives three independent facts

provided that the axes are not collinear. In this problem A, O and B are not
collinear.

The greatest foree is

. The cross-section of a uniform prism is a trapezium ABCE. This trapezium is
formed from a square lamina, ABCD, with the portion CDE removed. The side of
the square is 2m and the length of ED is 1.5m.

(a) If the prism is placed with ABCE in a vertical plane and AE on a rough
horizontal plane, show that it will topple about the edge through E.
(b) Find the least force that must be applied at C to prevent toppling.

7

<l

“The prism will topple if the line of action of the weight docs not pass through a point within AE; 1o
check this we need only the distance from AB of the centre of mass of the cross-sect

Portion | Mass (m) | Distance from AB mx
M (x)

ABCD 4 [ 49

~DCE 1.5p 15 225

ABCE 25p x 25p%

Using Emx = £Em  gives

4p-225p = 25p% =

(a) AE = 0.5 which is less than £, therefore the line of action of the weight of
the prism does not intersect AE and the prism will topple about the edge
through E.
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(b) Toppling about E is caused by the moment of the weight about E. In order
just to prevent toppling, the moment about E of the force F newtons
applied at C must counterbalance the moment of the weight. The moment
of the force is given by F x perpendicular distance from E. Therefore F
will be least when this distance is greatest and this is when the line of action
of Fis perpendicular to EC.

Taking W newtons as the weight of the prism,

B Wx(%-05) - FxEC =
= 25F = W(0.1-05) = 020
N F=4W

The least force required is 0.08H newtons.

4. “The diagram shows the central cross-section of a uniform cube which is placed on a
rough plane inclined at  t0 the horizontal where  tana = }. A horizonta force
P of gradually inereasing magnitude is applied at D as shown. If 1 = 3, show
that the cube will begin to turn about the edge through B before it bugjm to slide up
the plane,



»
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The values of Py and P; are different so the cube cannot begin to slide and
topple simultancously.

As soon as the lower of these values is reached, equilibrium will be broken.

Py < Py so the cube begins to turn about B before it can slide up the plane.

EXERCISE 21d

A packing case, of mass 40 kg, s in the shape of a cuboid measuring 2m by 1m
by 1.5m. It can be assumed that it is packed to a uniform density. A man
places it on a moving ramp which is inclined at an angle 0 to the horizontal and
is rough enough to prevent slipping. The 2m by Lm face is in contact with the
ramp so that, in cross-section, the case appears as in the diagram.

(a) Show that it cannot rest in equilibrium in this position without toppling if
tan

(b) If 0= 35 and the man applies a force P newtons at D in the direction
DC, find P

(i) Pis just great enough to prevent the case from toppling down the
ramp

(ii) P s so great that the case s just on the point of toppling up the
ramp.

When the uniform solid shown in the diagram is

placed with a point of its hemispherical surface .
in contact with a horizontal plane as shown
the diagram, one of the following things wi
happen:

(i) it will remain in cquilibrium in this position
(ii) it will rotate until AB is horizontal
Giif) it will rotate until it topples about B
Find which of these three occurs.
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Carry out the same investigation as that required in
question 2, for another solid of the same type but
with different dimensions as shown.

. The dimensions of a third solid of the same type are /
shown in the diagram. g
(@) the value of / so that the solid will

femain in equilibrium in the position shown.

(b) If h has the value found in part (a), describe S
what will happen if the solid is placed on the ¥
plane with its axis of symmetry at 80° to the
Vertical and then released.

A uniform rod AB, of weight W and length 4a, rests in limiting equilibrium at an
angle 0 to the horizontal in rough contact with two pegs, as shown in the
diagram. One peg is at B and the other at point C on the rod where AC = 3a.
Find, in terms of 0, the coefficient of friction, which is the same at both pegs.

A uniform solid cone, of weight ¥, base radius a and height 4a, is placed with its
plane face in contact with a rough horizontal plane. The coeflicient of friction
between the cone and the planc is . A horizontal force P is applied to the cone

half-way up its height

() Assuming tha it does not topple i, fd £ when theconc i jut on the
poi

(b,

Assuming lhu. it does not slide, find 7 when the cone is just on the point of

toppling.

(¢) Ifinitially P = 0 and then the value of P is gradually increased, in what
way will L—qmllbnum be broken?
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7. A uniform solid cone, of weight I, base radius a and height 2a, is placed with its
plane surface in contact with a rough plane which can be inclined at an angle 0
10 the horizontal. The coefTicient of friction between the cone and the plane is }.

Ifinitially 0 = 0 and then the plane is gradually tilted so that the value of 6
increases, in what way will cquilibrium be broken?

8. The diagram models a tower crane which consists of a gantry ABCD, of length
16a, which rests on top of a vertical tower. The gantry is of mass 10M. It has a
counter weight centred on end A and a trolley of mass M can move along section
CD. Loads are carried suspended from the trolley on a cable.

| Trolley

(a) The counter weight is such that, if the trolley were not fitted, it would be on
the point of pulling end A of the gantry downwards, turning about point B.
Find the mass of the counter weight.

(b) The theoretical maximum load that the crane could lift is determined by
considering the load suspended below D which would bring end D of the
gantry to the point of turning downwards about point C. Find this
theoretical load.

(In practice the trolley cannot reach this position and other safety margins
would be built in.)
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Suspended Solids

When a body whose centre of mass is G is suspended from a point P, PG is
vertical.

Bodies Resting on a Horizontal Plane

For equilibrium the vertical through G must pass through a point within the base
of contact. I the surface of the body in contact with the plane is spherical, the
weight must pass through the point of contact.

Bodies Resting on an Inclined Plane

As for a horizontal plane, the weight must pass through a point within the base
of contact. In the case of a body with circular cross-section there is contact at
only one point so the weight must pass through that point.

1f no extra supporting force is applied to the body, there must be friction between
the plane and the body in order to maintain equilibrium.

“This means that equilibrium depends not only upon the position of G relative to
the contact region but also on whether slipping can occur.

MISCELLANEOUS EXERCISE E

A uniform ladder of length 5m and weight 80 newton stands on rough level
ground and rests in equilibrium against a smooth horizontal rail which is fixed
4m vertically above the ground.
1f the inclination of the ladder to the vertical is 6, where tanf < 3, find
expressions in terms of 0 for the vertical reaction R of the ground, the frition F
at the ground and the normal reaction N at the rail.
Given (hal the ladder does not slip, show that F is a maximum when
tanf = and give this maximum value.

e e

The coefficient of friction between the ladder and the ground is £. How much
extra weight should be added at the bottom of the ladder so that the ladder will
not slip when tan0 = 3. (OCSEB)
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. A container consists of a hollow cylinder joined o a solid

a0 Consolidation E

A uniform solid cone, of base radius a and height
4a, rests with its flat face on an inclined plane that

is rough enough to prevent slipping. The cone will \

be about to topple when e

Aa=45¢ B una=} C tma=}

D a=9 E una-} P _
¢

hemisphere as shown. When it i placed on a horizontal
plane and tilted, it always returns to the position where

AC is vertical. The centre of mass of the container is B
A betwenBandC B atA  C atB
D between B and A x

In this question a situation is described and is followed by several statements.
Decide whether cach of the statements is true (T) or false (F).

A uniform solid body consists of a hemisphere and a
cone joined together as shown. The centre of mass of the

body is at O, the centre of the common plane face.

When placed on an inclined plane, sufficiently rough to

prevent slipping, the solid can rest in equilibrium on the NG
plane in each of the following positions.

(i) (i) (i) (iv)

A uniform solid paperweight is in the shape of

a frustum of a cone, as shown in the diagram.

It is formed by removing a right circular cone

of height  from a right circular cone of height

2h and base radius 2r.

(a) Show that the centre of mass of the

iperweight lies at a height of §44 from

its base.

When placed with its curved surface on a

horizontal plane, the paperweight is on the

point of toppling.

(b) Find 0, the semi-vertical angle of the
cone, to the nearest degree. (ULEAC)

-
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‘The diagram shows a man suspended by means of a
rope which is attached at one end to a peg at a
fixed point A on a vertical wall and at the other to
a belt round his waist. The man has weight 80g N,
the tension in the rope is 7"and the reaction of the
wall on the man is R. The rope is inclined at 35° to
the vertical and R is inclined at a° to the vertical as
shown. The man is in equilibrium.

(i) Explain why R>0.

(ii) By considering his horizontal and vertical
equilibrium separately, obtain two
equations connecting T, R and a.

Given that o = 45°, show that T'is
about 563N and find R.

(iv) What is the magnitude and the direction of the force on the peg at A?

The peg at A s replaced by a smooth pulley. The rope is passed over the pulley
and tied 10 a hook at B directly below A. Calculate

(v)  the new value of the tension in the rope section BA,

(Vi) the magnitude of the force on the pulley at A. (MEI)

A rectangular gate ABCD, where AB = Im and AD = 3m, is supported
by smooth pins at A and B, where B is vertically above A. The pins are located
in such a way that the force at B is always horizontal. The gate has mass 120kg
and it can be modelled by a uniform rectangular lamina. A boy, of mass 45 ke,

sits on the gate with his centre of mass vertically above C. Find the magnitudes
of the forces on the gate at B and at A.

In order to support the gate, the owner fits a cable attaching the mid-point M of
BC to a point P, vertically above B and such that BP = 1.5m. The boy once
again sits on the gate at C, and it is given that there is now no force acting at B.
Find the tension in the cable and the magnitude of the force now acting at A.
(UCLES),
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MOTION IN A PLANE

MOTION WITH VARIABLE ACCELERATION

We saw in Chapter 2 that, when an object is moving in a straight line with
constant acceleration, there are a number of standard relationships linking
velocity, time, displacement and acceleration. It is very important to
appreciate that these formulae can be used only for motion with constant
acceleration.  There are many different types of motion in which the
acceleration is not constant and we must now investigate ways in which such
motion can be analysed.

We know that velocity is the rate at which displacement varies and that
acceleration is the rate at which velocity varies, so we can write

_ds = dr
=g and a=

Using the dot notation introduced in Chapter 11, we have

v=4§ and a=7+
Further,
4 (ds) _ ds —§
dt (d) ar © 4=3
These relationships provide the means to solve problems in which the motion
varies with time and are equally valid when a, v and s are given in vector form.
Conversely, if we start with the acceleration, then
dv
dr

a = v=[adt

and p=88 o o par

i.e. if the acceleration of a moving body is a function of time,

velocity can be found by integrating a with respect to 1

displacement can be found by integrating v with respect to 1.
a8

and
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Examples 22a

1. A body moves along a straight line so that its displacement, s metres, from a
fixed point O on the line after ¢ seconds, is given by 5 = 13 — 3% —9r
(a) Find the velocity after ¢ seconds.
(b) Find the time(s) when the velocity is zero.
(c) Sketch the velocity-time graph.

(@) s= -3
v=3§=3"-60-9
When v =0, 3-6r-9 =0 °
P-2u-3)=0 = 3u-3)(+1) =
= 1=3or-1

(

£

was also zero | second

Therefore the velocity is zero after 3 seconds
before the body reached O.

() Th cpronforthe oy I  qudracfncon fo which the g« sl cromng
foriiersl

2. A particle P moving in 2 straight line has an initial velocity of 2 ms™" at a
point O on the line. The particle moves so that its acceleration ¢ seconds later s
given by (2—6) ms~%.

Find expressions for (a) the velocity and (b) the displacement of P from O
when 1 = 5 and comment on your answers.

@ v=fadi= [(u-6)dt = £ —614K
v=2 when =0 therefore K =2
—61+2

When =35 v=25-30+2= -

is ~3ms~!

The velocity when ¢
ie.  Pismoving with speed 3 ms™! towards O
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()  s=[fvdr= [(F-642)di = {0 -3+ a4 K
s=0 when (=0 therefore K; = 0
L s=4r-3te
When =35 s=-754+10 = -23}

When =5 the displacement of P from O is -23 s changed
dirction, moving back towards O, and then passes through Claim opposite side.

‘The velocity, » metres per second, of a particle moving in a straight line, is given
by »=(3t*~12t+9) where ¢ is the number of seconds after the particle
through O, a point on the line. Find the times(s ) when the direction of motion of
the particle is reversed.
“The direction of morion is detcrmined by the sign of the velocity (ot by the sign of the displacement).
Hence, whenever the direction of mtion is reversed, the elocity s momentarily
301249 = 0 = NP -ar43) =0

= 3-NE-3)=0

When v

v=0 when 1=1or3

Now we o cock the hesgn of th vlocky cheves ot thess o o 83 62 do i quikly by
finding the sign of v on cither side of the values of  where

At 1=1 and 1=3 the velocity becomes zero and changes sign.
the particle’s direction is reversed after 1 second and again after another

2 seconds.
Note that when we locatea value of  where v, . 45, is zero, we have found
a stationary point on the curve s = f(). Now a stationary point may be a

point of inflcion where the sign of 5 might not chan, so when we are

looking for a change in direction of motion, it is essential to check that the sign

of does change, i.c. that we have found a turning point.

ds
dr
Any method for identifying the nature of a stationary point can be used but the
numerical check used in the example above is usually quick and easy.

A particle P is moving on a straight line through a fixed point O. The
displacement, s metres, of P from O at time r is given by s = 5+9r2 —
Find the distance covered in the first 4 seconds.
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Distance and displacement are equal only if the direction of motion does not change within the time
ineral conrud, o fs check whthe ther U el of ¢ whe the dielion of mcton canges,
=0 momentarily and also changes

5+92 -2 = v o= 18—62 = 61(3 1)

=0 when =0 andwhen (=3
When 10 the motion sarts, 5o we need only check that » changes sign when 1= 3
When 1=2, v>0 andwhen 1=4, v<0, sovdoes change sign when 1=3.

“The direction of motion changes when =3 50 the distance travelld in the frs 4 scconds is not equal
1o the corresponding increase in displacement.

‘The distance travelled from =0 to (=3 is (s~ s5) metres.
= S48l

32 and s =5 = sm-s=27

the distance travelled in the first 3 seconds is 27 m.

‘The distance from when 1=3 to when =4 _is travelled in the opposite
direction so is (53— si)m, where s —si = 32— (5+ 144 128) = 11

the distance travelled in the fourth second is 11 m.

The distance travelled in the first 4 seconds is (27+ 11) m, ie. 38 m.

Variable motion is not always defined by a given function for acceleration,
velocity or displacement. Instead we may be given information from which a
formula for a relationship can be found.

. The motion in a straight line of a particle P is such that the acceleration, 4, is
proportional to (1) at any time ¢ seconds. Initially P has a velocity of 2 ms '
and when r=4 the velocity is 26 ms~.

Express the velocity and the acceleration as functions of 1.

ax (14+1) = a=k(1+1) wherek is a constant of proportion
=Jadt = v=[k(r+1)dt = k(§2+10) + K
v=2 = K=2
v=2 =  26=k(8+4)+2 = k=2
2Ar+1) and

R
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EXERCISE 22a

In each question from 1 to 10, a particle P is moving on a straight line and O is
a fixed point on that line. After a time of £ seconds the displacement of the

particle from O is s metres, the velocity is v metres per second and the acceleration
is a metres per second?

Given that s =4r> =512+ 71+ 6, find v when 7= 3.

. Given that v =9¢2+4 141 +6, find a when =2,

If s=0'=22491, find a when (=5,

Given that Pis at O when (=0, and that v=2r2+431+4, finds
when 1= 4

P starts from O with velocity 3ms™". If a=12/-5, find vand s
‘when

If s=1=917 424~ 11, find the time(s) when v=0.

Find the times when the direction of motion of P changes given that
=67 -9 + 4r.

P starts from rest at O and moves with an acceleration given by 2 ms~2.
Find » and s in terms of 1.

. When (=0, P passes with a velocity of 4 ms™' through a point with a

displacement of 2 m from O. Given that a=¢>+1, find the velocity and

displacement when 1= 4.

. When =0, P passes through O with velocity ~4 ms™!. If a=8~ 61,

find
(a) the times when P is instantancously at rest
(b) the displacement of P from O at these times.

. A particle P moves in a straight line and O is a fixed point on the line. The

displacement, s metres, of P from O at any time f seconds is given by
s=13412 412~ 23, Show that the motion is always in the same direction

A particle moves in a straight line with an acceleration given at any time by
(3t~ 1) ms~% If the particle has a velocity of 3 ms~' and is 7 m from a fixed
point O on the line when =2, fi

(a) its velocity when =5
(b) its displacement from O when =4,
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The acceleration of a particle P after 1 seconds is proportional to (3¢% + 1),
When 7=3, the acceleration is 14 ms~? and the speed is 25 ms~!. Find
(a) the acceleration as a function of £ (b) the initial velocity.
1

5 and that v=3 when r=1,
1

Given that a=

(a) find the velocity when (=4

(b) show that, as the value of ¢ becomes large, the velocity approaches a
particular value (called the terminal velocity) and state this value.

A particle starts from rest at a point A and moves along a straight line AB

with an acceleration after ¢ seconds given by @ = (8- 21%). Find

(a) the greatest speed of the particle in the direction AB

(b) the time when this greatest speed occurs

(c) the distance travelled in this time.

At any time , the acceleration of a particle P, travelling in a straight line, is

inversely proportional to (¢+1)°. Initially, when ¢ P is at rest at a point

O and 3 seconds later it has a speed of 2 ms~'. Find, in terms of 1, the
displacement of P from O at any time.

A particle travelling in a straight line passes initially through a fixed point O
on the line with a velocity u. The acceleration of the particle has a constant
value a. By using integration find expressions for the velocity v and the
displacement s from O, after ¢ seconds.

Compare these results with the standard formulae for motion with constant
acceleration.

. A particle starts from rest at a fixed point A and moves in a straight line

with an acceleration which,  seconds after leaving A, is given by a = dr.
After 2 seconds the particle reaches a point B and the acceleration then ceases
Find

(a) the velocity when the particle reaches B (b) the distance AB.

Immediately the particle moves on with acceleration given by ~3¢ until it comes
1o rest at a point C. Find

(c) the value of ¢ when the particle reaches C  (d) the distance AC.

The displacement, s metres, of a body from a point O after ¢ scconds is given
2
—ogll

(a) Find in terms of 1 an expression for the acceleration of the body.

(b) Given that the mass of the body is 3 kg, use Newton's Second Law to find
the force acting on the body after 5 seconds.
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An object is moving in a straight fine under the action of a force whose
value at any time £ seconds is given by F=(12(+20) newtons. When (=2
the object, whose mass is 4 kg, passes through a point A on the line with a
velocity of 22 ms~'. Find, as a function of /, the displacement of the object
from A at any time.

. A wagon whose mass is 200 kg is pulled by a cabic along a straight level

track. Contact between the wagon and the track is smooth and the tension in the
cable i directly proportional to the time. The wagon sirts from rest and, 10
seconds later, its speed is 20 ms~'. How far has the wagon been pulled?

VARIABLE MOTION IN THE X-Y PLANE

particle is moving in a plane it can be convenient to consider separately
its mouon in two perpendicular directions. If displacement, velocity and
acceleration are functions of time, then the calculus methods used so far can
be applied to the components in each direction.

Consider, for example, the motion of the particle shown in the diagram.

e
o *
In the direction Ox, at any time f, x =¢*
ie the displacement from O is 1
the velocity is 2t
and the acceleration is 2
In the direction Oy, y=1'+1
ie. the displacement from O is ¢* + 1
the velocity is 31+ 1
and the acceleration is 6/

Now we can express these components in terms of unit vectors i and j in the
chosen directions and, by adding them, form a resultant vector.
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For example, the position vector of P is denoted by r, and is given by
=2+ (C+n)

Snmlarly the velocity vector, v, is Zli + (37 +1)j
and the acceleration vector, a, is i}
As each component of v is obtained by differentiating the corresponding
component of s with respect to , we can say

ds

v=— and s= [vdl
oo I

dv

Similarly o and v = [ads

Examples 22b

In these examples, § and J are perpendicular unit vectors and ¢ i the elapsed time.
Acceleration, velocity and displacement are all to be expressed as vectors in
form. All quantities are measured in units based on metres and seconds.

. A particle is moving in a plane in such a way that its velocity at any time ¢ is
given by 26 + 363j. mn-ny the positon vector of the particle,relative 10 fixed
point O in the plane, is 5i—8j. Find, when ¢ =

(a) the acceleration ol P (b) the position vector of P,

(@) = 20i+30%

When ¢ = 3,

(b) r= Jvde = (i3 d

When a function is integrated, a constant of integration must be added. In this problem we arc
integrating a vector function so the constant of iniegration must also be & vector quantity. We will
denote it by A.

= it 0j+A

Initially (ic. when £=0)  Si—8 = 0i+0j+A

> A=Si-g

= i+ 04+ 51-8) = (P45 + (P -8))
When 1 =3, 1= (9+5)i+ (27-8)j = 14i+19)
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2. At any time 1, the position vector of a particle moving in a plane, relative to 8

fixed point O in the plane, is 10ri + (14 — 4¢)j.

(a) Show that the particle has no aceeleration in the direction of i.

(b) Find the time when the velocity s perpendicular to the acceleration.

(c) Find the distance from O of the particle when 1= 2.

(d) Find the angle between the vector i and the direction of motion when = 2.

(a) =10 + (r* =40}
v= 3T 00+ (e -4)j
dr
dv N
=S¥ = 2
2= ey

a has no term in i, therefore the acceleration has no component in the
direction of i.

(b) The accciration is always in the dircction of J. Thercfore, in order to be perpendicalar o the
acceleration, the velocity must be paralle 1o

v = 100 + (47 - 4)}
vis perpendicular to a when the coefficient of j is zero,
icwhen 4r-1)=0 = r=1

“The velocity is perpendicular to the acceleration after | second.

(c) When (=2, r=20i + (16-8)j

= 200+ 8j I j
The distance between O and P is o x

V(20* +87)m = 21.5m (3sf)

(d) The dirscton of motion depends upon the components of the velocity.
When 1=2  v=10i +(32-4))
= 10§ + 28

the direction of motion makes an angle « with i,

where tana=# = a =703 (3sf)
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. A force, in newtons, is expressed at any time ¢ seconds by  F = 2i + 3(¢* - 1)j.
‘The force acts on a particle P, of mass 2 kg, moving in the x plane.
‘When ¢ =0, P is at rest at the point with position vector i+ J.

(a) Find (i) the acceleration vector (i) the position vector of P at time .
(b) Write down separate equations for the x and y coordinates of P at time r.

(©) By climinating  from thes two equaions, find the Cartesan equation of the _
path of P and sketch the path.
(a) (i) Using Newton's Law, F = ma, gives 2i+3(c ~1)j

S a=i+i(P-nj

(ii)  First find the velocity vector.
= Jade = Jli+1(2-Dildr = d+(}° =105 + A
When =0, v=0 therefore A =0
V=14 (P -3nj
r=fvde=ifi+ (i -3Mi+ B
When 1 =0, r=i+j therefore i+j =
L e R C A 10 I B |
ic. r= (P Di+ (- D

e m
—it+1 [#]]

(b) x

(¢) From([1] @ =2x-1)

Substituting in [2] gives = HAx-17] - F2Ax-1)] + 1
Multiplying lhroughonl hy 2gives 2y = (x-1)) = 3x—1) +2
i 2= P =5v46 = (x=2)(x-3)
‘This is the Cartesian equation of the path of P which can be recognised as a
parabola.

k!

At
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4. At any time 1 seconds, the position vector of a particle of mass 9 ke ghven in

»

metres by r;u’nm Find the kinetic energy of the particle
(@) t=3  (b) 1=0.

The velocity, v, of the particle is given by

9 aiesy

dr

(@) When r=3, v=I2i+5}
‘The speed of the particle is given by [v]

ie.  thespeedis 13ms '
KE =(4x9x13)J=7605]

(b) When =0, v=5j = the speed is Sms™'
KE =($x9x8)J=125J

EXERCISE 22b

In these questions, a particle P is moving in the xy plane and O is the origin.
Unit vectors in the directions Ox and Oy are i and j respectively. For P the
position vector relative to O at time ¢ is , the velocity vector is v and the
acceleration vector is a. All units are consistent and based on metres, seconds
and newlons

Find, in §j form, expressions for v and &
(i) at any time ¢ (ii) at the specified times, if

(a) r=200430%; 1=2, 1=3
() r=t(t+1)i+ (4-17); 1=1, 1=4

() r~—|+3(|+A

Find the Cartesian equation of the path traced out by P if

(@) r=2i4323) (b)) r=(r+1Pitdh (o) r= 2:|+%l
‘The angle between i and the direction of motion of P is . Find tan a,
(i) atany time ¢ (ii) at the specified times.

(a) r=6ti+(120=30));
(b) r=2i+ (140 1
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Initially P is at rest at a point with position vector 3i+J. Given that the
acceleration of P after ¢ scconds is i — 2j, find in terms of § and J, expressions for
vand r at any time 1.

- Atany time 1 v=32+ (1~ 1)} Given that P is initially at O find

in ij fo

(a) the initial velocity
(b) & when (=3
(c) r when =2.

. When r=1, v=i+3j and r=4i-j If a=ri+(2-0j, findr

when 1= 4. What is the distance of P from O at this time?

The scleration vctar of P i consant and given by =1+l
1=0  the velocity vector s zero and when =1, v=3i-2j. Find vt any
time . What is the speed of P when (= 37

The coordinates of P at any time ¢ are (¢4 12, 312 ~2). Prove that P has a
constant acceleration and give its magnitude.

A force F acts on particle of mass 2 kg. Given that F =470+ 6j, and that
P is initially at O with velocity 5j, find v and r when 1

a =22 and, when £ = 2, v = %~ 4j and r = 181 +8}
7

(a) Find v in terms of 1.
(b) Find r in terms of 1.
(c) Find the value of £ when v is perpendicular to r.

(d) Show that, as ¢ increases, v approaches a constant value and state the
magnitude and direction of this terminal velocity.

. Given that = (21~ 1)i- 2%,

(a) find, in #j form, the direction of motion
() initially (i) at time ¢

(b) explain why the dircction in which P moves can never be perpendicular to
he initial direction of motion

(c) show that a is constant and give its magnitude.

lnmslly Pis at O with velocity vector (¥ cos a)i+ (¥ sin a)j. Given that

= —gj, where g is the acceleration due to gravity,
(a) find, at any time ¢, expressions for (i) v (i) r

(b) hence derive the equation of the path of a particle projected from O with
speed ¥ at an angle  to the horizontal.
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Examples 22¢
.Aplmdtl’lsmvingl.hnglmﬂghlllmmmmek n that s proportion]
to s* where s metres is the displacement of P from a fixed point A on the line.
(a) Find a general relationship between the displacement and the velocity,

¥ metres per second.
Given that » and 5 are equal in magnitode when s = 0 and when 5
(b) find the speed when the displacement is 1.5m
(c) find the displacement when the velocity is 2ms~"
(d) sketch the graph of velocity against displacement for 0 < s < 4.

(a) Acceleration x * ic. a = ks® where k is a constant

Using gives b

This relationship between s and v is general because it contains two unknown constants.

=0 when 5=0 so K=0 = W =%
4 when s=4 = 48=128k = k =4
=5
(b) When s =15, 4 = (1.5)
= ¥ =0843... = v=H0918...

The speed is 0.92ms™" (2 dp)

(c) When v=2, 6=5 = s=2509..
‘The displacement is 2.5m (2 sf)

(d) Becawse v = £}V, there are pi
w0 values of v for each vale of 1 B
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. A particle P is moving in a straight line and O is a fixed point on the line. The
magnitude of the acceleration of P is proportional to the distance of P from O; the
direction of the acceleration is always towards O. Initially the particle is at rest at
a point A where the displacement of A from O is /.

() Using < and »for the daplacement aod vloity o P, express +2 in terms of x,
a constant of k.

) sm-m.m;mnrpugm«mm-runo.

(c) Determine a position other than A where the velocity of P is zero.

(d) Describe briefly the motion of P.

A=k

In the diagram the aceeleration of P is towards O, i.c. in the negative direction, s0 @ = —kx. I P is
left of O, the acceleration is in the positve direction but x is negative, o again we have g = —kx.

(a) a = —kx
. dv dv
Using a = v g7, gives v T = —kx
= —lkx dx
= Lk 4+ K

i
Vo= k(-
(b) The value of 47 can never be negatve, 5o the prestest valuc of (12— x1) is (17 ~0)

V=0 when x =

The greatest speed occurs when x = 0, ic. when P is at O.
() Whenv=0, k(F-x)=0 = P£=2x
= x =+
iie. the displacement of P from O is /.

A A

~.the speed of P is zero when P is at A and at a point A’ where

OA’ = I and A’ is on the opposite side of O from A.

(d) Wherever P is on the line it is accelerating towards O, so P oscillates
between A an

Note that in Example 2, displacement is represented by the symbol x as an

alternative to 5. The two symbols are equivalent and cither may appear in

questions.
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EXERCISE 22¢

In questions 1 to 10 a particle P is moving along a straight line and O is a fixed
point on that lne._Afer  time of ¢ econds the displaccmet of P from O i

s metres, the velocity is vins~' and the acceleration is ams™

@ =245 and v =2 when s =0,

(a) Find ¥ in terms of 5.

(b) Find the speed when s = 1

(¢) Find s when v = 4

a=6s+4 and = 3 when 5 = 0.
(a) Find ¥ in terms of s.

(b) Find the speed when s = 2.

(c) Find s when v = §.

a=s-4 and v=12whens =4

(a) Find +* in terms of s.

(b) Find the speed when s = 0 and when s = 9.
(¢) For what value of s is % zero?

(d) Sketch the graph of v against s for 0 < s < 9.

P s moving in the positve direction with an accelration given by 4 = 8¢',
and when s = 0, v = 0.

(a) Find v in terms of 5.
(b) Find the value of s for which v = 50.

P ls movlng in the positive direction with an acceleration proportional to s°.
0 and when 5 = I,v = 9.

(a) Find v in terms of s.
(b) Express a in terms of .
(c) Find the value of s for which v = 900.

When v = 7,5 = 5 and when » = 18, s = 6. Given that a is proportional to s
and 5> 0 for all values of 1,

(a) find ¥ in terms of s

(b) find the value of s when v = 10

(c) find the least distance of P from the origin.
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VELOCITY GIVEN AS A FUNCTION OF
DISPLACEMENT

In the previous section we saw that when acceleration is expressed in terms of
displacement, using v &% for the acoeleration resuls in a_ reltionship
between velocity and displacement.

Soif the motion of a particle is defined by v = f(s), it seems logical that we
should be able to reverse the process to find the acceleration from this
relationship.

Finding Accel ion as a Fi ion of Displ:

If v =1f(s) andwe want to find the acceleration, using a = % is of no
help as we cannot differentiate f(s) with respect to 1.

and this form for

However, as we saw carlier in the chapter, %
the acceleration is useful again here.

Examples 22d

‘The velocity, in metres per second, of a particle P moving in a straight line is given
by v=x+L where x metres is the displacement of P from a fixed point O on
the line, Find the acceleration of P when x = 2.

) dr
Using @ = v gt

=

When x = 2, 'a=zf{=l}

When x = 2 the acceleration is 1.87Sms"2.
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Examples 22d (continued)

. The velocity, rms 2, of a particle P at any time 1 is proportional to the square of
the displacement, s metres, of P from a fixed point A. P is moving in a straight
line through A. Initially, i.c. when ¢ = 0, P is 2m from A and, 3 seconds
Iater, AP = 1.25m.

(a) Find s when =2

(b) Show that, as the time increases indefinitely, the displacement of P from A
approaches a particular value and state the position that P is then
approaching.

In this example i is clear from the positions of P when (=0 and £ =3, that P is trovelling
towards O, i.. » s negative.

voos? = v = —ks

) d&s ds N
Using v =% &k

ing v =% gves B e
Hence —J% ds = Jk a e l:—* s Jk ar

sl =kt K

When (=0, =2 therefore K = 0.5
= 5= ke 405
When =3, s= 125 thercfore 08 = 3%k+0.5 = k=01

011405
(a) When =2, s'=02405=07 = s=143 (3s)

(b)) First we will express s a simplified function of «.

=01+05 = 105 =145

As ¢ becomes very large, 5 becomes very small, i.c. s approaches 0.
When ¢ is very large, P approaches A.

Note that it was not necessary to notice that v was negative; the calculation of
the constant k sorts out the correct sign.
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A particle is travelling along the line ABC as shown in the diagram.

et —— S

X AN [3
The velocity, rms ', is given by ¥ =~ when the particle is xm from A.

Given that the particle travels from B to C, a distance of 5m, in 12 seconds, find
the distance from A to B.

Using v =35 gives X
® a B w T non

J(Lr+l) dx:J4 & = Pihx=a+K

As x is measured from A, it is convenient to measure ¢ from the time when the partile is at A. so
that x=0 when 1=

When the particle isat A, x =0 and =0 =
4 =xdx

Let the distance AB be dm and the time taken 10 travel from A to B be 7 scconds.
‘When the particle is at B, =d and =T

AT = 4d m
‘When the particle is at C, x = (d+5) and ¢ = (T+12)

4(T+12) = (d+5) +(d+5)

= AT+48 = d® +10d+25+d+5

AT =+ 1d- 18 @
[2J-{1] gives 0=10d-18

d=18

The distance from A to B is 1.8m.

EXERCISE 22d
In questions 1 to 6 a particle P is moving along a straight line and O is a fixed

point on that line. After a time of f seconds the displacement of P from O is
s metres, the velocity is vms ™' and the acceleration in ams™2.

%. find

(a) aintermsof s  (b) awhens =05
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Given that v is proportional to s, show that a is also proportional 0 5.

Given that v = 6 when s = 2, find @ when s = 2.
3

Given that v =~ find a in terms of 5, and the value of a when s
4.

BREST

Given that v = 5 and s = 0 when 1 = 0, find
(a) sinterms of £
(b) the times taken to travel (i) the first 25m  (ii) the next 25m

(c) vwhent=5.

If s =5 when ( =

and v = — ks, find
(a) sin terms of 1
(b) swhent =2
(c) the value approached by s as ¢ increases.

The table shows corresponding values of v and s.

(a) Show that all these values fit a relationship of the form v =
state the values of ¢ an

(b) Show that In(6—s) = 421, where A is a constant.
() Given that s = 0 when ¢ = 0, express s in terms of .
(d) Find the maximum distance of P from O.

A body is moving on a horizontal straight line through a liquid. It passes
through a fixed point O on the line and ¢ seconds later its displacement from that
point is s metres, its velocity is vms~' and its acceleration is ams~2. The motion
of the body is modelled by the equation

v = pe*", where p and k are constants.

(a

Show that this is consistent with the hypothesis that the acceleration is given
k2.

(b) Find 1 in terms of s, p and k given that, at 1 = 0, 5 =
(¢) Find pand k given that v = 20 when s = 0 and v = 10 when s = 3
(d) Find the distance travelled when the velocity has fallen to Sms~!
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A particle P is moving along a straight line and O is a fixed point on that line.
After ¢ seconds the displacement of P from O is sm and P's velocity is vms .
Throughout the motion v is inversely proportional to s and s > 0.

When £ = 0, s =4 and P takes 7 seconds to move from the point where
5=6 to the point where s = 8. Find

(@) sintermsof 1 (b) vintermsofs  (c) vwhen 1 =2

. The motion of a body falling vertically through a liquid is modelled by the

cquation
= f (1-e)

where, at time  seconds, vms~" is its velocity and s metres is s displacement
from its initial position and k is a constant.
() 1uis observed that, after falling several metres, ts velocity starts to approach
a constant value which is estimated to be 7ms-'.
Taking g = 9.8, find the value of .
(b) Find the acceleration in terms of s.

(c) Show that the acceleration can be written in the form a = g~ 0.2%.

. A cyclist approaches a hill at a speed of 9ms~ but slows down gradually as he

climbs it. After climbing for ¢ scconds his displacement from a point O at the
bottom of the hill is s metres and his speed is vms~'. He thinks that his velocity
may possibly be modelled by one of the following equauons, in which 2 and p
are constants.

Model I v =9~ is
Model 2 v = 9 -8

() Show that model 1 gives

(b) Show that model 2 gives

(c) When he reaches the top of the hill, which is 100m long, his speed has
dropped to Ims~". Find the values of 4 and y.

() As one check on whether either of these models is suitable he measures the
time taken over the first 50m and finds that it is 7 seconds. For each
model find the time predicted for the cyclist to cover the S0m. Does cither
model give a result consistent with the measured value?

(¢) He reaches the top of the hill in 27 seconds. Does this time strengthen the
case for cither model?
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designed for a factory. It moves forwards and
backwards along a straight track between two points A and B which are §1m
apart. It comes (o instantancous rest at A and B, and the journey between these
points takes 6 seconds. A mathematical model for the twelve-second returmn
journey, from A to B and back to A, is o be considered.

Take an origin at A. Let the displacement ¢ seconds after leaving A be s metres
and the velocity be v metres per secon

1t is thought that the motion can be modelled by an equation of the form

v=kt(1=6)(1—12), for 0<(<12, where K is a constant

(a) Verify that thisis consistent with the give

(b) Find s in terms of k and 1 and use the given information about the
distance AB to find the value of k.

(¢) The model will not be suitable unless it gives
suitable in this respect

(d) Find the maximum speeds predicted by the model on the outward and
return journeys and the times at which these occur.

formation about times and velocilies.

0 when 12 Isit




CHAPTER 23

SIMPLE HARMONIC MOTION

One particular type of variable acceleration is important in its own right because
it occurs frequently in everyday fife. This is motion in a straight line in which the
aceeleration is proportional to the distance from a fixed point on the line, and is
always directed towards that point; it s called simple harmonic motion, SHM.
A weight attached to the end of a spring, for example, moves in this way;
this, and other real-life cases of SHM, will be covered in the next chapter.

Properties of Simple Harmonic Motion

Consider a particle P moving in a straight line with an acceleration that is
directed towards O, a fixed point on the line, the magnitude of the
acceleration being proportional to the distance OP.

[e——

<

o »

When the dlsp]aouncnl of P from O is x, the acceleration is in the negative
direction, i.e. ¥ is negative and vm can write ¥ = —n’x. (We use n* for the
constant of proportion because #* cannot be negative. )

Sinilarly if P is at a point where x i negative, § s in the posive direction s0
again ¥ = —n'x.

The equation ¥ = ~n’x is the basic equation of SHM.
Any motion that satisfies this equation is known to be simple harmonic.

Further, if the velocity, X, is zero at a point A, distant a from O, the following
diagram shows the basic information about SHM.

i
o 2 i=0
X
EEEca ]

As can be seen from the description of the motion, the symbol a is used for a
distance in this topic. This means that we cannot use @ to indicate the
acceleration so ¥ is usually used instead.
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The acceleration is a function of . so we will use » % and because it is

directed in the negative sense we have

dv
L 1
s v ]
Hence lv dv = ~nzlx dx
> I Y
=0 when x=a, = K=lra
¥ = m(@-2) 5]

From [2] we can see that the greatest value of v is given when x = 0
ic. Pa—

Equation [2] also shows that v = 0 when x = a, 5o the particle oscillates
between two points A and A', on opposite sides of O and each distant a from O.

A 0 A

The point O is called the centre, or mean position, of the SHM and the distance
OA is called the amplitude of the motion.

Examples 23a

. A particle is describing SHM with amplitude 2m. If its speed is 3ms ™' when it is
1m from the centre of the path find

(a)  the basic equation of the SHM being described,
(b)  the maximum aceeleration,
(c) the speed when the particle is 1.5m from the centre of the path.
(a) Weknowthat a=2 and v=3 when x =1
Using ¥ =m(a@-x) gives
9=r(4-1) =

the basic equation of the SHM is ¥ = —3x
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(b) From ¥ = ~3x we sce that ¥ is greatest when x is greates,
The greatest value of x is 2
the maximum acceleration is 6ms 2 towards O.
(¢) When x =15  =3(2*-15)=525

the speed when x = L5 is 229ms ' (3sf)

ASSOCIATED CIRCULAR MOTION

‘There is a very interesting link between circular motion and SHM which we are
niow going to look at.

“The diagram shows a particle P travelling at a constant angular velocity @, round
a circle with centre O and radius a. Q is the projection of P on the diameter A’
(iie. Q is the foot of the perpendicular from P to AA').

We know from the work on circular motion that the acceleration of P is aw?
towards the centre.

Now the component in the direction AA’ of this acceleration gives the
acceleration of Q.
P

Therefore the acceleration of Q is e cos 0 in the direction QO
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From triangle OPQ, cos =2
a
Therefore the acceleration of Q towards O is aw’® (5) ie. wix.
a

But & is constant so we see that the acceleration of Q is proportional to the
distance of Q from O, and is always towards O.

Therefore Q describes SHM about O as centre and with amplitude a.
As a point P travels round a circle at constant angular speed ,

its projection on a diameter of the circle describes SHM
with equation ¥ = —o'x

Comparing this equation of SHM with the standard equation ¥ = —n'x
we see that e is equivalent to the constant n, used earlier.

Further propertics of SHM can now be discovered by considering the associated
circular motion.

@ We can find period of the oscillations.
‘The time, 7, taken to describe one complete oscillation

(from A to A’ and back to A)
is called the periodic time, or simply the period.

As ?dmm’b‘s a complete oscillation, P performs one complete revolution of the
circle.
The angular velocity of P is w radians per second.
In one revolution P tums through 2z radians.
So the time taken to describe the revolution is 2
Therefore T, the period or periodic time of the SHM, is given by T = 2%
Butas @ =, the period is also given by

=2

n

Note that the period is independent of the amplitude of the motion.
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® We can find an expression for x in terms of time.

If we measure time from when Pisat A, ie. /=0 when x =a, then,
1 seconds after leaving A, P will have turned through o radians, ie. 0 = ot

By this time Q has reached the point where x = a cos 6.

Therefore, ¢ seconds after leaving the end of the path, P is in a position
where x = acoswr. But @ =n therefore

x=acosn
Remember that, in this formula, x is measured from O but  is measured from A.

@ The expression x = acos it can be used to check the expression derived
for the velocity of P on p. 505.

Differentiating x with respect to time gives % = —an sin nt
In triangle OPQ, PQ’ = & — x*

M

therefore sin wf = = k=v=in@-x)

V=@ -x)

Note that v can be cither positive or negative. This is because P passes through
any particular point in both the positive and the negaive direction.

® A formula can be recognised as SHM when time is not measured from the end
of the path. )

Suppose that a particle is moving on a straight line such that its distance from a
point O on the line is given by x = a cos (wf+«) where « is a constant.

First we note that Xpe = @ and x = acosx when 1=
Hence, on the auxiliary circle, P is at Py when ¢ = 0, where /P,OA-:
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At any subsequent time f, X = a cos (of+a) therefore /P,OP, = wt.

Differentiating gives ¥ = —ao sin (0t +a)
and ¥ = —aw? cos (w1 +a)
showing that ¥ =-o'x

This confirms that a particle, moving so that x = a cos (wf+a), is
describing SHM with amplitude a and period 2% but that the motion is not
timed from the end of the path.

The basic properties of SHM, but not necessarily their derivations, should be
known and can be quoted.

Summary
. oe—i—er i

Ois the centre, or mean position and a is the amplitude.
An oxcillation s the journey from A to A" and back to A.
The period of an oscillation is T where T = 2%
When the particle P is distant x from O
X = —n’x where nis a constant
x=acosnt if x=a when 1=0
¥ = m(a - %)
x=acos(@+a) if x=acosa when 1=0
Maximum acceleration, at A and A',is r’a and maximum speed, at O, is na.
Dealing with SHM by using the relationship to motion in a circle with constant

angular velocity, however, should not be underestimated. This approach often
provides a simple solution to a problem.
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In this type of solution where the value of n is often used in subsequent calculations. y0u can. as an
alternative to storing it in your calculator o retaining 4 significant figurcs, use {f whenever n oocurs

“This has the added benchi of avedin the inkrodaction of rounding errrs o subeeqvent caultion.

The maximum speed is given by na where a is the amplitude.

Therefore 0.3 = (L:)a -

‘The amplitude is 0.72m (2 sf).

The speed vms~' is given by v = ny/(a — x?)

When x = 05, v= 2% [“5} ~0.5) = 0214...
s =

2
and the acceleration is x, ic. (%)XDS

‘The acceleration is 0.088ms ™2 (2 sf) and the speed is 0.21ms™" (2 sf).

. A, B and C, in that order, are three points on a straight line and a particle P is
‘moving on that line with SHM. The velocities of P at A, B and C are zero, 2ms~'
and —Ims~ respectively. If AB = Im and AC = 4m, find the amplitude,

a metres, of the motion and the periodic time.

“The velocity at A is 2610 s0 A must be at one end of the path (we will ke it a the let-hand end). The
signs of the velocites at B and C show that P is moving away from A when at B and back towards A
when at C. B> specd at C. 50 B is ncarer 1o the cenue than C is. The lengih of the path s
sreater than cm, so the amplitude i greater than 2¢m. From allthese facts we see that B and C are on
opposite sides of the centre O.

PR P P
A Bo2met o tmit €
—p <G+

=2 when x=—~(a-1)

= -1 when x=4-a
Using v = n(a® —x%) gives

4=rl@-(1-al] = 4=nf2-1] 1
and 1=n[@—(4-a)] = 1= n*(8a— 16} 2]
[1)-4x[2) gives n?[2a—1]—4n*[8a—16] = 0 = 30a = 63
The amplitude is 2.1m
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(b) Ist Method
Time to travel round the circumference = 3xs.

Time taken to travel round arc AC' = 3z s
3 of 3ns

are AC' = § of the circumference
AOC' =} of 2r rad = 4x/9 rad

OC = 6cos AOC' = 1L04IS... =  AC = 6-0C = 4958...
the distance AC is 4.96m (3 sf).

2nd Method

As found in part (), n = §

Using x =acosm when n=3 and =
gives  x =6cos (3)(§r) = 6cos §m = LO4I8...
But xm is the distance OC

the distance ACis (6 —x)m, ic.496m (3 ).

EXERCISE 23a

In questions 1 10 8 a particle P is performing simple harmonic motion in a
straight line as shown.
All units are consistent and based on metres and seconds.

—— 5, i
a o P A
>

When ¥ = ~9x and the amplitude is Sm, find
(a) theperiod  (b) the maximum speed  (c) the speed when x = ~2.

2. If the maximum acceleration is 10ms~2 and the maximum speed is 8ms~, find
(a) the period (b) the amplitude (c) the speed when x =4
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. A particle P is moving on a straight line; O is a fixed point on the line and x is

the displaccment of P from O at a time 7. When 1= 0, x = y/3m  and after
Lx seconds, x = Im.

(a) The equation of the motion of P can be expressed in the form
x =acos(142)
Show that P travels with simple harmonic motion.

State the smptiods and period of the SHM and illustrate the motion on the
auxiliary circle

(

c

The solutions to questions 11 to 13 may be based cither on the standard formulac
for SHM or on the use of the associated circular motion,

A particle is travelling between two points P and Q with simple harmonic motion.
If the distance PQ is 6m and the maximum acceleration of the particle is
16ms2, find the time taken to travel

(a) adistance 15m from P

(b) from P to the midpoint O of PQ

(¢) from the midpoint of PO to the midpoint of OQ.

. A particle describes simple harmonic motion between two points A and B.

“The period of one oscillation is 12 seconds. The particle starts from A and
after 2 seconds has reached a point distant 0.5m from A. Find

(a) the amplitude of the motion

(b)  the maximum acceleration

(c) the velocity 4 seconds after leaving A.

. A particle s performing simple harmonic motion of amplitude 0.8 m about a

fixed point O. A and B are two points on the path of the particle such that
OA = 0.6m and Am. If the particle takes 2 seconds to travel
from A to B find, correct to one decimal place, the periodic time of the SHM
if

(a) A and B are on the same side of O
(b) A and B are on opposite sides of O.

“The prongs of a tuning fork, which sounds middle C, are vibrating at a rate of

256 oscillations per second. Assuming that the motion of the prongs is simple

harmonic and that the amplitude of the end of a prong is 0.1 mm, find

(a) the maximum velocity and the maximum acceleration of the end of a prong

(b)  the velocity and acceleration of the end of a prong when its displacement
from the centre of its path is 0.05 mm



CHAPTER 24

VARIABLE FORCES

THE RELATIONSHIP BETWEEN FORCE AND
ACCELERATION

Newton's Law of Motion applics to any motion, however it is caused. It applics
whether the force producing the motion is constant or variable, ..
for a body of mass m, moving under the action of any force F, then  F = ma.

When F varics in a specified way, it may be possible to represent the motion by a
differential equation.

If Fis a function of time,ie. F = (1), then using a::—: gives
dv
iy =md
0 i
N Jr(:) dA:Jm &

If Fis a function of displaccment, ic. F = f(s), then using a = v%
gives

=m 3
f(s) = ms -
= jr(x) ds = lmv dv

The Work Done by a Variable Force

Suppose that a particle moving under the action of a force 7, where  F = f(s),
has a velocity u when 5 = 0 and a velocity v after covering a distance s.

The relationship F = mv% becomes j Fds= J v dv
3 .
giving f F ds = tm? - tmi
8

519
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Now {my —{mu’ is the increase in KE of the particle and this is equal to
the amount of work done in causing it.
Therefore [ Fds represents the work done by the force F, ie.
when a variable force F, where F = f(x), mmsns
point of application
the work done by the force is given by Jr(s) ds

Note that, when F is constant, this result gives Work done = Fs which was
derived in Chapter 7.

The Impulse Exerted by a Variable Force

Again we consider a force F that causes the velocity of a particle to increase from
u to v, but this time the increase takes place over an interval of time ¢.

Using the equation F=m% gives del:dev
5

giving [Fd':mv—m
o
But mv— mu is the increase in momentum of the particle over the time ¢ and

we know that this is equal to the impulse of the force producing it.
Therefore [ Fdt represents the impulse of the force F, ie.

when a variable force F, where F = f(1),
acts on an object for a time ¢
the impulse exerted by the force is given by [ (1) df

‘When F is constant, this gives Impulse = Fr, as used in Chapter 13.

Examples 24a

. A particle P is moving in a straight line under the action of a variable force F. The
particle passes through a point O on the line and ¢ seconds later its displacement s
from O is given by s = rsin 4r. Show that the force is proportional to the
displacement of P from O and describe the behaviour of the force.

5= rsindr

—— Y e 3>
o P
—> G

>> 8
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s =rsindt

& arcosdr and a == _16rsinar
ar d:

Newton’s Law gives F=m(—16rsindr) =  F=(—16m)s
As 16m is constant, F is proportional to s

‘The relationship between F and s can be expressed as  F = 16m(—s). In this
form, as 16m is positive, we see that F and s are of opposite sign.

Therefore as P moves away from O in either direction, the force F acts towards O
and is proportional to the distance of P from O.

. A particle P, of mass 1kg, is moving horizontally slong the x-axis and
through the origin O with speed 2ms~'. A force F acts on P in the positive
direction and  is equal to 2x. When P has moved through 3m, find

(a) the work done by £ (b) the speed of P.

(a) The work done by Fis given by [ F dx, where F = 2x.

,
when x = 3, work done = J 2x dx
o
3
- [g] ~9
o

(b) P is moving horizontally so there is no change in its PE

The work done by Fis 9J

Therefore using  Work done = Increase in ME  gives

9 = fmi? —
=P -44)
> v¢=2

The speed of P is 4.69ms™ (3 sf).
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and m =4, find

o
1
(a) vin terms of (b) Fin terms of 1.

when

The force Fis given by F = 24-6e, and v
If m=3 find

(a) ain terms of t (b) v in terms of 1.

1
. Given that m = 3 and that vests for s3>0,

(a) find Fin terms of s
(b) find a positive constant 4 such that F = 0 when s = b

(¢) show that F opposes the motion when 0 < s < b, and is in the direction
of the motion when s > b.

. The mass is 3kg and when 1 = 2, v = 14 and s = 20. The force F newtons

produces power of 120W.  (Power is the ratc of doing work, ic. £ 3¢ or Fr)

(a) Express F interms of v, (b) Find v in terms of (i) £

A particle P, of mass 5kg is moving along a straight line and O is a fixed point
on that line. Initially P is at rest at a point A on the line where OA = 2m.
After ¢ scconds the displacement of P from O is x metres and its velocity is
vms~\. A force Facts on P, where F = ~90 cos 3r.

-~—2m——w —>F

o X v
——prms
—S>ims?

(a) Find v in terms of 1.
(b) Find x in terms of .
(c) Express the acceleration, ¥, in terms of x and hence identify the motion of P.

Find the work done by a force FN which moves a particle from the origin O
along the x-axis to the point 5m from O if

(a) Fis of constant magnitude 10,  (b) F

. A wagon whose mass is 200kg is pulled by a cable along a straight level track

Contact between the wagon and the track is smooth and the tension in the cable
is directly proportional o the time. The wagon starts from rest and, 10 seconds
later, its speed is 20ms~'. How far has the wagon been pulled?
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Improving a Model
If the predicted and observed results are not close enough for the accuracy
required, the next step is to identify the feature(s) in the model that may be the
cause of the discrepancy and to make modifications where these seem necessary.
Whether or not the model has been improved by the adjustment can only be
determined by testing the new model and comparing its predictions against
observed values.

“The process of testing and refining a model can be shown by a flowchart.

Compare
I
No e— Yo [T
close model
enough?

Sometimes when a mathematical model of a situation is constructed, the results it
gives appear to correlate well with observed results over the range of
circumstances within which it can be tested. If, at a later stage, that range is
widened, the model may not be so reliable in the extended conditions and an
adjustment may then be necessary.

Consider the following example.
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For a pmjecl a group of students investigated the vertical motion of a ball of
mass 1kg. They borrowed a ball-projecting machine from the local cricket
club, which can give the ball known initial speeds. For each speed the
students measured the time taken for the ball to reach its highest point and
the following table gives the values recorded, corrected to 2 significant figures.
Initial speed Vms~! |8 |2 as | 2| 2|3
Time, T's, to highest point [ o8 |1 [ 12 |17 r 21 ] 27
They took 10ms™* as the acceleration and their first model assumed zero air
resistance.
Using v = u+at they calculated the value of 7 given by this model for each
value of ¥ and entered these results in the table for comparison with the observed
results, inserting these values of 7 in a third row.
Initial speed Vms~! 8 |2 |as | 2|2 |3
Time, T, to highest point | 08 | 11 [ 12 [ 16 | 20 | 27
‘Time given by first model | 08 | 12 | 15 | 21 | 26 | 35
The students were not satisfied with this correlation because, although there was
good agreement between the calculated and observed values for the lower values
of V, the correlation decreased as ¥ increased, so they tried another model.

‘The second model assumed that air resistance is given by kv where k is a constant.

Using F=ma and a=% gives

ldv
—(g+k =
Gl Jg+kv

¢ o
-[; ln(g+kv)]y= [:]
= ling-tn(g+40)] = % In (“gl)

Using the observed value of 7'when ¥ = 21, the students found, by trial and
improvement, that 0.21 is a reasonable value for k. The resulting values of 7'
were compared with the observed results as before.
Initial speed yms~! 8 | 2| as | 2| 26|35
Time, T, to highest point | 08 | 11 [ 12 [ 17 [ 21 [ 27
Time given by second model | 0.7 | 11 [ 13 | 17 [ 21 | 26

dv-Jdr




Variable Forces

527

The students were satisfied with the agreement between the observed figures and

those predicted by the second model, for the range of values of V tested.

T | [
35 .
| SENE T
maliel |7
30 ﬁw,f
25
Time
T
20
st
0
05
EXERCISE 24b

‘The velocity-time graph illustrates the motion of ¥
a car, of mass 800kg, whose velocity is yms~
at time ¢ seconds. The car starts from rest,

accelerates to a speed of 15ms~" in 205 and
then continues at this speed.  Its acceleration
decreases as the speed of 15ms~! is approached.
A mathematical model is sought that will give
the value of the resultant force, F newtons, at
various times. A suitable model is thought to

be F = p— gt and the values of p and ¢ that fit
the given data are required.

(a) Using the fact that the acceleration approaches zero as £ — 20, find a

relationship between p and g.
(b) By integrating F = p—gt, find v in terms of p, g and ¢.

(c) Using the result of part (b), together with the data given on velocity and

time, find another relationship between p and g.
(d) Find the values of p and g using the results of parts (a) and (c).

(¢) Find the value predicted by this model for the velocity 10s after the start

and comment on how well this fits the given data.

(f) Do you consider that this model would be appropriate for predicting the
value of F when the car accelerates from rest to 30ms~" in 40 seconds?
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A material has the property that, when a bullet is fired into it, the resistance to
the motion of the bullet increases as the bullet penetrates further. It is thought
that this resistance, R newtons, can be modelled by either R = kx or

R = kx, where x is the depth of penctration and k is a constant.

Tests are carried out with bullets of mass 0.02kg which are fired horizontally into
a fixed block of the material. It is found that a bullet entering at 400m
penetrates to a depth of 0.1 m and one entering at 800ms™" penetrates 0.16m.
These test data allow two values for  to be calculated for each model. By d
this, or otherwise, decide which model fits the data more closely. Give an
estimate of the value of k for that model.

3 The acceleration from rest of a car on a level road is being tested. The car is of

ass 800 kg and its engine is working at a constant rate of 40kW. It is found
um after 5 seconds the speed is 20ms~', and the speed reached 30ms~" after
12 seconds.

In order to predict the time, ¢ scconds, taken to reach a speed of yms™', a model
is formed assuming a constant resistance, of 800N, to the motion of the car.

(a) (i) Find the maximum speed the car can reach.

i) Show that dv = | d
11)Sow|xjso_y v J:

(iii) Express ¢ in terms of v. (wm: a ("—’L”—i—“)

v

50-v S0-v

(iv) Find the times predicted by this model for the car to reach 20ms™"
nd 30ms™".

A second model is considered, taking the resistance as kv where X is constant.

[CIRNE

) Using the maximum speed found in part (i) above, find the value
of k.

Express ¢ in terms of ».
(iii) Find the ||mcs predicted by this model for the car to reach 20ms~'
and 30ms™

(c) By comparing the results predicted by each model with the measured results,
comment on the suitability of each model.

A further experimental measurement gives the time taken to reach 35ms~' as
19 seconds.

(d) (i) Calculate the time predicted by each model to reach 35ms~
(ii) How does this result affect your answer to part (c).
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2. A rocket of mass M is fired vertically from the surface of the earth with a speed ¥
and moves under the action of gravity only. The speed ¥ is not great enough for
the rocket to ‘escape’ from the earth’s gravitational field.

Use the law of gravitation in the form F = X4 yhere  is the distance at

5

any time between the rocket and the centre of the earth.

(a) Express k in terms of g and R, the radius of the earth at the launch site.

(b) Find the greatest distance from the centre of the earth reached by the rocket,

giving your answer in terms of g and K.

(a) At the surface of the earth, x
kM

-®

R and the gravitational force is Mg

Mg = = gR

(b)

" L. kM R°M
The force acting on the rocket at any time is —- = L;r

Using v% for the acceleration, we have

2
_M:M.%

When x =R, v=V therefore A =gR—}V?
R Rt
3

‘When the greatest distance D is reached, the velocity becomes zero,

B 1a_ 2
= 7= v’

x

[ T L L L)

2R

P = -
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EXERCISE 24c

In this exercise take the value of G as 6.7 x 10 "'m’kg"!
instruction is given.

2 unless another

Using the method of the Cavendish experiment of 1798, the gravitational force
between two lead sphers is found. The masses of the spheres are 0.008 kg and
12kg and the distance between their centres is 0.01 m. The force of attraction
between them is 6.36 x 10~ N, Use the data to find a value for G.

Use the Law of Universal Gravitation to estimate the mass of the earth by
considering the gravitational force on a particle of mass mkg at the earth’s
surface. Treat the earth as a sphere of radius 6.4 x 10% take the acceleration
due to gravity at the surface of the earth as 9.8 ms~

The moon takes 27.3 days to orbit the earth. Using the mass of the earth
calculated in question 2, and assuming that the moon’s orbit is a circle, find
(a) the angular velocity of the moon about the carth

(b) the radius of the moon’s orbit and hence the distance of the moon from the
surface of the earth.

A spacecraft is travelling from the carth to the moon on a straight line joining
their centres.  Find the distance of the spacecraft from the centre of the carth
when it reaches the point at which the gravitational attraction of the earth is
equal to that of the moon. The mass of the carth is 81 times the mass of the
moon and the distance between their centres is 3.8 x 10°m.

A spacecraft s put into a circular orbit about the moon. 1t takes 109 minutes to
complteeach orit ut u height of S x 10'm  above the surface. The radius of
the moon is - 1.7 x i

(a) the radius of the orbit

(b)  the angular velocity of the spacecraft

(c) the mass of the moon.

A man of mass 80kg is standing on the surface of the moon. He accidently
releases a piece of moon rock which he is studying and it drops from a height of
1.4m and lands on his foot. Take the mass of the moon to be 7.4 x 102 kg and
its radius to be 1.7 x 106m.  Find

(a) the weight (in newtons) of the man on the moon

(b)  the aceeleration duc to the moon’s gravity

(c) the speed with which the rock hits his foot.
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7. A rocket is fired vertically from the surface of the carth and attains a velocity
ums near the surface. It then moves acted on by gravity only, assuming that
air resistance is negligible.

After 1 seconds its distance from the centre of the earth is x metres and its
velocity is vms~.
‘The radius of the earth is R metres.

km

Use the law of gravitation in the form F = <70
S

{a) Write down the equation of motion of the rocket and by integration show
that

vz_u1+2k(l
3

(b) Find the value which v’ approaches as x increases.

(¢) Using the result of part (b) find, in terms of k and R, the value which u
must exceed if the rocke is never to return to carth (i.c. find the escape
velocity ).

(d) Evaluate the escape velocity using & = 4 x 10¥Nm?kg!
and R = 6.4 10°.

*8. A space station is set up on Mars with the ability to launch spacecraft from the
surface of that planet. A rocket is fired vertically fmm the surface with initial
velocity ums~" and it reaches a greatest height & m
For a body of mass m kilograms the gravitational racion fo Mars s
F newtons when the body is at a distance x kilometres from the centre of Mars.
The mass of Mars is M kilograms where M = 6.4
its radius is R metres where R = 3.4 x 10°
and the acceleration due to gravity at its surface is gy ms

(a) find the value of g.

If the law of gravitation is to be used in the form F = ’:_'J"

(b) find the value of k.
(c) express k in terms of gy and R.
(d) find h in terms of g, R and u.

(e) by considering the values of u for which 4 is large, deduce the ‘escape’
velocity from Mars

(i) in terms of g and R,

(ii) evaluated corrected to 2 significant figures.
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=3 and the reduction in length is 3 L.

The percentage reduction in length is %x 100, ic.56% (25).

At a location where g = 9.81ms? a seconds pendulum beats exact seconds. If it
is taken (o a place where g = 9.80ms2 by how many seconds per day wil it be

wrong
If Lis the length of the pendulum then

When g = 9.80 the time, 1, of one beat is given by = /9’

981

and is therefore seconds.

The number of beats in 24 hours is now (24 x 60 x 60) <+

The number of beats lost in 24 hours is therefore
znauw(: - %) = 24 % 60 x 60(0.0005)
"

Therefore, where g = 9.80  the pendulum will lose 44 scconds per day.

EXERCISE 24d

A simple pendulum is 2m in length and the time it takes to perform

50 complete oscillations is measured.

(a) The pendulum is on the earth and the time taken is 142s. Find g

(b) The pendulum is on the moon and the time taken is 341s. Find the
acceleration due to gravity on the moon.

Two simple pendulums have periods 1.65 and 2.4s. They are set oscillating,

initially in step.

(a) Find the length of each pendulum.

(b) Find the interval after which they are next in step.
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-gm elubc string AB, of length da and modulus of clasticity 4m, is
fixed at . A particle of mass m attached to the other end of the string is
hanging in nqulllbrlum e point E.

(a) Find the length of the stretched string.

The particle s then pulled vertically downwards from E to a point C, which is
distant a below E, and then relcased

®) Sbnw that the particle performs SHM,
riod of the motion.

ing the centre and amplitude and

If, instead, the particle were palled down to a point distant 2 below E and released,
explain why the subsequent motion of the particle is not entirely SHM.

(a) The particle is in equilibrium at E 7

T=mg
Using Hooke's Law

amg x
=
aa

il
s

the stretched length is Sa

(b) Consider the particle at a general point P distant y from E.

‘The extension in the string is @+ y

‘Therefore Hooke's Law gives
_ dmgla+ty)
="

Using Newton’s Law gives

mg~T = mj

(a+y)

ie.  mg—mg
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Comparing

»5 » with ¥ = —n?x shows that this represents SHM

in which

F=0 when y =0, soEisthe centre of the SHM.

The greatest value of y is EC, i.e. a, so the amplitude s a.

", the distance that the particle rises above E is a, showing that the string does
not go slack.

The period of oscillation is 2%, ie. an
n 8

(¢) 1 the particle were released from a point distant 2a below E, the amplitude
of the SHM would be 2a so the particle would rise above A, the natural end
of the string. But above A the string is slack and no tension acts.

Therefore the only force acting on the particle is its weight, producing
motion with constant acceleration due to gravity, not SHM.

The speed of the particle when it reaches A on its SHM path is given by
n\/(2a)} — a2, i.e. nay/3, and this is the initial upward speed for the

motion under gravity.

(SHM begins again as the particie passes through A with speed nay/3 on its downward path.)

The diagram shows a fairground ‘Test your Strength'
machine consisting of a long spring fixed at one end A,
and with a platform of mass 2kg attached to the other
end.

Competitors strike the platform vertically downwards with
a mallet, as hard as they can. The depth to which the

atform descends is recorded on a scale and the person
who attains the greatest depth wins. The natural length
of the spring is 2m and its modulus of elasticity is 40g N.
‘The winner causes the platform to descend by 0.5m.

By modelling the platform as a particle,

(a) find the length of the spring when the platform hangs freely at E,
(b) find the initial speed of the platform when struck (use g = 10),
(c) find the impulse of the blow from the mallet,

(d) show that the particle describes simple harmonic motion.

State any assumptions that have been made and suggest any way in which you think
the model might be improved.
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Assumptions are:

‘The spring is light and cannot distort. The machine has no device for
*damping down’ the motion as the platform descends. There is no air
resistance o the motion of the platform.

Possible improvements:

The surface area of the platform does offer some air resistance so a term
reflecting this could be incorporated into the equation of motion.

. A firm making small fine porcelain ornaments, wishes to ensure that the packaging
used for exporting the goods is completely satisfactory. To test for the effect of
vibration, a typical package is placed on a belt that is kept taut by passing round
two pulleys as shown.

‘The belt can be made o oscillate along Its length with simple harmonic motion
performing 4 oscillations per second. If the mass of the package is 0.6kg and the
coefficient of friction with the belt is 0.9, find the greatest amplitude permissible if
the package must not slip on the belt.

Four oscillations are performed per second, therefore the period of the motion is
0.25 seconds

The period is given by 2% therefore 2% = 025 = n=8r
n n
‘The maximum acceleration of the belt occurs at eich end of the oscillation and
its magnitude is n%a, where a metres is the amplitude.
the magnitude of the greatest acceleration is (87 f’a

I the package is not to slp, it must move with the same acceleration as the belt.
5o the maximum acceleration of the package is also (87 ).

The force that must produce this acceleration is the frictional force exerted by the
belt on the package,

Using F=m¥ gives F=06x(81)a
The greatest value of F is uR, ie. umg.
When F has this value jong = 0.6 x (8z)a
ie. 09x0.6x9.8 = 0.6 x 64x’a
= a=0013%...

Therefore the amplitude must not exceed 1.40cm (3 sf)
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EXERCISE 24e

In questions 1 to 4 a particle P is moving with SHM on a smooth horizontal
surface under the action of a horizontal force. The path lies between A and B,
and O is the midpoint of AB.

. If the mass of P is 2kg, the amplitude of the motion is $m and the period is

%"s. find the magnitude of the horizontal force acting on P

(a) when P is 4m from O
(b) when the horizontal force has its greatest magnitude.

When P is 0.32m from O its speed is 3.6ms™' and the horizontal force acting on
itis I8N. Given that the mass of P is 0.25kg find

(a) the period  (b) the amplitude of the motion

The mass of P is 0.2kg and it is projected from O towards A with speed 3ms~"
The motion takes place under the action of a horizontal force of 20x newtons,
dirceted towards O, where x metres is the distance of P from O. Find

(a) the period
(b)  the amplitude
(c) the magnitude of the maximum horizontal force on P.

When P is at A, the horizontal force acting on it is 90N towards O. After P has
moved a distance of 2m towards B, this force is 54N,
1f the mass of P is 0.5kg find

(a) the period  (b) the amplitude.

‘The motion of the piston in a car engine is approximately SHM with an
amplitude of Scm. The mass of the piston is 0.5kg.

‘When the piston is making 60 oscillations per second find

(a) the maximum force required to give the piston this motion

(b) the maximum speed of the piston.

A particle P of mass 2kg is placed on a rough horizontal surface. The coefficient
of friction between the particle and the surface is 0.4. The surface moves
horizontally with SHM of period 7 seconds and amplitude @ metres. Find
whether the particle will slip on the surface

(@) if T=4 and a=12 (b) if T=2 and a=07
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A particle of mass 2m is attached to one end of a light elastic string of natural
length /. The other end of the string is fixed t0 a point A and the particle hangs
in equilibrium at a point E, where AE = 2/, Itis then projected vertically
downwards from E with an initial velocity v&T.
(a) Find the modulus of clasticity.
(b) Use conservation of energy to find the depth below A at which the particle
next comes to instantaneous rest.
(c) Show that the particle performs SHM and find the period and amplitude.
(d) Describe the motion if the initial velocity is changed 1o a value
(i) lessthan gl (i) greater than V2l

*Springmakers’ Ltd have been asked to provide a spring, of length 30cm, for an
application where it is required to make a mass of 0.5kg oscillate vertically at a
rate of 2 oscillations per second.

(a) Find the modulus of elasticity which the spring should have.

When thesprng i fied the rate of osllation isfound 1o be 2.2 aacltions per
secor s decided to correct the rate to the required 2 oscillations per second
by ataching an extra, cparate mass Lo the end of the sping.

(b) Find the extra mass needed to make this adjustment.
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SUMMARY
Variable Motion

Take s, v, aand 1 to represent dlspldnem:nl velocity, acceleration and time, when
a, vor sis a function of time, (1), use

i Sy
de de

l':Jndl S:Jl'dl

When a is a function of displacement, f(s), use:

:\% - lf[:)d::lvdr (giving v as a function of 5)
s

§=v=

s

Wi i botionofdiosmn, 1), we:
a= vf = (s )x‘”(’)

=) = JL d.r,JI dt
dr f(s)

Simple Harmonic Motion

SHM is motion in a straight line in which the acceleration is proportional to the
i int on the line, O say, and i i i

AA' is the path
O s the centre, or mean position
ais the amplitude (the distance OA)
An oscillation is the journey from A to A’ and back to A.
T is the period of an oscillation
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o v
0 P>

Fora gmcm] position of the particle P where OP = x,
—m’x where  is a constant

—ny/(@* - x*)

acosnt where 1 =0 when x=a

or x =acos(wi+ux) where 1 =0 when x=acosa
r-2
n

The maximum acceleration occurs at A and A’ and its magnitude is n’a.
The maximum speed is na, occurring at O.

Associated Circular Motion
As a point P travels round a circle at constant angular speed o, its projection on

a diameter of the circle describes SHM with equation
¥

—w'x

The Simple Pendulum

When a heavy particle, attached to one end of a light string whose other end is
fixed, oscillates through a small angle, the system is called a simple pendulum. To
a good approximation the particle describes simple harmonic motion.

‘The period T of a complete oscillation, .. a swing forward and back, s given
by T =2n/lg

A “seconds pendulum’ is designed to take exactly 1 second to swing through half
an oscillation.

Forces Producing Simple Harmonic Motion

SHM is produced by the action of a force that is directed towards a fixed point
and is proportional to the distance from that point. The commonest example of
such a force is the tension in a stretched elastic string acting on a particle attached
to the end of the string.
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A particle P, of mass 2kg, is moving under the influence of a variable force F.

At time 1 seconds, the velocity vms~' of P is given by
V=it

(a) Find the acceleration, ams~, of P at time ¢ seconds.

(b) Caleulate, in N to 2 decimal places, the magnitude of F when ¢

0.2,
(ULEAC)

. A particle P moves along the x-axis passing through the origin O at

time (=0. Atany subsequent time ¢ seconds, P is moving with a velocity of
magnitude vms~ in the direction of x increasing where

=2842+43, 130
(a) Find the acceleration of P when 1= 3.
(b) Find the distance covered by P between (=0 and 1=4.

A second particie Q leaves O when 1= 1 with constant velocity of magnitude
10 ms~" in the direction of the vector 3i —4j, where i and j are unit vectors
parallel to Ox and Oy respectively.

Find, as a vector in terms of i and j,

(¢) the velocity of Q

(d) the velocity of P relative to Q at the instant when 1= 1.
Hence

(¢) find the magnitude of the velocity of P relative to Q when =1
() find the angle between the relative velocity and the vector i at this instant.
(Ul

LEAC)

. A vector v is given by v= (12~ ()i + (20~ 1?)j, where i and j are

constant perpendicular unit veetors and ¢ is a variable scalar.
Find expressions, in terms of 1, for
dv|*

dv dv
@) ® 4 © |g

dr’

(ULEAC)

. A particle A has mass 0.5 kg and is acted on by two forces Fy N and F2 N.

Attime =0 the particle is at rest at the point whose position vector relative
toa fixed origin O'is (0.51) m. Given that Fy = 25§+ 20, Fy= 15i~ 20}
find the position vector of A at time ¢ seconds.

At time ¢ seconds the position vector of a second particle B relative 0 O is
(0.751+301%)) m.Find the position vector of A relative to B at time 1 seconds
and hence, or otherwise, find the time T seconds at which the particles are closest
together.

Determine the work done on A by each of the forces Fy and F; during the
interval 0 <1< T. (AEB)
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A particle of mass 3kg moves under the action of a force FN. At time f seconds

the velocity vms~" of the particle is given by v = 3i + 21j.

(a) Find F.

(b) Find the kinetic energy of the particle at time  seconds.

(¢) Given that the position vector of the particle when 1 = 0 is §+], ﬁnd its
position vector when 1 = NEAB)

. The position vector r metres of a particle P at time f seconds is given by

¥ = (cos 20)i — (sin 20)j.
(a) Find the velocity of P at time ¢ seconds.
(b) Show that the speed of P is constant and find its value. (ULEAC)

). A particle P, of mass 0.2kg, moves in a straight line through a fixed point O. At

time ¢ seconds after passing through O, the distance of P from O is x metres, the
velocity of P is vms ' and the acceleration of P is (¥ +4)ms 2

(a) Use the information given to form a differential equation in the variables v
and x only for the motion of P.

Given that v =2 when x =0,

(b) show that 3v? = 2% + 24x + 12.

(¢) Find.in J. the work done on P by the force producing its acceleration as P
moves from x =0 to x= (ULEAC)

A steel ball of mass 0.1 kg falls vertically through thick oil and, in addition to a
constant gravitational force, it is subject to a resistance, the magnitude of which
is 49v N, where vms~" is the speed of the ball.
(a) Attime 1 =0, the ballis released from rest.
(i) Show that the speed of the ball at time 1 is given by
V= 002(1- ).
(i) Draw a speed-time graph and discuss the motion for large values of £.

(b) Describe the motion when the ball is projected downwards with speed
0.02ms~". (AEB),

. An acroplane of mass M kg moves along a horizontal runway, starting from rest.

The aeroplane’s engines exert a constant thrust of T newtons and, when the speed
of the acroplane is yms ™', the magnitude of the resistance to motion is kv*
newtons, where k is a positive constant.

Show that, to reach a speed of ¥ms~' on the runway, the acroplane travels a

7 M T
distance .- In (W) metres. (ULEAC)
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‘The magnitude of the gravitational force between two uniform spherical bodies of
mass M and m with centres A and B respectively is

GMm
”

r=AB and G = 667x10" m'kg"'
gravitational constant.

is the universal

(a) Given that the moon is a uniform sphere of mass 7.36 x 102 kg and
radius 174 x 10°m find, to 2 decimal places, the magnitude of the
acceleration due to gravity on the surface of the moon.

(b) Deduce that an astronaut, weighing 750N on the surface of Earth, will
weigh approximately 124N on the surface of the moon. (AEB),

Assume that the gravi

tional attraction of the carth on an object of mass m at a
distance r from the centre of the earth is 7”' where k is a positive constant.
A rocket is launched from the carth’s surface, and it travels vertically upwards.
When the fuel is exhausted, the distance of the rocket from the centre of the
carth is a and the speed of the rocket is u. Some time later, the distance of the
rocket from the centre of the earth is x and the speed of the rocket is v.
Neglecting any forces other than the gravitational attraction of the earth, find an
expression for v.

Deduce that, it 1 > 2% the rocket will never fall back to the carth.
“ (UCLES),

In questions 23 to 28 a problem is set and is followed by a number of suggested
responses. Choose the correct response.

A particle P describes SHM of amplitude 1m. In performing one complete
oscillation, P travels a distance:
A 2m B 0 C 4m D -2m

0 [

A particle travels between A and A’ with SHM of period 24 seconds. O is the
centre and B is the midpoint of AO. The time taken to travel from A to B is

A 3s B 8s C 6s D 4s

In questions 25 and 26 a particle is moving in a straight line A’ with SHM.
The equation of motion is ¥ = —4x and the amplitude of the motion is 3m.
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A 36 B 6 (] D 18

. The time, in seconds, taken to travel from O to A is

A {n B n C ix D in

8ms? is3s. This
pendulum i taken to another planct and, there, its period s 65 The value of £,
inms2, on that planct is

A $98) B (98) C (98) D 2(98)

If a man has weight W on the surface of a spherical planct of radius R, then his
weight at a height R above the surface of that planet is

A 4w B W C iw D 2w

In each question from 29 10 34 a statement is made. Decide, giving reasans for
your decision where you can, whether the statement is true (T) or false (F).

A particle whose aceeleration is proportional to its displacement from a fixed
point is moving with SHM.

. A particle hanging at the end of an elastic string is pulled down and then

released. The motion of the particle must be entirely SHM.

. A particle describing linear SHM on a path AB with midpoint O has its greatest

acceleration at either A or B,
The work done by any force F in moving an object a distance d is Fd.
A particle which is oscillating is not necessarily performing SHM.

A particle is moving along a straight line with variable acceleration. If, at some
instant, the particle has a maximum velocity, the acceleration at that instant is
zro.

. A particle P, of mass 0.3 kg, moves in a horizontal straight line with simple
The

harmonic motion of period 25 and maximum speed 4ms~'. The centre of the
path is O and the point A, on the path of P, is 2 m from O.
x
Find
(a) the speed of P as it passes through A,
(b) the magnitude of the force acting on P as it passes through A.  (ULEAC),
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ribes SHM centre O, period 27/3 seconds and its maximum
Find

(i) the amplitude of the motion,
(i) the time taken for P to travel from O directly to a point 4m from O.
Given that the particle is of mass 0.25 ke, find

(iii) the rate at which the force acting on P is working when ¢ = 7/9.
(WIEC),

37. The motion of the top of a piston is modelled as Fitonop
Simple Harmonic with a period of 0.1s and an /
amplitude 0.2m about a mean position A.

(i) Show that x, the displacement of the top of the
piston from A after ¢ seconds, is given by the
cquation  x — 0.2 sin (20mr), given
that x = 0 when 1 = 0.

Where appropriate your answers to the following
questions should be expressed in term:

(i) What is the greatest piston speed?

What is the greatest magnitude of the
acceleration of the piston?

(iv) For what fraction of the period is x> 0.17 (MEI)

38. A simple pendulum has a period of 1 second. It is tested in two towns, A and B.
1t has 3601 oscillations in an hour in town A and 3599 oscillations in an hour at
town B.

(a) Compare the values of g for the two towns.

(b) Give a possible explanation for the difference in g between the two fowns.
(NEAB)

39. A particle P, of mass 0.01 kg, moves along a straight line with simple harmonic
motion. The centre of the motion is the point O. At the points L and M, which
are on opposite sides of O, the particle P has speeds of 0.09ms~" and 0.06ms™"
respectively and  20L = OM 2
(a) Show that the period of this motion is 2r /(% )s.

Find
(b) the greatest value of the magnitude of the force acting on P, giving your
answer to 2 significant figures,

the time for P to move directly from L through O to M, giving your answer

10 2 sigificant figures. (ULEAC)

(e
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. Some students are modelling the last 2 seconds of the flight of a bird as it lands

atits nest. Attime ¢ = 0 the bird is moving with speed 3ms~" and when 1 = 2
itis at rest. One student proposes a model of the form

v=ath, 0<1<2
where v is the speed of the bird at time ¢ seconds and a and b are constants.
(a) Find the values of a and b.

‘The teacher points out that a further feature of the problem that the student
should try to encompass in the model is that as the bird approaches the nest the
magnitude of its deceleration decreases. A refined model of the form

v=k2-0? 0<i<2,
where k is a constant, is proposed.
(b) Find the value of k.

(c) Find the acceleration of the bird as it approaches the nest and show that
this extra feature is included.

A camera is set up to film the flight of the bird during these last two seconds and

a trigger s to be set up so that when, at 1 = 0, the bird passes the trigger the

camera is automatically switched on.

(d) Find how far from the nest the trigger should be placed. (ULEAC)

. A cyclist moves against'a total resisting force of magnitude 4v N, where yms~" is

the speed of the cyclist. The total mass of the cyclist and cycle is 100kg. Given
that the cyclist is working at a rate of S6W at all times, find the maximum speed
which the cyclist reaches when travelling down a slope of inclination 0, where

sin = 3. (AEB),

A space-ship S, of mass M, is orbiting the moon 10°m above its surface with
constant speed vms~". In a preliminary model of this situation the moon is
modelled as a sphere of radius 2 x 10°m, the space-ship as a particle and the
acceleration due to gravity of the moon is modelled by the constant value
1.6ms™2. The space-ship travels round the moon in a circular orbit.
(a) Estimate, to 3 significant figures, the value of v.
A more refined model of the gravitational force F, experienced by S, is

Mk

F=25

]
where F is directed towards O, the centre of the moon, and  is a constant.
Given that the acceleration due to gravity at the moon's surface is of magnitude

(b) show that k = 6.4 x 10 m’s ™2,
(¢) Find a revised estimate for v. (ULEAC)




Consolidation F 561

. A particle of mass m falls from rest, under gravity, in a medium in which the
resistance 10 its motion is mkv, where k is a constant and v is the speed of the
particle. Write down the equation of motion for the particle. If the motion were
to continue indefinitely, v would approach a constant value V.

Show that k = £. Hence show that &' = & (¥ —y).
v v

Show that the particle is moving with velocity ’5’ after a time (Z) In2.
g

Show also that, during this time interval, the particle has fallen a distance s given
by

Hence show that

=3
—~
5
v
wis
Qs

Find the average spred in the form AV, during this time interval, expmnmg 1
correct to 2 decimal pl (N

. A cyclist is travelling along a road.
(a) What can be deduced about the resultant force on the cycle if they are
travelling at top speed
(i) along a straight road,
(ii) along a winding road?
A cyclist whose maximum rate of working is 600 W can reach a top speed of
10ms~! on a level road. The combined mass of the cycle and eyelist is 90kg.

(b) By assuming that the resistance forces of the cycle and cyclist are
proportional to their speed, find a simple model for the total resistance

(c) By assuming that the forward force on the cyclist is constant, show that

dv _ 10
dr 15

where vms~! is the speed of the cyclist at time  seconds.

(d) Find an expression for the speed of the cyclist in terms of time, if the cyclist
starts at rest.

(¢) Criticise your model for the resistance on the cyclist. (AEB)
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CHAPTER 1

Exercise 1a-p.5

L@em (b2 m/x () 15m/s
(e 12m/s

(@3s

44smjs

(a) 1.6 mm/s (b)15s
(c) 33 mm/s
ercise 1b - p.12
1. (a) 8 mph/minute (b) 70 mph

(€) 3 minutes
(d) 43 mph/minute

(b) S m/s; 3m/s; 4

m/s
(© ()42m/s (i) 413m/s (3 )

. (a) 52

s
(b) (i) L4 em/s.
(©) (i) L6 em/s

(i) 34 cm/s
(i) 26 cm/s

1
i3

o

Distasce (e

3 il
Time 5}

@os s B0 18w/ (ii) 24 m/s

©5

Time )

LRl

(R B )
Time s}
(@08m/s'  (b)25m/s

(c) 240

. (a) ()20 (i) 155
(b) (i) 0.5 m/s
(c) 825m

. 155,495 m

. (2) (i) 17.6 m/s
(b) decelerating
@ sm

(iii) 65 5
(ii) 0.67 m/s*

(i) 1 m/s
(©)4m/s’

e T
Fime 5}

@ () =4m/s (i) -35m/s

()45

(€) 75 m: an underestimate because the

area of each trapezium is less than the

area under the corresponding curve

(n)lﬁkm/mmz (®)20km (c) 17km

Nokeas gradient of tangent varies
C false as gradient not horizontal when
=0

e

A specd decreases then increases
B gradient is constant
D graph is above the time axis



[

Aline drawn at 40 does not bisect the area
B gradient varies

D area under graph not  triangle

B 12.8

13D
Av=
B v still positive
C tangent inclined at about 45° but scales
different

vetors
(i) ~12m

& @34m 4m

(c) 008 m/s

puimeos )

&

Exercite 1d-p.20
1. (a) Cc
(b Incomec;the diretion i changing al
the time
(¢) Incorrect; we do not know whether
the speed is constant

2. (a) Im/s (b) -2 m/s
(©) 2m/s (@) -0Sm/s
3. —4m/s
4 (a) -2m/s (b) =3 m/s*
5. (1) Bm/s (b) =7 m/s
(© Sm/s
Exercise 1e - p.25
Vo Isw G sms @0

(®)
(i) Ball sl it dircction is
versed

(©) Anek 3 s
2 @) @2m/s G -2m/s
(iii) 0 (iv) ~4m/s

2m/s (i) 2m/s
2m/s (iv)4m/s
ms () =2

Answers
2 g T
L
e .
5 2 Time (s)
3 oo i
i
i
Z
i i

©255 (@) -sm/s

(e) (i) ~1 m/s (i) 3m/s

. (-)I; L758252 35 350 38
)08 m/s

( ) 0.
(c) -1 m/s (ii) 0 (i) 0

(:J () 085 m/s ()05 ms

Exercise 11— p.
1. (a)3m/s’ ()1 m/s
(© () Is2m (i) 400 200 m;
the car Irlv:ls in lbe same direction all
the t
2 i i 360 m

3. Y @i=5
iR (®)16m
BRI (©) 34m
BN
-5




13. Downriver at 53" to bank; § km/h
N

R4 I 265 km/h

15,166 km/h, 102°
16. (a) at 27" to PQ out of harbour
(b) at 30° to PQ into harbour

Exercise 3c - p.63
1. (a) 65in 25 (b) 10 5in 20°
€) S2c0s 20 ()20 cos 60
() 2 cos 50" (1) 8 sin 40°
2 3 N
sin 52"
5 sin 65"
@sy i)
Somes Toon 2
@i @68
. 1205028 5.
(563)
120 cos 28 LI
(106) e
6 7. 30sin70°
@82)
rero
30 cos 70°
Toms (03
s

e oS
o 30" scos 60/ ~\2433)
B0 e 30"

3 (s} "i/\

Answers.

B 10cs 40,
(766)

1005in 40°
@)

i
20 cos 207 20 in 20°
(i88) (©84)

45 sin 10° 45 cos 10°
@81 @3)

329 ms

TEomA

7. 508 mph paraliel
114mph perpendicular

18, 68.8 m/s parallel

Exercise 3d - p.68
1 @) 4y

(©) -2+4

(e) =5

(b) 4
(d) -4
(0 -20-3)
(©) VB
)4 ©5 (f) Vi3
3. (a) 120847} (b) ~20)
(c) ~531- 53} (d) 2400 + 320}
4 ()9-4
tadain. S M

()4




Answers

(b)31+6) A

®)i+)

o

AT ™ - . ®
T@s  mB @V
8 201y
9. () -lld (b VITT RV VW, W
10, 8165 or 8146}
n @ -3 (ysi-4 2 g,

R,

CHAPTER 4
Exercise 4a - p.75 ) w)
1. &2

&, :
w
3 . . £k,
z
&
7
w £
w
: 1)%7,
w



. ,Tn
@P=F (R=W

Exercise 5b - p.99

1. 15 mfst
2. %N
3 W0k
. S‘;ﬁ“‘<%m/5’
5. 5(71.+2§) = 351+ 10} (in newtons)
6.
0N, 0 =8N
0=3N
7. (b) 16m/s’
[ BN
30
10, P =40
)
10.
n
2.
13 (b) ~081+2)
. 16ke
1. 100m
18, 14m/s
Exercise 5¢ —

L@ON  (b)ISkg  (©O0IN
2 (6N () 125k (c)0072N
3. 312N
4 ()BEN (B)IOIN  (c) 88N
5 (1)s47ke (b)§5kg (@ T14ke
(d)7.14 ke
6. (a) () IB00ON (i) 6790 N
(b) 750 kg
7. 10920 N
8 () VAN () 192N

Exercise
1@+ DN

106
®) (g +S)N
2. (a) 83 kg b

5 4lm

5¢
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CHAPTER 6
Exercise 6a - p. 125
L @P=300 0=
B P=12,0= 123
(©) P = 1005in 70° = 342,
© = 100 cos 20° = 940
2 @P=24 0=20
®)P =24 Q=150
©P=80=6"

Exercise 5f - p.115 L @P=13y30-0
- z (b)0 =60, P =ay3
|.<-)a,x/z.r,1x PR S
(hlulﬂ&/s 7= (©F=10, 0~
4 %N
5 90T = 12N, T3 = 16N
= 6 w/y3 (w3/3)
£/3, T = aMg/3 7. w/2
3 @ b) 2 @I (b
:. m(\nl—m/.w (b) 2 »//;»21:/! 9. (anticlockwise from P) Pi, QJ,
. (a) 3/} (b) 15g sy Syg e
. #(v2-+/6) N, bisccting angle between =i 22i-4 -6
faces P=-33 0=10

7. g metres; g m/s
8. (a)g/6
(b) T, = 10mg/3, T3 = Tmg/3 ®) s
9. (a) g/9 (b) VZg/3
o3
10. (a) /3 (b)g/18
nw /7 e Exercise 6b - p.132
12. ¢ 1. y3/3(0.577) 2.4
3 053w 4o <n)um/uvﬂ‘) 3624 V3)N(24N)
14. (a) freely under gr " (0.789)
(b) 125 m/s -
5. 1201+ V/S) N (162)
6
Exercise 5g - p.121 174
Model each object as a pmmk ignore any % () 124N (®)9.18N
resistance unless specifically mention 8 (h) u;/zs;
Assume cables, towbas i 0 b saight ( + \”)u:m»,
and inextensible. o @ lon, “»/3
1. (a) HHgN, 80N, ¥gN a) n: . o
(b) S2gN, SN, 726N O st on the point of
2. (a) 180N (b) 3330 N () 40 N, yes
3. (a) 308.m/s* (b) =025 m/s* "
10. 0.309
L7 - Assume no other resistance to motion; model
5. (a) (i) 35(7,” 1)N; a particle or a porter and trolley cach as a particle

small block (i) 435(2¢ + 1) N 11 3g/10; TMg/10
BRGNS DN 12 s e
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CHAPTER 7

Wherever it is appropriate in Exercises 7a, 7b
and 7c all large objects are treated as particles.
and air resistance, unless specified, is ignored.

Exercise 7a - p.139
1. (anticlockwise from 20 N)
003, 0, -24, 0
2. (anticlockwise from 8 N)
~24), 0, 481
3 lockwise fvam 7 N)
81, -

9 @101 (52903
Assume constant speed
2800 ks

M @) 10T (b) 8300

12, 4400 J; assume rope doesn't stretch

13 1400 J; assume stcady speed and rope
doesn't stretch

4. 25 N; assume steady speed and rope
doesn't stretch

15 100 J; assume steady speed and rope
doesn't stretch

16. 1 assume steady speed and rope doesn't
stretch

7. 11 KJ; 14 kg; assume constant specd
8. () 20N () I10N

(©)250) ()930)

Assume steady speed and rope doesn't

stretch
19. 7500)

(a)G) SON () 1300 N]
(b) 12k

20. (a) §g N ()i N () ke
(@ 4e) (@ 4g)

Exercise 7b - p. 148

1. 20w 2. 2kwW

3 36w 448 W

5 B6W

6. (a) 4 kW (b) 1800 N
() 20m/s

7. 1000 K 8. 1400 N

9. 360 W 46m/s
0. (2) 17mjs
(5) 40 m/s; e.g. resistance unlikely to be
constant in differeat conditions
No@ms (b)) Bmfs
(©)26m/s

2 @) Vms () 40%
3. (:mxw ®) 6 kN
()16
u () sm/u ®»Bms @
Exercise 7c - p.150
L@BKY (6061w
2. 065m/s 3. 22m/s 4 013w/
5 @0KW () 12m/s
6 (a) 19 (b) 048 m/s*
7 @) Mmis (b)0SSm/
(@) 310N uu«s--./;l
9. (a) R = 1000, H =
(b) 0.25m/s"
0. 18 m/s
CHAPTER 8
Exercise 8a
1. (@) 431 (60816
2 @31 (6) 60000 J
() 20005 @ 653
3143, 420m/s, 2k
. Treat woman as a particle
(@) ()0 (i) 42003
(b) 48007 (© 19003
(d) 1400 )
5. () 1447 b) 598 §
6 ()MK  (b)25m/s (0 k/h)
7 @ 0ms  (5)2Bm
8. Treat 45 of the water as a particle

(@) 5300) (63200
9. Treat volume of water discharged per
second as a partice

@048m (b)480kg
(©) 39K
Exercise 8b - p.160
1. 229 N: assume string light and
inextensible
2. 5767
3. 164 N; 641 m/s, assume resistance
constant
4 113 62N (assume zero resistance)
5. 124m/s
6. (ignore air resistance)
(@) 620 m/s m-m m/s
7. 216kN
8 (a) 1371 (b) 1485
9. (a) 161 m (6) 299 m/s
10. 26,1 m/s; ignore air resistance

. 3.4 N; assume resistance constant



2
3 ()T (F (iF )T (MF
4

At 40.5" (0 OE, ie. on bearing 130.5";
33s(2
5. (a) ION (¢) 1.33ms™" (3s0)
6 1120m
7. (1) 3Mg. (b) 48"
8. (b) 6.64ms " (€)4m
9 (1) 1s(0714), $5(357)

(b) 10m and 50m —, 12.5m 1 for both
3055, 18.5m

(c) 249ms~"
(€)49.5ms

@1m  (b)2s
. (1) 48m  (b)116m
020° (nearest degree)
(@) 18KN () 274m  (c) 0ms”"
o air resistance; Hooke's Law valid
throughout
16. (u) SMg
17 (@) 3s

(6) 20815

(®)16m
vi v

wou= T
2

19. (b) 78, 10°

2. (a)zﬁikmh d

(€) 0.75 rad
veju
(c) 2s

s 1)
250 1005, J0m
(@) 16

(0 Yoo by 011 m
@i 0 @
286 (© 175ms”!
An overestimate; work done by air
resistance assists in stopping the
descent.

SU;B NE

T =4 EPE = da; v
i

—Aovs

mg - 75 (2-V3)

No air resistance

(i)5.5ms”" (i) 1.8

30. (a) EPE - work done Wy friction >0
(©)§ /g

31. 19kN (2s0)

32. (i) The point B is in equilibrium.

AB*D! =6N

B.N?I

(mmm.'

2. (41 i kg (b) 28ms

CHAPTER 13
Exercise 13a - p. 266
(@) 120Ns () 24000 N

(© 11040 Ns (@) 1177 10* Ns
(e) 4Ns
2. (a) 84Ns (b) 72 10* Ns.
(c) 88 Ns AdlmN;l::lO)
3.2 2
62 1} 3s
9. (a) 260 (b) ~6i |(l N
n 2N

2 @3 (b 1285 1753, 255
13. (a) ION (b)20N
4. (a) 31200Ns  (b) 31200 Ns.
(c) 15600 N
i p.268
1. 12INs 2. 102Ns 3. 125Ns
4 0mNs 5 W8NS

Exercise 13 ~ plﬂ
3 -15ms!
: 6k| 6. 15k
8 6ms!

u 7
10. (a) 4ms’ (b) 24 Ns
1. (2) 0.57ms™" (b) 0.73ms™"
(c) 36 Ns. Stones treated as particles;
ignore friction and air resistance
12, 63 ms~! 131 kg
"o VR (o) VI

(©) 240N

Exercise 13d - p.276

L@ @12)  G)6Ns
(b) () $851 (i) 18 Ns
@l @ 0N
@ @9%) (i) 24Ns
(D ()36 () 18Ns
2. 13} Ns; 4Ns
3 (@) 600kg  (D)4ONs  (€)450)
4 @) () I (i) 6
(b)) 3 (i) Imu (i) G
5 @) ! m

(b) 09ms~" upstream
6 (1) 2VI0ms (63ms™)
(b) 6VI0 Ns (19 Ns)
(© 2V7ms" (83ms™)
(d) 6(VI0+ VT) Ns (35 Ns)
7. L12ms!, 336 Ns (2s0)
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Exercise 14c-p.293
Lwm=-f.n

A to collide again.
2 @m =3 n=12

§: A ravelling away from the wall faster than B so B will not catch

b) A: —3ms~!, B: 6ms
(¢) B will collde with the wall again.
3. A n
AterAwrtesB O m ! o—Poms

B

AterBsrikeswall  3my ' GO
A u
MecBsstes A Ims 'O & —Pimst

Aerbskenaisgin e G
Ther will b o mre colsons
4 At cotiion

At 2 cotion

[Er— & pams!

-
5 e B—ADlm‘ D sms an
w S Pt S0 @——Pam!
WO Pamet S—Pams e—Pame
6w & po &—pu
® & pu=p by

(c) (i) Velocity of B is negative so B hits A.
{ii) Velocity of B is positive and < velocity of C; no further collisions

@M )™ (o
m m
8 62ms! (3)
9. 1ams ()
10. [nl’fnzst.:— Dms ', Q: uzs(u Dms!

»
. @0 P e (b) GP in which 7 = ¢




MECHANICS

This text is written to cover the mechanics elements of
the Advanced Level mathematics courses.

Modelling is introduced at an early stage in this book.
Suitable for all examination boards; no previous
knowledge of the subject is required. Topics are
arranged so that when Pure support is required it is
unlikely to be beyond the level then reached in a
parallel course.

Consolidation sections contain a summary of
preceding work followed by exercises including exam
questions. Some exercises contain ‘starred questions’
that stretch students by introducing a challenge.
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