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NOTES ON USE OF THE BOOK

1. Notation Used in Diagrams
Force

e
Veloclty ——
Acceleration
Dimensions pa———
Where components and resultant are shown in one diagram the resultant is
denoted by a larger arrow-head thus:

2. Value of g

Throughout this book the value of g, unless stated otherwise, s taken
a5 9.8ms™

3. Useful Pure Mathematics
In any triangle ABC /6

T ™
B g
A c
g

sinA _ sinB _ sinC

Sine Rule — ==
2 ] c

Cosine Rule b+c?—2bccos A
Cotangent Rule ~ (m+n)cotd = m cota—ncotf

Compound Angle Formulae

sin(A+B) = sinA cosBxcosAsinB

cos(A+B) = cosAcosBFsinAsinB

ix



Small angles sing

As 8 +0, — =1
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Integrals &)
oo & = kTl
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arcsin —+ k
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4. Instructions for Answering Multiple Choice Exercises

b the end of most ch Th groups,
each group representing one of the variations that may arise in examination
‘papers. The answering techniques are different for each type of question and are
classified as follows:

TYPE |
These questions consist oh problem followed by several alternative answers,

only one of which s cor

Write down the letter connpunding 10 the correct answer.

TYPE NI
In this type of question some information is given and is followed by a number
of possible responses. One or more of the suggested responses follows directly
from the information given.
Write down the lettex(s) corresponding to the correct response(s).
A response is regarded as cunecl only if it must follow from the given data.
For example, in a triangle P
(@) P+Q+R=180°
(b) PQ+QR is less than PR.
(c) 1f P is obtuse, Q and ﬁ musv. both be acute.
(@) P=90°, Q=45°, R=

‘The correct responses are (a) and (c).

(b) is definitely incorrect
(d) may or may not be true of the triangle PQR o is not regarded as correct.

TYPE N

Each problem contains two independent statements (a) and (b).
1) If (a) implies (b) but (b) does not imply (a)  write A.
2) If (b) implies () but (a) does not imply (b)  write B.



3) If (a) implies (b) and (b) implies (a) write C.

4) If (a) denies (b) and (b) denies (2) write D.
5) If none of the first four relationships apply write E.
TYPEIV

A problem is introduced and followed by a number of pieces of information.
You are not required to solve the problem but to decide whether:
1) the total amount of information given Is insufficient to solve the problem. 1f
s0 write 1, .
2) all the given information is needed to solve the problem. In this case write A,
3) the problem can be solved wirhout using one or more of the given pieces of
information. In this case write down the letter(s) corresponding to the item(s) not
needed.

TYPEV
A single statement is made. Write 7 if the statement s always true and F if
the statement is false (or true only in certain cases).



CHAPTER 1

INTRODUCTION

This book is about Mechanics and the solving of mechanical problems with
the help of Pure Mathematics.

Mechanics, which deals with the effects that forces have on bodies,is a science.
So the laws of Mechanics are scientific laws. They come from observation and
experiments and so can never be considered as universally true. The most that
can be said of several of these laws s that they agree with observed results to
the extent that they are accurate enough for most purposes. Pure Mathematics,
on the other hand, i an art and its theorems are universally true. When Pure
Mathematics is used to solve a Mechanical problem it is important to distinguish
clearly between the use of a scientific law and a mathematical theorem.

CONVENTIONS

Certain factors which have a negligible effect on a problem are often ignored.
‘This has the advantage of simplifying the problem without sacrificing much
accuracy, and is best ilustrated by an example.

Consider a heavy bob suspended from a fixed point by means of a thin wire.

‘The weight of the wire is negligible compared with the weight of the bob,
and can be ignored. In such a case it would be described as a light wire.

If the dimensions of the bob are small compared with the length of the wire,
the bob can be considered as a point and will be described as a particle.

If the bob is swinging in still air, then air resistance to its motion will be
negligible. In fact air resistance is ignored in all problems unless specific
mention is made of it.

If the bob is in the shape of a flat disc, where the surface area is large compared
tots thickness, the thickness is ignored and the bob is described as a circular
lamina.
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If the bob has a spherical shape and the thickness of the material it is made
from is small compared to its surface area, this thickness is again ignored and
the bob is described as a hollow sphere or spherical shell.

If the bob is made to slide across a table, then there will be some frictional
resistance to its motion. Although it is rare to find a frictionless surface the
amount of friction is often small enough to be ignored and such a surface is
described as smooth.

‘Summary of Conventions

. Considered weightless

. Object having no dimensions (considered as a point)
. Flat object, having dimensions of area only

. 3-dimensional shell of no thickness

. Frictionless

. Ignored, unless mention is made of it.

UNITS

Most quantities used in this book are measured in the S.1. system of units.
The three basic quantities are mass, length and time. All the other quantities are
derived from these three but their definitions are left until the appropriate
chapters.

Quantity Unit Symbol
mass Kilogam kg
length metre m
time second s
force newton N
work joule ]
power watt w

Mechanics deals with the effect of forces acting on bodies, and one effect is
that motion is produced. Before the relationship between force and the resulting
maotion is discussed we will consider them separately.

MOTION

‘The following quantities are needed to describe the motion of a body:
Distance is the length of a given path.

‘The unit of distance s the metre (m).
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Displacement defines the position of one point relative 1o another point:
displacement includes both the distance between two points and the direction
of the first point from the second point.

Speed is the rate at which a moving body covers its path, no account being
taken of the direction of motion.

The unit of speed. The unit of distance is the metre and the unit of time is the
second, hence the unit of speed is the metre per second (ms™).

Velocity includes both the rate of motion and the direction of motion.

Acceleration. When a velocity changes, it is because either the speed changes,
or the direction of motion changes, or both change. Acceleration measures
this change in either speed, or direction of motion or both, i.e. acceleration
involves direction as well as a magnitude.

The unit of acceleration. The unit of speed is the metre per second, so the unit
of acceleration is the metre per second per second (m's~%).

Note that distance and speed involve magnitude only, but displacement, velacity
and acceleration involve direction as well as magnitude.

EXAMPLES 1a
1) A particle moves round a square ABCD in the sense indicated by the letters.
Bisdue north of A and C is due west of B and the side of the square is 10m.
If the particle starts from A, what distance has it travelled when it is mid-way
between B and C, and what is its displacement then from A?

‘When the particle is at P, the distance travelled = AB+PB = 15m

The distance between P and A = V/(10*°+5%)m = 5v/5Sm
LBAP = arctangy = 26.6°
Therefore the displacement of P from A is 5V/Sm in the direction 333.4°
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2) If the particle in Example 1 is covering its path at a constant rate of 2ms™,
what is the speed when travelling along (a) AB, (b) BC?

State also its velocity when travelling along () AB, (b) BC.

Speed along AB
Speed along BC 2ms

Velocity along AB = 2ms ™ due north
Velocity along BC = 2ms™ due west

2ms™

Note that although the specd along AB is equal to the speed along BC, the
velocity along AB. is nor equal to the velocity along BC.

3) If the particle in Example 1 moves so that when moving from Cto D its
speed increases at a rate of 2ms~, and when moving from Do A its speed
decreases at a rate of 2ms™, what s its acceleration along CD and along DA?

When the particle is moving along CD (the direction of motion s given by the
order of the letters, ie. CtoD) the speed is increasing at a rate of 2ms™.
‘Therefore the acceleration is 2ms™? in the direction CD.

When the particle is moving along DA the speed is decreasing at a rate of 2ms™

Therefore the acceleration is 2ms~2, but in the direction AD because the
speed is decreasing.

EXERCISE 1a
1) A particle moves round the sides of a regular hexagon ABCDEF of side 3m.
‘The particle starts from A and moves in the sense ABC. What is the distance
travelled by the particle and its displacement from A when it s:

@at C, (b)at the midpoint of DE?

2) If the particle in Question 1 covers its path at the constant rate of 2ms™,
what is its displacement from A after 1257

3) What is the velocity of the particle in Question 2 after:

@ ss, (b) 10s?

4) A particle moves with constant speed on the circumference of a circle. Is the
velocity constant?

5) A particle moves with  constant speed along the track shown in the diagram.
For which sections of its journey is the velocity constant?

A B
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FORCE

Most people have an intuitive idea of force. Consider, for instance, a book lying
ona horizontal table. We know that force must be applied to the book to move
it along the table. Force may be applied directly to the book by pushing it, or
indirectly by, for example, tying a string to the book and pulling the string.
Obviously the movement of the book is related to the amount of force used.
‘The direction in which the force s applied also affects the movement of the
book: with the string horizontal the book will move along the table; with the
string vertical the book will be lfted off the table. The point at which the force
is applicd to the book also affects the result. If the string is attached to one
edge of the book and pulled vertically the book will tilt about the opposite edge,
but if the string s attached to the middle of the book and pulled vertically no
tilting will take place.

So three factors determine the effect that a force has on a body to which it is

applied:

(2) The smount, o the magnitude, of the applied force. The unit of magnitude
is the newton (N).

(b) The direction in which the force is applied.

() The point of application of the force. An alternative way of expressing the
direction and point of application of a force is to give its line of action and
the sense of the force along that line.

We also know that the book will not move on its own account. From many such
observations it is deduced that: force is necessary to make an object begin to
move. Conversely, if an object starts to move then a force must have caused
that motion to start.

WEIGHT

If a body is dropped it will start to fall, so we deduce that there must be a
force acting on that body which attracts it to the ground. This force is called the
gravitational force or the weight of the body; thus the weight of a body is a force
and is measured in force units (newtons).

If we hold a heavy object we can still feel this gravitational pull, even though
the object is not moving, illustrating that the weight of a body acts on it at all
times, regardless of whether the object is moving or not.
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MASS

Itis a well known phenomenon that the force with which an object is attracted
to the surface of the moon is less than the force with which the same object is
attracted to the surface of the earth. It is also found that the weight of an object
varies slightly in different places on the surface of the earth. So, although the
amount of matter which constitutes an object is an absolute property of that
object, its weight is not absolute.

Mass is a measure of the matter contained in an object.
‘The unit of mass is the kilogram (kg).

Forces Acting on Bodies

Consider again a book lying on a horizontal table.

The book s not moving, but there is at least one force acting on it, ie. its weight.
I the table was not there the book would fall, so the table must be exerting an
upward force on the book to counteract its weight. This force is called the
reaction. A reaction force acts on a body whenever that body is in contact with
another body which is supporting it

Now consider the book being pulled along the table by a horizontal string
attached to the book.
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The weight and the reaction again act on the book, together with a pull from
the string. The pull that the string is exerting on the book is referred to as the
tension in the string. If there is friction between the book and the table there
will be some resistance to the movement of the book along the table. This.
resistance is called the frictional force and it acts on a body whenever there is
a tendency for that body to move over a rough surface.

SUMMARY
The forces which act on a body come mainly from three sources.
1) Gravitational pull (weight).

2) Contact with another body.

3) Attachment to another body.

(There are other sources, such as wind force, engines, etc., which we shall meet
later on.)

DIAGRAMS

Before attempting the solution of any problem concerned with the action of
forces on a body, it is important to draw a diagram which shows clearly all the
forces acting on that body.

‘The points to remember are:
(a) Abody is always acted on by its weight unless the body is described as light.

(b) If there is contact with another body there is a reaction and possibly some
friction,

(9) If there is attachment to another body (by means of a string, hinge, pivot,
etc.) there is a force acting on the body at the point of attachment.

(d) Check that there are no other sources of force.

(e) Only the forces which are acting on the body itself are considered.
A common fault is to include forces which are acting on an object with
which the body is in contact.

(f) Do not make the diagram too small.

EXAMPLES 1b

1) Draw a diagram to show the forces acting on a block which is sliding down a
smooth plane inclined at 20° to the horizontal.
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®

30"

The plane is smooth so there is no friction.

2) Draw a diagram to show the forces acting on a block which is being pulled up
a rough plane by a string attached to the block. The plane is inclined at 15° to
the horizontal and the string is inclined at 30° to the horizontal.

As the plane is rough there is a frictional force acting on the block down the
plane (friction opposes motion).

3) A particle is suspended from a fixed point by a string and it is swinging in a
horizontal circle below that point. Draw a diagram to show the forces which are
acting on the particle.
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4) Draw a diagram showing the forces acting on a ladder which is standing with
one end on rough horizontal ground and the other end against a rough, vertical
wall.

The lower end of the ladder has a tendency to slide away from the wall, so the
frictional force acts towards the wall. The upper end of the ladder has a tendency
toslide down the wall, o the frictional force acts upwards.

5) A cylindrical tin stands on a smooth table and two smooth spheres rest inside
the tin as shown in the sketch.

Draw diagrams to show (a) the forces acting on the large sphere, (b) the forces
acting on the small sphere, (c) the forces acting on the tin.
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(@ (b)
4
4
i
D
A
The forces acting on the large sphere.  The forces acting on the small sphere.
©
> 5
Ry
0 777

The forces acting on the tin.

EXERCISE 1b

1) Draw diagrams to show the forces that are acting on a block which is:

(a) at rest on a smooth horizontal surface,

(b) at rest on a rough horizontal surface,

(c) at rest on a rough surface inclined at an angle of 20° to the horizontal,

(d) sliding down a smooth surface inclined at an angle of 30° to the horizontal,

(e) sliding down a rough surface inclined at an angle of 30° to the horizontal,

(f) pulled down a smooth surface inclined at an angle of 10° to the horizontal
by a string parallel to the plane,

() pulled down a rough surface inclined at an angle of 20° to the horizontal
by a string parallel to the plane,

(h) pulled along a smooth horizontal surface by a string at an angle of 20° to
the horizontal,

(i) pulled up a rough surface inclined at an angle of 20° to the horizontal by a
string inclined at an angle of 40° to the horizontal.

2) Draw a diagram to show the forces acting on a ladder which is leaning with

one end against a smooth vertical wall and the other end standing on rough

horizontal ground.



Introduction 11

3) Draw a diagram to show the forces acting on  particle which is suspended
from a fixed point by a string when:

(a) it is hanging at rest,

(b) it is turning in a vertical circle about the fixed point,

(@) it is turning in a horizontal circle below the fixed point,

(d) the string has broken and it is falling.

4) A ball is thrown into the air. Draw a diagram to show the forces acting on it
at any point in its flight.

5) Aladder rests in a vertical plane with one end against a rough vertical wall,
and the other end on rough horizontal ground. There is a block tied to the ladder
by a string one-third of the way up the ladder. Draw diagrams to show:

(a) the forces acting on the ladder,

(b) the forces acting on the block.

6) A plank is supported in a horizontal position by two vertical strings, one
attached at each end. A block rests on the plank a quarter of the way in from
one end. Draw diagrams to show:

() the forces acting on the plank,

(b) the forces acting on the block.

7) Two bricks, one on top of the other, rest on a horizontal surface. Draw
diagrams to show:

(a) the forces acting on the bottom brick,

(b) the forces acting on the top brick,

8)

The diagram shows a rough plank resting on a cylinder with one end of the
plank on rough ground.
Draw diagrams to show:

(a) the forces acting on the plank,
(b) the forces acting on the cylinder.



CHAPTER 2

VECTORS. COMPONENTS AND
RESULTANTS. MOMENT

DEFINITIONS

Certain quantities are described completely when their magnitudes are stated in

appropriate units:
e.g. aspeed of 50kmh~!

amass of 10kg

a temperature of 30°C

a time of 3 seconds;
Such quantities are called scalar quantities.
Other quantities possess both magnitude and direction and are not completely
defined unless both of these are specified:
e.g. avelocity of Sms™ vertically upward

aforce of 10N vertically downward

adisplacement of 8km due East.
‘The name for this type of quantity is vector.

Vector Representation

Because a vector quantity has both magnitude and direction, it can be
represented by a segment of a line. The length of the line represents the
magnitude of the vector quantity and the direction of the line shows which way
the quantity goes.

Thus the line AB can be used to represent
a displacement vector of 3 m North East.
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To indicate that a line segment represents a vector, any of the vecror symbols
AB, AB, r may be used. In the first two cases the sense of the vector s given by

the order of the letters but, as the single symbol r does not include any
indication of sense, it must be accompanied by an arrow on the diagram.

S

EQUAL VECTORS

Two vectors of equal magnitude and with the same direction are said to
be equal.

/T

In the diagram, the lines AB and PQ are purallel and equal in length hence
AB = FQ.

Although LM is equal in length to AB, these lines are not parallel so
AB # M.

Itis, however, correct to write  AB=1LM since ABand LM are scalar
symbols referting only to the magnitude of the lines and not to their direction.
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PARALLEL VECTORS

Consider two parallel vectors which are in the same sense but have different
‘magnitudes.

PQ is para.llel to AB and the length (magnitude) of PQ is & times the length

l[wc produce AB10C sothat AC=PQ then AC=KkAB.
But AC and PQ are identical in magnitude, direction and sense and therefore
represent equal vectors.

Therefore R = Fd
and KAB = PQ.

lii'gencral the equation a= &b means that a and b are parallel vectors, the
inagnitude of a being A limes the magnitude of b,

EQUAL AND OPPOSITE VECTORS

Two parallel vectors of equal magnitude but opposite sense are said to be
equal and opposite. .
Considering a displacement vector AB and the equal and opposite vector BA
it is clear that these two together result in zero displacement.

ie. AB+BA =0
or AB = —BA.

A negative sign in vector work therefore indicates a reversal of sense.

Jigeneral it a=—b then aand b are parallcl veetors of equal magnitude
hut opposite sense
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FREE VECTORS

The representation of a vector by a line segment includes magnitude and
direction but not, in general, the actual location of the vector. So if a line AB
represents a vector, then any line parallel and equal to AB. represents the same
vector.

Vectors represented in this way are free vectors.

In some circumstances it will be necessary to extend the linear representation of
avector to include its position.

In this case we shall be dealing with a ried vector.

EQUIVALENT VECTORS

Consider a displacement AB of 2m due E followed by a displacement BC
of 2m due N,
The combined effect of these two displacements is the same as a single
displacement AC of 2v2m NE.

c
Hence AB+BC = AC
In this vector equation
+  means ‘together with®
= means ‘s equivalent 10",
A 3

We say that AC_is the resultant of AB and BC, or that ABand BC are the
components of AC. The triangle ABC is a vector triangle.
It is possible to find the resultant (or equivalent) vector of more than two

components using a similar argument. . N

Displacements of AB, BC, CD
and DE are equivalent to the

single displacement AR
ie. AE = AB+BC+CD+DE. *

o)

In this case the figure ABCDE is a vector polygon.
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Note. A is the starting point and E is the end point both for the set of
components and for the resultant.

In most of the illustrations so far, displacement vectors have been used because
they are easy to visualise. Other vector quantities can, however, be dealt with in
the same way. In fact it was from the results of experiments with force vectors
that the concept of vector geometry and algebra first arose. Again it will be
noticed that the vectors considered so far have always been in the same plane
(coplanar vectors). The principles explained do, however, apply equally well to
vectors in three dimensions but at this stage it is sufficient to understand how to
add and subtract coplanar vectors using the concept of equivalent vectors, and
to appreciate that, in the vector diagrams we draw, lines represent vectors in
‘magnitude and direction but not necessarily in position.

EXAMPLES 2a
1) What is the resultant of displacements 2m E, 3m N and 6m W?

AB+BC+CD = AD

In BAED,

AD? = AE?+ED?

S A=
tanf = §

Therefore the resultant, AD, is Sm in the direction Narctan$ W.

2) Avector a of magnitude 8 units has two components. One is perpendicular
to a and is of magnitude 6 units.
What is the magnitude of the other component?

A

Let the given vector be represented by
AB and the given component by AC.
‘The second component is then CB and

AB = AC+CTB.

But BC? = AB+AC?
= BC? = 64 +36
- BC = 10.

®
The magnitude of the other component is 10 units.
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3) Ina quadrilateral ABCD, the sides AB, BC and DC represent vectors p, q
and r_respectively. Express in terms of p,qand r the vectors represented by
AC,AD and DB.

c

In AABC AC = AB+BC

- AC=p+q

In quadrilateral ABCD ~ AD = AB + BC +CD
- AD =p+q-r

In ABCD DB = DC+CB

- DB = r+(-q)

So DB =r—q

4) ABCDEF is a regular hexagon in which AB represents a vector p and

BC represents a vector q.

Express in terms of pand q the vectors which the remaining sides represent.
€ b

» o
ED is equal and parallel to AB so ED = p

FE is equal and parallel to BC so FE = q

AD is twice as long as, and parallel to, BC so AD = 2q
But CB = CB+BA+AD
Therefore €D = —q—p+2q = q—p

AF is equal and parallel to CD so AF = q—p
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5) Ina pentagon ABCDE: I
(a) find the resultant of (i) AB, BC and CD (ii) BC and AB (iii) AB — AE,
(b) find two sets of components of AD.

c

¥

(@) (i)In ABCD AB+BC+TD = AD
(ii) In ABC BC+AB = AB+BC
= AC
(iii) In ABE AB—AE = AB+EA
= EA+AB
= BB
(b) In ABCD AD = AB + BC+CD
andin ADE AD = AE+ED

These are both suitable sets of components for AD.
(We could equally well have chosen the set AB + BD or AC + CD.)

EXERCISE 20
1) What s the resultant of the following vectors: SmN, 3mE and 2mS?
2) Ina quadrilateral ABCD what s the resultant of:

@AB+BC (b)BC+CTD ()AB+BC+CD (d) AB +DA?

3) ABCDEF is  regular hexagon in which BC represents a vector b and FC
represents a vector 2a. Expressin terms of aand b the vectors represented by
AB,CD and BE.

4) Draw diagrams illustrating the following vector equations:

(@) AB—~CB=AC (b)AB=2PQ (c) AB+BC=3AD (d)a+b=—c.
5) If AB=DC and BC+ DA =0, prove that ABCD is a parallelogram.
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6) ABCD is a rectangle. Which of the following statements are true?

@) BC=DA (b)BD=AC () AB+CTD=0 (d)AB+BC=CA

(@ AC+CB=AD (f) AB+BC=ADB+DC.

7) In an isosceles triangle ABC in which AB=BC and D is the mid-point
of AC, show that BA + BC = 2BD.

RESOLVING A VECTOR

When a vector is replaced by an equivalent set of components, it has been
resolved. One of the most useful ways in which to resolve a vector is to choose
only two components which are at right angles to each other. The magnitude of
these components can be evaluated very casily using trigonometry.

i
Thus in Fig.(i) AC = ABcos® and CB = ABsinf
and in Fig. (i) RQ = PQcosa and PR = PQsina

Finding such components is referred to as

resolving in a pair of perpendicular directions.
Note that the components need not act along the actual lines AC,CB or PR,
RQ. These lines give the directions of the components but not necessarily their
position.
EXAMPLES 26
1) Resolve a weight of 10N in two directions which are parallel and
perpendicular to a slope inclined at 30° to the horizontal.

‘The component parallel to the slope
is of magnitude 10sin30°N ic. SN,
‘The magnitude of the component
perpendicular to the slope is
10c0s30°N ie. Sv/3N.
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2) Resolve horizontally and vertically a force of 8 N which makes an angle of
45° with the horizontal.

If Xand ¥ are the magnitudes, in
newtons, of the two components then

X = 8eosds® = 42
Y = 8sind5° = 42

3) A body is supported on a rough plane inclined at 30° to the horizontal by a
string attached to the body and held at an angle of 30° to the plane. Draw a
diagram showing the forces acting on the body and resolve each of these forces
(a) horizontally and vertically,

(b) parallel and perpendicular to the plane.

‘The forces are,

the tension in the string T
the reaction with the plane R
the weight of the body w
friction F
h
d Tsin60° v
) [\ ]
Rcos60° Tcos60®
(b) Resolving parallel and perpendicular to the plane:
7 sin 30°
:
,
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(Note that any force already in one of the directions specified is unchanged and
has no component perpendicular to itself.)

Sense of Resolved Parts

In the answer to Example 3 above it is worth noticing that, without diagrams,
the sense of each component would be unknown. This is because the
specification of the required components was not precise enough. The description
parallel to the plane does not differentiate between the uphill sense and the
downhill sense. This ambiguity is avoided if the positive sense of the required
components is stated at the outset. A component in the opposite sense is then
negative. Using Example 3 to demonstrate this approach, the answer could be
given as follows:

(a) Resolving horizontally and vertically in the senses Ox and Oy as shown,
the components are:

2 Force Components

Parallel to Ox [ Parallel to Oy

—Fcos30° | —Fsin30°

—~Rcos60° | Rsin60°
T cos60° Tsin60°
0 -w

o 4

T~N®w

(b) Resolving parallel and perpendicular to the plane in the senses Ox' and Oy'
as shown:

Y Force Components
" Parallel to Ox'[ Parallel to Oy
F —F 0
R ) R
T Tcos30° |  Tsin30®
o w —Wsin30° —Wecos30°

CARTESIAN VECTOR NOTATION

Components in perpendicular directions can be expressed more simply if we
use the symbols i and j where

i Is 4 vector of mdgnitude oric unit i the direétion Ox
J s 4 vestor of megnitude vne unit in the direction Oy.
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or

o

Thus 3i means a vector of magnitude 3 units in the direction Ox

and 4] means

If a force vector F has components
parallel to Ox and Oy of magnitudes
3 and 4 units respectively then using
the symbols i and j, we can say

F has components 3i and 4j.

As F s equivalent to the vector sum
of its components,

Fo=3i%4).
»
Fadies 4
(]
S

A vector can be represented by a line
segment which is defined by the
coordinates of its end points. For
example, the force F in the diagram
above could be represented by the
line joining the point (3,1) to the
point (6,5). In this case
F = (6-3)i+(6-1)

and

1Fl = {(6—3)+(5— 1A}

a vector of magnitude 4units in the direction Oy.

The magnitude, or modulus, of F
which we denote by Fl, is
represented by the length of the
hypotenuse of the vector triangle,

ie. IFl = V(3*+4)

In general, the modulus of a vector
=ai+bj isgivenby

vl = i@+ 5%

©.5)

[E8Y)
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In general, if a vector v is represented by a line joining the point (x,, ) to the
point (xy, y3) then _

V= )it (e
Note. This notation s very easily extended to deal with vectors in 3 dimensions.
A unit vector in the direction Oz, perpendicular to the xy plane, is represented
by k.
For example, 2i +3j+ Sk _is a vector with three perpendicular components,
parallel to Ox, Oy and Oz, of magnitudes 2,3 and 5 units respectively and its
magnitude is /(224 3%+ 5%).

EXAMPLES 2b (continued)

4) Forces Fy, Fa, Fyand Fy have magnitudes 6,2,3 and 3V2N respectively
and act in directions as shown in the diagram below. By finding the components
of each force in the directions Ox and Oy, express each force in the form

ai +bj.

F, = (6c0s60°)i+(65in60°) = 3i+3v/3j
2 =2

Fy = —3i

Fy = (—3v2c0s45%)i+(—3y/2sind5%)j = —3i—3j

Note that, when force vectors are expressed in this form, the unit is understood
to be the newton unless otherwise stated. It is not correct, however, to say
F=(2i+3)N, as 2i+3j includes both magnitude and direction.

EXERCISE 2b

1) Calculate the magnitude of the horizontal and vertical components of:

(a) a force of 6N inclined at 20° to the horizontal,

(b)a velocity of 20ms™ inclined at 30° to the vertical,

(c) a tension of 8N in a string of length 10m which has one end fastened to
the top of a flagpole of height 6m and the other end fixed to the ground.

2) What are the parallel and icular to an incline of 30°, of
aweight of 4N?
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3) An object of weight W is fastened to one end of a string whose other end is
fixed and is pulled sideways by a horizontal force P until the string is inclined

at 20° to the vertical. Draw a diagram showing the forces acting on the object
and resolve each force parallel and perpendicular to the string.

4) The diagram shows the forces acting on a body. Express each force in terms of
iandj where i isa unit vector in the direction AP and j is a unit vector in

the direction AQ.

5) Using axes Ox and Oy, mark on a diagram the following force vectors.
=i+j Fa=20—j Fy=—3i+d4j Fo=—i=3j

6) A boat s steering due North at 24kmh™" in a current running at 6kmh !
due West. A wind is blowing the boat North East at 10kmh™ (see diagram
below). What are the components of each velocity in the directions East and
North?

24kmht

Unit Vectors

Any vector of magnitude 1 unit is a unit vector (i and are unit vectors).

Consider aline OPQ where OP represents the vector ¢ and OQ is of length
1 unit. Then OQ represents a unit vector in the direction of r.

Such a unit vector is written 7.
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Now 0Q=1 and, if OP =

then OF = 400.
But d=1rl
Hence r=lrlr

‘This important property applies to all vectors, i.c.,

any vector, v, can be expressed as the product of its magnitude and a unit
vector in the same direction,

ie. v =lvlv.

Direction Vectors

A vector which is used to specify the direction of another vector can be called
adirection vector.

I, for example, we are told that a vector v, of magnitude 26 units, is in the
direction of the vector Si+12j then

Si127 s

direction vector for ‘v and can be dendted by d

The unit direction vector d is given by
d = d/1dl = K(Gi+12j)
But we know that any vector is the product of its magnitude and a unit direction
vector, so
v = Ivid = 26{§5(5i + 12)))
= 10i + 24
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EXAMPLES 2¢

1) Aforce F of magnitude 20N acts in the direction 4i—3j. Find F.
The direction vector for F is d=4i—3j

- d = da1dl = @i-3)
But F=|F|d=20{}4i—3j)
- F = 16i—12§

2) A particle whose speed is S0ms™ moves along the line from A(2,1) to
B(9,25). Find its velocity vector.

‘The direction of motion of the particle is AB and this is therefore the direction
vector, d, for the velocity of the particle.

Now AB = 9i+255—i+j) = 7i+29
and d = RB/IABI = £(7i +245)

The speed of the particle s the magnitude of its velocity, so
= Ivid = S0{&(7i + 24j))
- v = 14i+ 48§

EXERCISE 2¢

Find in the form ai-+ bj,

1) a vector of magnitude 5 units, in the direction  3i+4j.

2) avector of magnitude 39 units, in the direction S5i—12j.

3) a vector of magnitude 28 units, in the direction —i++/3j.

4) Aforce of SON parallel to the vector 24i —

5) Aforce of 2N parallel to the vector —4i—3j.

6) Aforce of 13N acting along the line from A(1,—3) to B(13,2).

7) The velocity vector of a plane flying from A(10,50) to B(130,—110)
ata speed of 100ms™.

8) A vector whose magnitude is twice the magnitude of the vector 2i+j
and which is parallel to the vector ~6i — 12j.

9) Aforce of 20N parallel to the line PQ where P is (~1,7) and
Qis (1,5).

10) The velocity vector of a boat moving in the direction 24i—7j witha
speed of 1Sms™.
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Position Vector

Cartesian vector notation, which we have already used to describe firee vectors
(e velocity, acceleration) can also be used to describe the position of a point.

a
P23
Ifa point P has coordinates (2,3) then
the displacement of P from the origin
has components 2i and 3j. y M
Thus i+ 3j
o Px %

r is called the position vector of the point P.

Similarly, i three dimensions, a point with coordinates (1,2,3) hasa position
vector r where

P =it 243k

The Vector Equation of a Line

Each point on a line has a position vector relative to an origin O. If we can
find a way of describing the position vector of a general point on the line we are
then defining the complete set of points on that line.

Consider a line in the xy plane whose direction vector is d and which passes
through a point A with position vector a.

If P isany other point on the line then
AP isparalieito d = AP = Ad
and OF = DA+AP = r=a+M
Each value of A (positive or negative) gives the position vector of one point on

the specified line.

So r=a+2d" iscalled the vector equation of the line.
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For example, the vector equation of the line which is parallel to the vector
i—4j and which passes through the point (—5,7) is
£ = —Si+ T+ AG—4))
j+k  and which passes through

Similarly, a line with direction vector
(5,1,3), has a vector equation

r=Si+j+3k+Ni—j+k)

A Line Through Two Points

1f we now consider a line which is known to pass through two points A and
B with position vectors aand b respectively we see that

{ either A or B can be used as a fixed point on the line

the direction vector of the line is either AB or BA.

So the vector equation of the line through A and B can be given as
r=a+Ab~a)

or r=b+Ab~a)

For example, the vector equation of the line passing through the points with
position vectors 2i+5j and 4i—3j can be given in any of the following

s,

20+ 5]+ N2 — 8j)
2i+ 5j + N—2i + 8))
= 4i—3j+ \2i —8j)

= 4i—3j+\(—2i +8)

]

Recognising Direction and Finding Points from the Vector Equation of a Line

If r=a+X isavector equation of a line, then d is its direction vector
and a is the position vector of one point on the linc.
Further points on the line can be found by giving A various numerical values.

EXAMPLE 24
Aline has vectorequation £ = 2i +6j + (i State its direction vector
and the coordinates of three points on the line. Find the position vectors of the
points where this line crosses each of the coordinate axes.
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‘The direction vector is i —3j
One point on the line is (2,6)
Another point on the line isgiven by A=1, ie. (3,3)
A third point on the line is given by ie. (1,9)

The line crosses the x axis where y =0, i.e. where the coefficient of j is
zero

= 6-3M=0 = a=2
When A=2, r=4i

The line crosses the ¥ axis where x =0
> 24x=0 = a=-2

When A r=12.

EXERCISE 2d

Find a vector equation for a line passing through the given point and with the
given direction vector:

1) a point with position vector 3i; a direction vector  2i+4j,

2) a point with position vector i—j; a direction vector Si,
3) a point with position vector 5j; a direction vector i—$j,

4) the origin;a direction vector  3i+4j+2k

5) a point with position vector
equation r=2i+3j+Ai+j—k).

—j+k; parallel to a line with vector

Write down a veetor equation for the line through A and B where the position
vectorsof A and B are:

6) A2 +3j), BG—Tj) 7) AGD), B(Ti—9)
8) Ai—j), BGj) 9) AGSi—7j+K), BQRi+j—2k)
10) A(—j+2K), BG—3k)

Write down the direction vector and name the coordinates of the specified points
on each of the following lines.

11) £=4i+j+Gi+7); points of intersection with Ox and Oy.

12) r=(1+N)i+(3 =5\ point for which x=3.

13) r=Xi—7)); any two points.

14) r=2i+Xj; points of intersection with the lines y =1 and y=4.

15) r=2i+ 25+ Mi—
where = 4.

point of intersection with Oy and the point
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THE LINE OF ACTION OF A FORCE

Ifa force is given in vector form, ai+bj, then ai+bj is the direction
vector of the force. To find the equation of the line of action of the force we
need also a location — usually a point through which the force is known to pass.
‘This position vector, together with the direction vector, gives the equation of
the line of action. For example, if a force  3i —4j +k acts through a point
with position vector i+j+2K, _itsline of action has a vector equation

i)+ kNG 4 +K)

Note. The equation of the line of action of a farce provides the direction of the
force but this must not be taken as the actual force vector (although sometimes
it may be). In addition to the equation of the line of action we need to know the
magnitude of the force in order to find the force vector.

EXAMPLE 2¢
A force, F, acts along theline  r=1i—3j+A(3i +4j) and its magnitude is
20N. Find F.

We do not know which way the fovcc acts along the line, so the direction
vector, d, of the force is  +(3i+

N i + 4
d=t(3- )
5

L £200i+4j
Hence F = IFId = % = $(12i+16))

EXERCISE 2¢

Write down the equation of the line of action of each of the following forces.
1) F=8i—7j and passes through the point with position vector ~(2i—3j).
2) F=4i and passes through the origin.

3) F passes through the points with position vectors i+j and  Si+11j.
4) F isparallel to i—2j and passes through (7,8).

5) F acts through the origin and through (11,~7,3).

Find the position vector of the point where the line of action of the following
force intersects (a) the x axis (b) the y axis

6) The force in Question 1.

7) The force in Question 3.
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8) The force in Question 4.

9) Determine whether the line of action of the force in Question 1 passes
through the point (10,—4).

10) Does the line of action of the force in Question 3 pass through the point
with position vector 6+ 12j?

Find in the form ai+bj, aforce:

11) of magnitude 65N acting along the line

12) of magnitude 4N acting along the line
13) of magnitude 8V2N acting along the line = 3i —j + AGi +j).
14) of magnitude 20N passing through the points (1,2) and (2,5).

15) of magnitude 13N parallel to the line with equation
£= 20+ 55+ Adi = Tj).

THE EQUATION OF THE PATH OF A PARTICLE MOVING WITH
CONSTANT VELOCITY

A particle whose constant velocity is v moves in the direction of this velocity
vector so v is also a direction vector for the line along which the particle moves.
If the particle passes through a particular point with position vector a, the
equation of the path of the particle is

r=atiy
EXAMPLE 2f

A particle starts moving from the point (2,7,1) with a velocity ~6i—5j+3k.
Find the equation of the line along which the particle moves.

The particle moves in the direction of its velocity, ie. 6i—S5j+3k is the
direction vector of the line of motion.

Now 2i+7j+k is the position vector of a point on this line so the equation
of the line is

P = 20T Fk M6 =5+ 3k)

EXERCISE 2f

Find the equation of the path of a particle

1) passing through (4,—1) with velocity i+ 7.

2) passing through  3i —2j —k  with velocity —5i + 6j + 8k.

3) passing through i+j withspeed Sms™ in the direction i —3j.
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4) with velocity 8i—7j and passing through the point where the line
r=3i—j+Mi+6j) meets the y-axis.

5) passing through the point of intersection of the lines y =4 and
£=3i+5j+Mi—j), withvelocity 9i—2j.

DETERMINATION OF RESULTANT VECTORS

Asingle vector R equivalent t0 a set of vectors is the resultant of those
vectors (which are, themselves, the components of R). The method of
evaluating R depends upon the number and type of vectors in the given set.

The Resultant of Two Perpendicular Vectors
If Xand Y are the magnitudes of the
vectors then the magnitude, R, of the
resultant is given by
R*=X*+Y?

The direction of the resultant is given by

Veetor triangle

na =
X

Therefore the resultant is of the magnitude VX?+Y? and makes arctan ;

with the component of magnitude X.

The Resultant of Two Non-perpendicular Vectors

At this point it becomes important to understand what is meant by the angle
between two vectors. Suppose that, from a point O, two line segments are
drawn representing the vectors Pand Q. Then if both vectors point away from
0 asin Fig. (i), or both vectors point towards O as in Fig. (i), the angle 0
between the lines at O is the angle between the vectors. But if one vector points
towards O and the other points away from O as in Fig. (iii) then the angle
between the linesat O is (180°—6) where 0 is the angle between the
vectors.
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Vector trangle

Vector wiangle

R

p

The resultant is represented, in magnitude and direction but not necessarily
position, by the third side of a triangle formed by drawing a line representing
the vector of magnitude P followed by a line representing the vector of
magnitude Q (note that @ is an exterior angle of this triangle). Then the
magnitude R of the resultant can be found using the cosine formula,

R? = P*+ 0"~ 2PQcos(180°—0)

or R = P4+ 0 4 2P0 cost
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The direction of the resultant can next be determined by using the sine rule,
in (180°—6)
P R

_ Psing
o sina=—
R

‘These formulae for calculating the values of R and a are valid whether 6 is
acute or obtuse.

Note that if P and 0 are equal, the tesultant bisects the angle between the forces
and the valug of R is  2Pcosé/2.

EXAMPLES 29
1) Find the resultant of two vectors of magnitudes 8 units and 10 units if the
angle between them is (a) 60° (b) 90° (c) 120°.

(@)
s
o
0 B Vector wangie
By the cosine rule  R* = 107+ 8% —2x10x 8 c0s 120°
=164 —160(—})
=244
- R =156

sing  sin120°
By the sine rule —_——

8 R
8x0866
Therefore sing = ——— = 0.444
156
= 0 = 264°

The resultant is of magnitude 15.6 units at an angle 26.4° with the vector of
magnitude 10 units.
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®)

Using Pythagoras’ Theorem ~ R* = 87+ 10° = 164

- R =128
8
6= —
and tan 10
- 6 = 387°

The resultant is of magnitude 12.8 units at an angle 38.7° with the vector of
‘magnitude 10 units.

©

120

By the cosine rule  R? = 10 + 87 —2x8x 10 cos 60°
=84
- R =917

By the sine rul sing _ sin60°
y the sine rule T - R

= 0.756

Therefore sing = %

9.
= 6 = 49.1°

‘The resultant is of magnitude 9.17units at an angle 49.1° with the vector of
magnitude 10 units.
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2) When two vectors of magnitudes P and @ are inclined at an angle 0, the
magnitude of their resultant is 2P. When the inclination is changed to

(180°—6) the magnitude of the

resultant is halved. Find the ratio of Pto Q.

In diagram (a) @py
In diagram (b) Py
Therefore 2PQ cosf
and 2PQ cosd
Therefore o
- 20
- P:Q
3) Find the magnitude as
(a) F=3i+4j  (b) F=—i
@

2

E
4
]
o %

= P+ Q7 +2PQ cos0
= P +0?—2PQ cos0
=3-Q

=0

=3P -0

=3

=V2: V3,

ind the inclination to Ox of a force vector F if

Since F has components of 3 and
4units in perpendicular directions
the magnitude of F is given by

IF| = V(3@+4) =5
The inclination of F to Ox is 0
where tan0 = 4/3
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‘The magnitude of F is given by
IFl = V(1*+1%) = V2

The inclination of F to Ox is 8
where

0 = 180°—arctan(1/1)
ie. 6 = 180°—45° = 135°

EXERCISE 25

1) The following pairs of forces are, in each case, perpendicular to each other.
Find the magnitude and direction of the resultant force.

(2) 3N and 4N (b) 24N and 10N (c) SN and SN
(d)2N and 6N (€) 7N and 24N

2) If iand j represent forces of magnitude 1N in the directions Ox and Oy
respectively, find the magnitude and inclination to Ox of each of the following
force vectors.

(a) 12i+5§ (b) 2i+2j (©) 4i-7j

(@) —4i+3j (&) =Ti—j.

3) Find the magnitude of the resultant of each of the following pairs of forces
(a) 10N and 6N inclined at 60° to each other

(b) 3N and 5N inclined at 150° to each other

(c) 2Nand 7N in the same direction

(d) 2Nand 7N in opposite directions

(¢) 4Nand 6N inclined at 45° to cach other.

4) Aforce vector F=pi+12j hasa magnitude of 13 units. Find the two
possible values of p and the corresponding inclinations of F to Ox.

5) An aircraft is flying with an engine speed of 400kmh~ on a course due
North in a wind of speed 60 kmh™ from the South West. At what speed is the
aircraft covering the ground?

6) Two vectors have magnitudes of 4units and 6 units. Find the angle between
them if their resultant is of magnitude (a) 8 units (b) 4 units.

7) Aforce of 8N and aforce P have a resultant of magnitude 17N.

Find P if the angle between the two forces is () 90° (b) 60°.

8) Two forces of magnitudes Pand 2P are inclined at an angle 8. Find 0 if
the resultant is of magnitude (a) 2P (b) 3P (c) P.

(It should not be necessary to use the cosine rule in all three cases.)
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The Resultant of More than Two Coplanar Vectors

Consider a set of four vectors whose magnitudes and directions are shown in
diagram (i). The resultant can be found by drawing consecutive lines representing
the given vectors in magnitude and direction; the line which completes the
polygon represents the resultant (diagram (if)).

Vector polygon

Careful drawing to scale and measurement give values for the magnitude R and
the direction 8 of the resultant. The values obtained in this way however are
only as accurate as the drawing: more precise values will be given by calculation
as follows:

N

Suppose that the components of R in the directions Ox and Oy are X and ¥.
The value of X is the sum of the components of the original vectors in the
direction Ox and the value of Y is their sum in the direction Oy.
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ie. X = —2c0s30° +4cos60°+3 = 327
Y = 25in30° +4sin60°~1 = 346

Now the resultant of X and ¥ (two perpendicular components) can be found
using

R =VXP+Y? = V2266 = 476

Y _ 346
and tnd = === =106

x
‘Therefore the resultant of the given vectors is a vector of magnitude 4.76 units
inclined at 46.7° to Ox.
Xand Y are very easily found if the forces are expressed in the form

F = pi+gj

since p and q represent the magnitudes of the components of F in the
directions Ox and Op.

Suppose, for instance, that forces Fy, Fa, Fyand Fy act on a particle P as
shown in the diagram, and

Fi= 2i+j 2
F. i—

Fy = —
Fy =

Their resultant can be expressed in
the form  Xi+ Y] where
# 6 X =@Q+1-3+4)
and ¥ =(1—-3+4+1)
‘The resultant force can hence be
> represented by 4i + 3j

°
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EXAMPLES 2h

1) Find the resultant of five coplanar forces of magnitudes $,4,3,2
and 1 newton, the angle between consecutive pairs being 30°.

B

Let the resultant have components X and ¥ newtons parallel to Ox and Oy as
shown. Resolving all forces along Ox and Oy we have:

X = 5+4c0s30°+3c0s60°— 1cos60° = 9.46

Y = 45in30°+35in60°+ 2 + 1sin 60° =7.46
Then R = VXT¥Y?
- R =121
Y
and tand = — = 0.789
X

‘Therefore the resultant is a force of 12.1 N making an angle of 38.3° with
the force of SN.

2) A river is flowing due East at a speed of 3ms™. A boy in a rowing boat,
who can row at Sms™" in still water, starts from a point O on the south bank
and steers the boat at right angles to the bank. The boat is also being blown by
the wind at 4ms™" South West. Taking axes Ox and Oy in the directions East
and North respectively find the velocity of the boat in the form  pi+qj and
hence find its resultant speed.
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The velocity of the river can be written as 3i
The velocity due to rowing can be writtenas ~ 5j
The velocity of the wind can be writtenas  —4c0s45°i —4cos45°j

e, —2V2i—22j

The resultant velocity v is then given by
v = 3i+S5j+(-2V2 - 2V2)) -2
e, v=(3-2V2)i+(5—2V2)
G-

The resultant specd is the magnitude of the resultant velocity,

vl = VB —2v2) + (5 —2v2)* = V50 —-32v2

3) Three tugs are pulling a liner due North into a harbour. The ropes attaching
the liner to the tugs are in the directions NE, N10°E and N30°W. If the
tensions in the first two ropesare 2x10°N and  10°N, find the tension in
the third rope and the resultant pull on the liner.

Ivl, where

s

Since the liner is being moved due North, the resultant pull, R newton, is in
that direction (i.e. there is no overall component in the East-West direction).
Let the tension in the third rope be Fnewton.

Resolving all forces in the directions East and North we have
- 0 = 2x10°5in45° + 10° sin 10° — F'sin 30° n
t R = 2x10%cos45° + 10° cos 10° + Fcos 30° 21
From (1] F = 10%(25in45° + 105in 10°)
F = 2x10°(1.414 + 1.736) = 10°x6.3
From [2] R = 10%2co0s 45°+ 10.cos 10° + 6.3 cs 30°)
= 10%(1.414 +9.848 + 5.456) = 10°x16.718

‘Therefore the tension in the third rope s  6.3x10° N and the resultant pull
on the lineris 1.67x 10° N.
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4) ABCDEF is a regular hexagon. Forces of magnitudes 3F, 4F, 2F, 6F act
along AB, AC, A, AF, respectively. Find the magnitude and direction of
their resultant.

Note. Only the direction of the forces is denoted by AB etc. The magnitudes
are given separately and are nor represented by the lengths of the lines AB, etc.

Let the resultant have components X and ¥ parallel to AB and AE as shown,
Resolving all forces along AB and AE we have:

X = 3F +4F cos 30° — 6F cos 60° = 2v/3F

Y = 4Fsin30° — 2F + 6Fsin60° = 3V3F

Then R =V¥+V = FV3VZ+3
- R = FV3
Y 33
d nf = — = = =15
- YT s

Therefore the resultant is a force of magnitude F\/39  which is inclined at an
angle arctan 1.5 to AB.
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EXERCISE 2h
In Questions 1-4, find the magnitude and direction of the resultant of the given
set of vectors.
1) Four forces, in newtons, represented by 3i—j, i+7, Sj and i+j.
2) Three velocities, in metres per second, represented by 4i—7j, —3i+8j
and 2i+3j.

3) The forces shown in the following diagrams:

Vivin

4) Forces of magntiudes 3N, 4N and 5N acting respectively along the lines
AB, AC and DA where ABCD is a rectangle in which AB=4m and
BC=3m.

5) Find the resultant of forces of magnitudes 4, 3 and 6 newton acting in the
directions AB, BC and CA respectively, where ABC is an equilateral triangle.

6) Starting from O, a point P traces out consecutive displacement vectors of
2+3, —i+4), 7i—5j and i+3j.

What is the final displacement of P from 07

7) Three boys are pulling a heavy trolley by means of three ropes. The boy in
the middle is exerting a pull of 100N, The other two boys, whose ropes both
make an angle of 30° with the centre rope, are pulling with forces of 80N
and 140N. What is the resultant pull on the trolley and in what direction will it
move?

8) A surveyor starts from a point O and walks 200m due North. He then
wrns clockwise through 120° and walks 100m after which he walks 300m
due West. What is his resultant displacement from 0?

9) Anobject A is subjected to coplanar forces of SN,2Nand 3N inclined at
30°,90° and 150° respectively to the line AB. Taking AB as the x axis,
express their resultant in the form i + bj.
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10) A small boat is travelling through the water with an engine speed of 8kmh™.

due East but i t runni 2kmh™ and
wind is blowing the boat South West at 4 kmh™: Find the resultant velocity
of the boat.

1) Rain, which is falling vertically, makes streaks on the vertical sides of a van
travelling at 80kmh™. If the streaks are at 30° to the vertical, calculate the
speed of the raindrops.

12) Forces of magnitudes 2P, 3P, 4Pand SP, act along AB, AC, AD and AE,

respectively. Find the magnitude and direction of their resultant if:

(a) ABCDEF is a rogular hexagon,

(b) ABCDE is made up of a square ABCE together with an equilateral triangle
CDE (D is outside the square).

THE POSITION OF A RESULTANT FORCE

When a number of forces act on a particle, their lines of action all pass
through the point where the particle is located. Clearly, in this case, the resultant
of the set of forces also acts on the particle and therefore passes through the
point of intersection of these forces. This property applies to any set of
concurrent forces whether they act on a particle or a bigger object, i.e.,

the resultant of a set of concurrent forces acts through their point of intersection.
(When the forces are not concurrent the location of their resultant is not obvious
and methods for determining it are given later in Chapter 14.)

We will now consider the location of the resultant of two non-parallel forces
whose lines of action are given in vector form.

The point through which the resultant passes has a position vector which satisfies
the vector equations of both lines of action.

We now need a method for determining such a point.

Intersection of Two Lines in a Plane

Consider two lines whose vector equations are
n = a; +id;

and 6= tud;

Unless dy=d; (ic. the lines are parallel) ~ the lines intersect at a point
where 1, =r;.

When all the vectors involved are given in Cartesian form, this equation can be
solved and the point of intersection determined.
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EXAMPLES 2i

1) Find the position vector of the point of intersection of the lines whose
vector equations are

o= i+ EAQI—))
and = 3i+ 4§+ pQi-5j)

We sce that dy#d; 5o the lines meet at a point where 1, =1,

ic. where P ENQI—) = 3+ 4+ (i 5)
- (U +20i+ (1 =N = G+ 2u)i + (4 —5p)j
Hence 1+20 =3+2

- a=2 1
and 1\ =4—5u #

Using either A=2 inr or u=1 in r, we see that the position vector
of the point of intersection of the given lines is

r=S5i-j

2) Two forces, Fy=i+5j and Fy=3i—2j, act through points with
position vectors i and —3i+ 14j respectively. Find the point where their
lines of action meet and hence write down the equation of the line of action of
their resultant.

The vector equation of the line of action of F, is
no=iFAi+S)
and, for Fy, itis
r o= =3P+ 14j+ uGi—2j)

These lines meet at a point given by

n=n
- (U +N)i+ 5N = (=3 + 3u)i + (14 —2u)]
14X ==3+3u
- =2
A= 14—2u #

So the point of intersection has position vector  3i + 10j.

Now the resultant of Fyand Fy is Fy+F and it passes through the point
where Fand F; meet. So the equation of the line of action of the resultant is

= 3P4 10)+ M@+ 3)
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EXERCISE 2i

Find the position vectors of the points of intersection of the pairs of lines given
in Questions 1-7.

D= i+j+AGi—4) and 1 = 20—dj+pui+6j).

2 r = i+4HAGI—]) and 1 = 2+ u(—Ti).

3) 1y = 6j+\i—j) and the line through (1,0) and (9,2).

4) The lines through (4,2) and (7,—4), and through (3,0) and (—3,4).

5) The lines of action of two forces Fyand F, if F, = 3i+4j and passes
through (=2,—3), F, = 2i—j and passes through (—3,3).

6) The lines of action of F,and F, if F, passes through (=2,~3) and

(4,5) and F, passes through (—3,3) and (3,0). Can you state the magnitudes
of Fyand F,?

7) The lines of action of Fyand Fy if F passes through (5,2) and is parallel

10 the line whose equation is r=X({—j) and F, passes through the origin
and has direction vector  6i+j.

8) Aforce Fy has magnitude SON, actsin the direction 24i—7j and
passes through O. A second force, Fy, is —2i++j and passes through

(2) Find the equations of the lines of action of Fy and Fy.

(b) Find the resultant of Fy and Fy.
(c) Find the equation of the line of action of the resultant.

THE TURNING EFFECT OF FORCES

(3) Consider two equal and opposite forces each of magnitude F acting at the
centre of a rod AB.

We know from experience that the rod will not move and this is consistent with
the results of resolving the forces parallel and perpendicular to the rod.

Resolving parallel to AB. gives X=0
Resolving perpendicular to AB gives ¥'=0
So the resultant force is zero.
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(b) Now consider the same two forces, one acting at A and the other at B.

F

Resolving parallel to AB. gives x=0.
Resolving perpendicular to. AB gives ¥ =

So once again the resultant force is zero.

But this time we notice that the rod will rotate, so clearly the turning
effect, if any, of 2 set of forces cannot be found by the method of resolving
in two perpendicular directions.

In order to assess completely the effect that a set of forces has on the object
to which they are applied, it is now clear that we must evaluate:

(2) the magnitude and direction of the resultant force,

(b) the magnitude of the turning effect of the set of forces.

The methods used for dealing with (a) have been explored in this chapter
so we will now investigate the turning effect of sets of forces.

Most readers wil, at some time, have attempted to loosen a tight nut by using
aspanner. If the spanner is a short one it may be difficult to undo the nutat a
first attempt. In this case we can either a) exert a greater pulling force on the
short spanner or b) use the original pull on a longer spanner.

‘This simple example shows that the size of the turning effect, o moment, of a
force depends both on the size of the force and on its distance from the centre,
or axis, of rotation.

This property leads to the definition of the moment of a force.
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MOMENT OF FORCE

‘The turning effect C of a force F'is calculated by multiplying together the
‘magnitude of the force and its perpendicular distance, d, from the axis of
rotation.

ie. C=Fd

C is called the moment of the force about the specified axis and the unit in
which it is measured is the newton metre, Nm.

Torque

We have just seen that one of the ways in which rotation can be caused s to
apply a force at some distance from the axis, or pivot. But there are other means
of producing rotation. To turn a door knob, for instance, we simply take hold of
it and twist it. The general name given to any turning effect is forque. The
‘magnitude of a torque of any type is measured in newton metres.

rection of Torque
The angular direction of a torque is the sense of the rotation it would cause.

Consider a lamina that is free to rotate in its own plane about an axis
perpendicular to the lamina and passing through a point A on the lamina.

In the diagram the moment about the axis of rotation of the force Fy

is Fydy anticlockwise and the moment of the force F; is Fyd; clockwise.

A convenient way to differentiate between clockwise and anticlockwise torques
is to allocate a positive sign to one sense (usually, but not invariably, this is
anticlockwise) and a negative sign to the other.

With this convention, the moments of F, and F, are +Fyd, and —Fd;.
(When using a sign convention in any problem it is advisable to specify the
chosen positive sense.)
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Graphical Representation of Torque

Aforce F, distant d from an axis through A, can be represented in
magnitude, direction and position (i.c. completely) by a line PQ

A Q

‘The magnitude of the torque about the axis is |FIxd which is represented by
PQxd. But }xPQxd is the area of triangle PAQ.

‘The magnitude of the moment about an axis through A
af a force represented completely by a line PQ
s represented by twice the area of (riangle PAQ.

Zero Moment

I the line of action of a force passes through the axis of rotation, s
perpendicular distance from the axis is zero. Therefore its moment about that
axis is also zero.

Terminology

Whenever we refer to the moment of a set of coplanar forces about an axis,
at this stage it is implicit that the axis is perpendicular to the plane in which the
forces act. In a diagram of the forces in their plane of action, the axis of rotation,
being perpendicular to that plane, can be indicated only by a point (its point of
intersection with the plane).
Because of this it is common to refer to the moment of a force about a point.
This is, of course, inaccurate, because forces do not cause turning about a point,
but about a line. It should always be appreciated therefore that an expression
such as ‘the moment of force £ about A’ really means ‘the moment of force
F about an axis through A and perpendicular to the plane in which F acts’.
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Examples 2j
1) 4 ¢
AN
N
[ SEREE R 4
2N
A kg B

ABCD isa square of side 2m and O
s its centre. Forces act along the sides
as shown in the diagram. Calculate the
‘moment of each force about:

(a) an axis through A,

(b) an axis through 0.

Taking anticlockwise moments as positive we have:

@ Magnitude of force 2N 5N 4N 3N
Distance from A 0 2m 2m 0
Moment about A 0 —10Nm| +8Nm | ©

() Magnitude of force 2N 5N 4N 3N
Distance from O Im 1m Im im
Moment about O +2Nm | —5Nm | +4Nm | —3Nm

Magnitude of force
Distance from A

Forces act as indicated on a rod AB
which is pivoted at A. Find the
anticlockwise moment of each force
about the pivot.

Anticlockwise moment about A
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3) ABC isan equilateral triangle of side 2m. Forces of magnitudes 7, Q and R
act along the sides AB, BC and CA respectively. If the anticlockwise moments
about axes perpendicular to the triangle through A, B and C are +2y/3Nm,
—4/3Nm and ++/3Nm respectively, calculate P, Q and R.

The altitude d of the triangle is 2sin60° ie. d=+/3.
The anticlockwise torque about A is Od

Therefore Q0d = +2V3
= Q=+2
About B the anticlockwise !orque is Rd
Th:xel‘ore —4v3
R = -4
(mg negative sign shows that R is in the direction AC and not CA).
Similarly about C Pd = ++/3
- P=+1

IN in the direction AB

Therefore the forces are 2N in the direction
4N in the direction A

I8l

EXERCISE 2i

In Questions 1 to 4, calculate the anticlockwise torque of each of the forces
acting in the plane of the lamina shown in the diagram, about an axis
perpendicular to the lamina, through A.

1 o & «
oN ABCD isa remnge in which
Asn sxA  AB=2m and BC=1Im
28
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2) B <

ABCDEF is a regular hexagon of side 2a.

ABC is an equilateral triangle of side 2m.

4

BC is a rod pivoted about its
midpoint A
BM=MA=AN=NC=a.

5)

il B < Themomentof F about A is
3Nm clockwise and about B
is 1 Nm clockwise.

If AB=BC=1m find the
. moment of £ about C.
6)

c
A :zﬁn B

AB is a see-saw of length 4m, pivoted at its midpoint C. Calculate the

anticlockwise moment, about a horizontal axis through C, of a child of weight

230N whosits,
a)at A b) 0Smfom A o) at B d)at C.
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RESULTANT TORQUE

When several coplanar forces act on an object, their resultant turning effect
about a specified axis i the algebraic sum of the moments of the individual
forces about that axis (i.¢. the sum of the separate moments taking into account
the sign which indicates the sense),

e.g. the resultant moment about the axis through A of forces £y and F; as
shown in the diagram, is the sum of -+ Fydy and —Fydy.
i.e. the torque about A i Fydy— Fady.

‘This important principle formulates the following property of forces:

The resultant moment of a set of forces is equal to the momeni: about the same
axis of the resultant force.

A proof of this statement is given below but readers who have not yet done much
trigonometry may prefer to leave this section until they are familiar with the
factor formulae.

Consider two forces F; and F, which meet at a point O, enclosing an angle 0,
and whose resultant is F.




54 Mathematics — Mechanics and Probability
Using the sine rule gives

F Fy Fy
sinf

0]

sin(0—a)  sina

Now consider any point A in the plane of the forces, whose perpendicular
distances from the lines of action of Fy, Fy and Fy are dy, dy and dy
respectively. AO is of length / and is inclined at an angle § to the line of
action of Fy.

About an axis through A, perpendicular to the plane of the forces, the resultant
moment of Fy and Fy is Fidy+Fad; anticlockwise, i.e.

Fyf sinB+ Fyl sin (0 +6)

Fysin (

= B0 g+
T sing : sing

Fysina

Usin(@+) (from [1])

Fyl
sin@

[smﬁsinwwn sinasln(6+ﬂ)}

Fyl
2sinf

{cus(ﬁ—ua) — cosfp+0—) + cosih+f—T) — cos(a+0+p)

u

Eyl 1 ) ) ;
2 sin (a+ B) sin @
in 6

= Fylsin(a+p)

This is also the anticlockwise moment of Fy about the same axis.

‘Therefore, for two forces, the torque about A of the resultant force is equal to
the combined torque of the separate forces.

‘This argument can be applied successively to further forces in order to establish
the general Principle of Moments.
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EXAMPLES 2k

1) Forces of magnitudes 2N, 3N, 1 Nand 5N act along the sides AB, BC, DC
and AD respectively of a square ABCD of side 1m. What is their resultant
‘moment about () an axis through A (b) an axis through C?

D 5 c
N
Givinga positive sign to a torque in the
sense . anticlockwise in the poN NG
diagram) we have:
2N
N B s

(a) About an axis through A:
The individual moments are -+ 3 Nm and — 1 Nm (the forces of SN and
2N pass through A so their moment is zero).

Therefore the resultant moment is (+3—1)Nm =+2Nm
ie. 2Nm in the sense Al

(b) About an axis through C:
The individual moments are +2Nm and —5 Nm

Therefore the resultant moment is —3 Nm
ic. 3Nm in the sense CBA.

Note. In this problem the diagram can be lettered correctly in several different
ways. A force which in one diagram has an anticlockwise moment may cause
clockwise rotation in another s the following example shows.

D C 3 s <
BN

A B A b

3Nm anticlockwise about A 3N clockwise about A

This ambiguity is avoided when the positive sense is specified by lerter order.
In either of the above diagrams the torque is 3Nm in the sense ABC.
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2) Two forces of magnitudes P and v/3P v —C
act in the plane of a square ABCD as 3
shown in the figure. If AB=a find the 0

»

esultant moment about an axis perpendicular
1o the square, through A.

A s
In this problem the perpendicular distance from A to the force P is not
immediately obvious. On such occasions it is often better to resolve the force
into components whose distances from the axis are more casily obtained.

Resolving the force P along B and CB [ P
and the force /3P along BA and BC. 3
we see that, about an axis through A, 2 ;x
the individual moments are:
V3 P 3P i3
A R o 19
2,
(anticlockwise moments are positive). A 4

‘Therefore the resultant moment is  4Pa(v/3—1+3)
ie. $@+V3)Pa anticlockwise,

3) ABCD isa rectangle in which AB=2m and BC=1m. A forceof
2N acts along BC. If the magnitude of the resultant torque about A is to be
6Nm in the sense ABC find the extra forces needed if:

(a) only one more force acts along CD,

(b) two more forces, of equal magnitude, act along BC and CD.

D

] B B
b m A
Im 28
‘ oA
A B A b
o ®

(a) If the one extra force along CD is of magnitude P newton then the
individual moments about A in the sense ABC are +4 Nm and
P newton metre. But the resultant moment is +6Nm
Therefore 4+P=6 = P=2.

Hence a force of 2N is required along CD.
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(b) If the two extra forces along BC and CD are each of magnitude Qnewton,
the individual moments are + 2Q newton metre and +Q newton metre.
Therefore 20+4+Q=6 = Q=%

Hence forces of magnitude 3N are required along BC and CD.

4) Find the resultant torque of the following forces, about an axis through the
point with position vector i+j,
+7j acting through the point £, =—4i+3j
2§ acting through the point r,=i—j
6 acting through the point = §i

,

43

.
:
e
[

of .00

Taking the clockwise sense as positive, the moment of each force about the axis
through (1,1) is

for Fy TxS + 4x2 = +43units
for F, 1x2 +2units
for Fy  —6x4 = ~24units

The resultant torque is therefore 21 units clockwise.

EXERCISE 2k

In Questions 1-4 all forces act in the plane of the lamina. Calculate the
resultant torque about an axis through A perpendicular to the lamina, stating
the sense in which it acts.

) oo L c

var Ysr ABCD isa square of side a.
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2) ABCDEF is a regular hexagon of side 2a. E D
. A\
ViN
A d
3) ABC isametal rod bentat B

10 a right angle.
AB=4a and BC=a.
M is the mid-point of AB.

4) LMN is an equilateral lriangle of
side Im and A bisects LN ax i~

5) Forces represented by ~ Si 2j, —3j, i~6j act respectively through
points with position vectors i+j, i—j, 3j, 4i. Find their resultant
‘moment about an axis through (a) the origin (b the point (—2,—

6) Calculate the anticlockwise moment of each of the following forces about
an axis through 0.

Fy=4i+2j and acts through a point r,
—5j and acts through a point r,
4i and acts through a point 1y =3j
—6j and acts through a point .

+i

7) O is the centre of a square ABCD of side 1m. Calculate the magnitudes
of three forces which act along AB, BC and CD such that the resultant
moment, in the sense ABC, about A is —1Nm, about B is +3Nm and
about O is +5Nm.
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SUMMARY

1) When lines representing vectors in magnitude and direction are drawn
consecutively, the line which completes the polygon represents the resultant
vector in magnitude and direction but not necessarily in position.

2) The resultant of two vectors P and Q inclined at an angle 0 has magnitude
R givenby R® = P*+Q%+2PQ cosf.

3) The resultant of more than two coplanar vectors is calculated by resolving in
two perpendicular directions.

4) The moment of a force of magnitude / about an axis distant d from the
line of action of £ is given by Fd.

5) Two vectors aand b are parallel if a = Xb.
6) A vector of magnitude V in a direction d is given by Vd.

7) Aline through a point with position vector a and in a direction d hasa
vector equation 1 = a+\d

MULTIPLE CHOICE EXERCISE 2

(The instructions for answering these questions are given on page x.)
TYPEI

1) The resultant of displacements 2m South, 4 m West, 5 m North is of

magnitude:

@) 3m () 7m () Sm (&) VESm () Ilm

2) If ABCD is a quadrilateral whose sides represent vectors, AB is equivalent
to:

(@)CA+CB (b)TD (c) AD+DC+CB (d) AD+ BD (e) AC—CB.

3) The horizontal component of a force of 10N inclined at 30° to the vertical

(@ 5SN (b)5V3N (c) 3N (d)fN (c)\/

4) Two vectors inclined at an angle 0 have magnitudes 3N and 5N and their

resultant is ofmagmlude 4N. The angle 0 is:

(a) 90° (b) arccosd (c) arccos§ (d) arccos—F (e) 60°.

5) Two forces Fyand F; have a resultant Fy. If Fy = 2i—3j and
=S5i+4j then F, is:

@7Ti+j 0)-3i—T (©3I+Tf ()Ti+ T
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6 v < c
T
The forces in the diagram have a
resultant anticlockwise torque about
Aeox Ny,  anaxisthrough B of:
(a) 2Nm (b) 22Nm
() —2Nm (d) —4Nm.
N
[ —
7) Alight rod, pivoted at A, N
has forces applied to it as
indicated. The rod will: 2N

() rotate clockwise,
(b) rotate anticlockwise,
(¢) remain horizontal.

8

‘The moment of the force
shown in the diagram, about a
perpendicular axis through A,
is of magnitude:

(@) 8Nm  ())—8Nm
(c) —4Nm  (d) 4Nm.

TYPE N

9) AB and PQ are two vectors such that  AB = 2P0.

(a) AB is parallel to PQ.
(b) PQ is twice as long as AB.
(c) A,B,Pand Q must be collinear.

10) The vector equation AC = AB + BC  applies directly to:

(@) 7“ ®) 75 © 7“ @ 7
T A B oA B A T
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11) ABCD isa paraleogram.
(@) AB CD ©) AD BC () AB+BC=CD +DA

(d) BC +TB =BA + AD.

12) Aforce F=3i+4j.

(@) The magnitude of the force is SunilsA

(b) The force acts through the origi

(c) The direction of the force is at mm"g to the x axis.

13) Aforce Fy=2i—3j acts through a point i—2j and a force
Fy=4i+5j acts through a point 2i+j.

(a) The magnitude of Fy is V13 units.

(b) The moment of F, about the origin is of magnitude 1 unit.
(c) The magnitude of F, is 3 units.

TYPE
14) (a) The moment of a force of magnitude & newtons, about an axis through
A, iszero.
(b) A force of magnitude & newtons acts through A.
15) (1) Aforce F=2i+3j
(b) A force has perpendicular components of magnitudes 2 and 3 units.
16) ABand PQ are two lines in the same plane:
(2) AB=3PQ.
(b) AB=3PQ.
17) ABC isa triangle:

(@) AC=1AB+BC.
(b) AB = AC + CB.

TYPE IV

18) Calculate the mngmude of the resultant of two forces F, and Fy.
(a) Fy=3i+
() F.
() Both forces act at a point with position vector ~ 2i+j.

19) ABCDEF is a hexagon. Find, in terms of a and b, the vectors which the
temaining sides represent.

(@) AB=a.

(b) The hexagon is regular.

(© FC=
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20) Six forces acting on a particle have directions parallel to the sides AB, BC,
CD, DE, EF, FA of a hexagon. Find the magnitude and direction of their
resultant.

(a) The forces have magnitudes F,2F, 3F, 2F, 2F, F respectively.

(b) The sense of each force is indicated by the order of the letters.

(c) The hexagon is regular.

21) Expressa force F in the form  ai + bj.

(a) The magnitude of the force is 5N.

(b) The force is inclined at 60° to the horizontal.
(¢) j isin the direction of the upward vertical.

22) Calculate the moment of a force about an axis through a point A:
(a) the magnitude of the force is 10N,

(b) the sense of rotation is clockwise,

() the axis is perpendicular to the force.

2) A 8 ABCD isasquare of side 2m. Find the
position of the point X through which a
perpendicular axis passes if, about that axis:
Y5  (2) the moment of the 3N force is 4.5Nm,
(b) the moment of the 4N force is 2Nm,
() the resultant moment is 4 N,

Yy

TYPEV
24) The resultant of AB and BC is CA.

25) Two vectors of equal magnitude and which are in the same direction are
equal vectors.

26) A particle of weight W is on a plane inclined at & to the horizontal.
‘The component of the weight parallel to the plane is I cosa..

27) The resultant of two vectors of magnitudes Pand Q and inclined at 60°
is VP QT-PO.

W) I F
opposite.

i+3j and Fy=2i—3j then F,andF; are equal and

29) Asquare ABCD can be rotated in a vertical plane about the side AB.

30) The resultant moment of a set of forces about an axis is independent of the
axis.
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MISCELLANEOUS EXERCISE 2

1) A force of 30N is inclined at an angle 8 to the horizontal. If its vertical
component is 18N, find the horizontal component and the value of 8.

2) Resolve a vector into two perpendicular components so that:
(a) the components are of equal magnitudes,
(b) the magnitude of one component is twice that of the other.

3) Forces of magnitudes 2, 3,2 and S newton act at a point. The angles
between them are 30°, 60° and 30° respectively. Calculate their resultant and
verify your results by drawing a suitable scale diagram.

4) Forces represented by  3i+5j, i—2j and 3i+j together witha
fourth force F act on a particle. If the resultant force is represented by i + j,
find F.

5) ABCDEF is a regular hexagon. Forces acting along CB, CA, CF and CD are
of magnitudes 2,4, 5 and 6newton respectively. What is the inclination of
their resultant to CF?

6) If a represents a velocity of 4ms™ North East and b represents a velocity
of 6ms™ West, what velocities are represented by:
(@ —2a (b) a+b (c) 3b—a?

7) Inaregular pentagon  ABCDE:
(a) what is the resultant of: (i) AB + BC (i) EA— BA,
(b) prove that AD + DC = AB — CB.

8) ABCD is a paraliclogram. What represents the resultant of forces represented
by AB, BC, BD and CA?

9) ABC is an equilateral triangle and D is the mid-point of BC. Forces of
1,2,4 and 3/3 newton act along BC, BA, CA and AD respectively. Resolve
each of the forces in the directions BC and DA and verify that the sum of the
components in each direction is zero.

10) A force of 2V2N acts along the diagonal AC of a square ABCD and
another force P acts along AD. If the resultant force is inclined at 60° to AB
find the value of P.

11) Forces of magnitudes 2P, 4P, 3Pand P act on a particle in directions
parallel to the sides AB, BC, CD and DE of a regular hexagon. Find the
magnitude and direction of their resultant.
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12) Forces 2i—3j, Si+j, —4i+7j act through points with position
vectors i+j, —2i+2j, j respectively. Find their resultant moment
about

(a) the origin,

(b) the point with position vector i —j.

13) Forces of magnitudes 2N, 3N,4Nand SN act along the lines AB, BC,
EDand AD respectively where ABCDEF is a regular hexagon of side 2m.
Find the resultant moment about

() the centre of the hexagon,

(b) the vertex F.

14) Forces of magnitudes 7N, 4N, SNand XN act respectively along the
sides AB,CB, CDand AD of a rectangle ABCD inwhich AB=2AD. If
the resultant moment about the midpoint of AD is twice the resultant moment
about the midpoint of AB, find X.

15) Forcesof 9,2, 5and I newton act along the sides OA, AB, BC and CO of
arectangle OABC and a force of 15newtons actsalong AC. OA=4a and
AB= 3a. Taking OAand OC as x and y axes m;pecuvely find an expression
for the resultant force vector in the form  Xi +

16) A quadrilateral ABCD has opposite sides ABand DC parallel.
Angle ABC= 150> and angle BAD = 60°. Forces 2P, P, P, 2P act along
AB, BC, T3, AD respectively. Prove that the resultant has magnitude
P(8+3y/3)! and find the tangent of the angle it makes with AB.

(UofL)

17) Two forces, Fyand Fa, act through A(1,3)and B(1,—2) respectively.
Fy=2i—j and F, is of magnitude 10 and acts in a direction 4i+ 3j.
Find:

(a) a vector equation for the line of action of each force,

(b) the resultant of Fyand Fa,

(c) a vector equation for the line of action of the resultant force.

18) Forces Pand Q actalong lines OA and OB respectively and their resultant
is a force of magnitude P. If the force P along OA is replaced by a force 2P
along OA, the resultant of 2P and @ is also a force of magnitude 7. Find:

(a) the magnitude of Q in terms of P,

(b) the angle between OA and OB,

(c) the angles which the two resultants make with OA. ©)
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19) A plane lamina has perpendicular axes Ox and Oy marked on it, and is
acted upon by the following forces:

5P in the direction Oy,

4P in the direction Qx,

6P in the direction OA where A is the point (3a,4a),

8P in the direction AB where B s the point (~a,a).

Express each force in the form  pi+qj and hence calculate the magnitude
and direction of the resultant of these forces.

20) The diagonals of the plane quadrilateral ABCD intersect at O,

and X, Y are the mid-points of the diagonals AC, BD respectively. Show that:
(a) BA + BC =2BX

(b) BA + BC + DA + DC = 4¥X

(c) 2AB+2BC+2CA =0

If OA+OB+0C+0D=40M, find the location of M. (AEB)

21) Given two vectors OPand OQ show how to construct geometrically the
sum (OP+00) and the difference (OB — 0Q).
If X,Y,Z are the mid-points of the lines BC, CA, AB respectively and O is
any point in the plane of the triangle ABC, show that

OA+0B+0C = OX+0Y+0Z
and find the position of the point D such that OA+0B—0C = OD.

(UofL)

22) Forces of magnitudes 1,2,3,6,5 and 4N act respectively along the sides
AB, CB, CD, ED, EF and AF of a regular hexagon of side a. Find their resultant
moment about axes perpendicular to the hexagon through
@A (B (o) the centre of the hexagon.
23) Forces of magnitudes F, 2F, pF, 3v/2F and gV/2F act along AB, BC, DC,
ACand BD respectively, where ABCD is a square of side 2a (the order of the
letters indicates the direction of each force).
If the magnitude of the resultant torque, in the sense DCB, about an axis
through A perpendicular to ABCD is 4Fa and the resultant force is of
magnitude 10F, find p and q.



CHAPTER 3

COPLANAR FORCES
IN EQUILIBRIUM. FRICTION

THE STATE OF EQUILIBRIUM

A set of coplanar forces acting on an object can be reduced (using methods
discussed in Chapter 2) to a single resultant force. The effect of this linear
resultant on the object would be to move it in a straight line. In addition, the set
of forces may have a resultant turning effect which would cause the object to
rotate. Forces which have zero linear resultant and zero turning effect will not
cause any change in the motion of the object to which they are applied.

Such forces (and the object) are said to be in equilibrium.

A set of concurrent forces has zero turning effect about the point of
concurrence, 50,

concurrent forces are in equilibrium if their linear resultant is zero.

Itis important to remember, however, that non-concurrent forces with zero
lincar resultant are not necessarily in equilibrium.

Equilibrium of Concurrent Coplanar Forces

We have already seen that there are basically two ways of finding the linear

resultant of a set of forces:

(a) by drawing a vector diagram in which lines representing the given forces
form all but one side of a polygon. The last side then represents the
resultant,

(b) by resolving and collecting the forces in each of two perpendicular
directions.
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When the forces are in equilibrium their resultant is zero and the above methods

can be adapted as follows:

() The side representing the resultant is now of zero length, ic. the given forces
themselves can be represented by the sides of a closed polygon,

e.g. if the forces in diagram (i) are in equilibrium, the corresponding vector

diagram will be as in diagram (ii).

@}

(b) When the given forces are resolved and collected in two perpendicular
directions, the magnitude of the resultant, F, is normally calculated using
F=V(X*+ Y.

Neither X* nor ¥* can ever be negative.
So F is zero only if
X=0 and Y=0.
X

E.g. in diagram (i) above, resolving parallel and perpendicular to the force Q
we have:

- X = Q+Pcosa—Scosp = 0

t Y = Psina+Ssinf—R =0

These two equations give the condition for P,Q, R and S to be in equilibrium.
Either of the methods above can be used to solve problems where the forces are
in equilibrium.

EXAMPLES 32

1) ABCDEF is a regular hexagon and O is its centre. Forces of 1,2,3,4,P,

Qnewton actat O in the directions OA, OB, OC, OD, O, OF respectively.
If the six forces are in equilibrium find the values of Pand Q.
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Resolving all forces in the directions
Oxand Oy andusing X=0 and

Y=0 wehave: c >
> X = P+Qc0s60° +4c0s60° — 1 cos60° —2 — 3c0s 60° = 0 i
1Y = Qsin60° + 15in60° — 45in 60° — 35in60° = 0 121
From [1] P+30 =2
From [2 0=6

Therefore the required valuesare P=—1 and Q=6.
(P=-1indicatesa force of 1N along EO)

2) Four forces of magnitudes 4N, 3N, 1 Nand 3v2N act on a particle as
shown in the diagram. Prove, using a polygon of forces, that the particle is in
equilibrium.

‘The polygon ABCDE is constructed so that AB, BC, CD and DE represent the
forces 4N,3N, 1 Nand 3/2N respectively in magnitude and direction.

But  DF = 3v2cos45° = 3 units it
and  EF =3v2sin45° = 3 units 4

Therefore DF = CB 2anits

Therefore E and F are both on AB. 3 units

Also EF+DC=AB
Therefore E coincides with A. —_—e

The four given concurrent forces therefore form a closed vector polygon and
s0 are in equilibrium.
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Equilibrant

A set of forces which s not in equilibrium may be reduced to equilibrium
by the introduction of one extra force. This force s then called the equilibrant
of the original set. Since it counteracts the resultant effect of the original set of
forces,

the eqilibrant of a systeiri is equal and opposite 1o the resultant of that system.

3) Four forces acting on a particle are represented by 2i +3j, 4i—7j,
—Si+4j and i—j. Find the resultant force vector F. A fifth force

pi+qj isadded to the system which is then in equilibrium. Find p and ¢
and check that pi+qj=—F.

- F=
Now considering the set of five forces whwh are in equilibrium and hence have
a resultant represented by  0i +0j  we ha

(20 + 3)) + (4 — 7)) + (= 5i + 4) + (i —j) + (pi + qj) = 0i + 0
Therefore 244-5414p=0 = p=-2
and 3-7+4—14q =
The fifth force is therefore —2i+j =

EXERCISE 3a
1) ABCD is a square. A force of 2N acts along AB. Find the magnitude of
forces acting along AC and AD if the three forces are in equilibrium.

2) Ina regular hexagon ABCDEF, forces of magnitudes 2N,4N,3Nand 2N
act along the lines AB, AC, AD and AF respectively. Find the equilibrant of the
given forces and verify that it s equal and opposite to their resultant.
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3) Forces 2i+3j, i—7j, 4i+j and —3i—j actona particle. Find
the resultant force. What is its magnitude? What extra force would keep the

particle in equilibrium?
4)
—si

ve forces are in equilibrium. Four of the forcesare  9i—j, 4i+ 6j,

2 and 2i+j. Whatis the fifth force?

5) Three forces, 2i+j, 7i—2 and 3i+4j actona particle. A fourth
force F is introduced to keep the particle in equilibrium. Find F.

6) A ring of weight 2N is threaded on to a string whose ends are fixed to two
points A and B in a horizontal line. The ring is pulled aside by a horizontal
force Pnewton parallel to AB. When the ring is in equilibrium the two sections
of the string are inclined to the vertical at angles of 40° and 20°. Find the two
possible values of P.

7) ABCDEF is a regular hexagon. Forces represented by AB, FA, BC and 2DE
act on a particle. Prove that the particle is in equilibrium.

THREE FORCES IN EQUILIBRIUM

The methods already discussed can be applied to problems on any number of
forces, including three. The situation where just three forces are in equilibrium,
however, is of particular interest and special methods are applicable.

Consider three forces P, Q and R which are in equilibrium. Lines representing,
in magnitude and direction, a set of vectors in equilibrium, form a closed
polygon. In this case the polygon is a triangle and is often referred to as the
triangle of forces.

The formal statement of this property is:

Thiee forces which are in equilibrium can be represented in magnitude. direction
and sense by the sides of a triangle taken in order.

Conversely,

{14 triangle can be found whose sides, in order, have the same ditections as
three concurrent forces in equilibrium, then the magnitudes of the forces are
proportional to the sides of the triangle.
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EXAMPLES 3b

1) One end of a string 0.5m long is fixed to a point A and the other end is
fastened to a small object of weight 8N. The object is pulled aside by a
horizontal force, P, untilitis 0.3m from the vertical through A. Find the
magnitudes of the tension, T, in the string and the force P.

General diagram

Forces acting on obiect Triangle of forces

Triangle ABC is a suitable triangle of forces since
AB i nthe same diection asthe welght

is in the same direction as

Ch 1 nthe same diecton s T

s P T
Then — = — = —
AB BC CA

But the length of AB is 0.4m (Pythagoras).
8 P T
Hence — = — = —
04 03 05

The tension in the string is therefore 10N and the horizontal force is 6N.
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LAMI'S THEOREM

Consider again three forces P, and R which are in equilibrium, and the
corresponding triangle of forces ABC.

If the angles between P,Q and R are «,f and y as shown in the diagram, then
a,Bandy are exterior angles of triangle ABC.
Applying the sine rule to the vector triangle ABC we have
P _ Q0 _ R
sin(180°—a)  sin(180°—p)  sin(180°—7)

But since sin(180° —a) =sina, a simpler form is

P [ R

sina

sing  siny

This property of three forces in equilibrium is known as Lami’s Theorem and is
avery neat method of solving many zhree force problems.

EXAMPLES 3b (continued)

2) One end of a string is fixed to a point A and the other end is fastened to a
small object of weight 8 N. The object is pulled aside by a horizontal force until
the string is inclined at 30° to the vertical through A. Find the magnitudes of
the tension in the string and the horizontal force.
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RT

>
]
r
,
Vs
s General diagram. Forcs acting on obiect

Applying Lami’s Theorem we have

3
Therefore the tension is and the horizontal force is WT N.
Note the similarity between Examples 1 and 2.
The lengths given in Example 1 suggested using the triangle of forces method
whereas the angles given in Example 2 suggested the use of Lami's Theorem.
Itis also interesting to observe that either problem could have been solved by
resolving the forces horizontally and vertically as in the earlier examples.

Concurrence Property

16 three non-parallel forces are in equilibrium their lines of action must be
concurrent,

It is casy to see that this must be true by considering three forces P,Q and R
which are known to be in equilibrium.

If Pand Q meetatapoint A, then their resultant, S, also passes through A.

‘The original three forces have now been
S reduced to two and these two, shown
in diagram (i), are to be in equilibrium.
Rand'S therefore have zero linear
resultant and zero turning effect.
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i)

Hence R and § are equal in magnitude
and in opposite directions.

If the positions of R and § are as
shown in diagram (i) however, they
have a turning effect.

This tuming effect wil be zero only
when R and § are collinear, as in
diagram (iif) and in this case R also
passes through A.

Therefore in order that P, Q and R
shall be in equilibrium, all three forces
must pass through A.

‘This property is of considerable value in solving problems where one of three
forces in equilibrium would otherwise have an unknown direction.

EXAMPLES 3b (continued)

3) Auniform rod AB of weight 12N is hinged toa vertical wall at A. The
end B is pulled aside by  horizontal force until it is in equilibrium inclined at
60° to the wall. Find the magnitude of the horizontal force and the direction of

the force acting at the hinge.

General diagram

Concurrent forces
acting on rod

‘The rod is in equilibrium under the action of three forces only, so these three
forces must be concurrent. The weight and the horizontal force P meetat C so
the hinge force must also pass through C. But the hinge force actsat A so its

direction must be CA produced.
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First we deal with the mensuration of the general diagram.
G is the midpoint of AB and GC is parallel to AD so C is the midpoint of
DB.

DC DB V3
Now and = — = 1= < Luneo® = —

AD AD 2
Hence 0 = 409°

Applying Lami’s Theorem we have

2P L R ichisnotnceded
sin(@+909)  sin(180°—0) | sin90
125in139.1°

= = 104

sin 130.9
‘Therefore the horizontal force is of magnitude 104 N and the hinge force is
inclined at 40.9° to the wall.

Problem Solving

The methods so far available for solving problems involving three concurrent
forces in equilibrium, use
(a) the ‘triangle of forces’,
(b) Lami's Theorem,
() resolution in two perpendicular directions.
In attempting to select the best approach to a particular problem the following
points should be noted.

1) A diagram including a suitable triangle whose sides are given (or are simple to
calculate) suggests the use of method (). It is not, however, worth introducing
special construction to create a suitable triangle.

2) When the angles between pairs of forces are known, Lami’s Theorem is often
the best method.

3) If two of the three forces are in perpendicular directions, resolving in these
directions gives a quick and easy solution.

Itis important in all cases to remember that three non-parallel forces in
equilibrium must be concurrent.
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EXAMPLES 3b (continued)

4) A small block of weight 20N is suspended by two strings of lengths 0.6m
and 0.8m from two points 1m apart on a horizontal beam. Find the tension
in each string.

20 Forces acting
on block

General diagram

Triangle ABC is easily recognised as being right-angled at C.
Hence cos@ = 08 and sing = 0.6
Resolving in the directions of T and T gives
T,~20sin0 =0 = T, = 0.6x20
T;—20cosf =0 = T = 08x20

So the tensions in the strings are 12N and 16N,

5) A particle of weight W rests on a smooth plane inclined at 30° to the
horizontal and is held in equilibrium by a string inclined at 30° to the plane.
Find, in terms of I, the tension in the string.

AR A7

b

A Vi v

General diagram
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Applying Lami’s Theorem we have:

T
== thich is d
Wsin150°  Wv/3
Therefore e
sin 60 3

6) Auniform rod AB of weight 10N is hinged to a fixed pointat A and
maintained in a horizontal position by a string attached to B and toa point C
vertically above A. If AC=AB=/, find the magnitude and direction of
the force at the hinge and the tension in the string.

¢

General diagram Triangle of forces

The lines of action of the weight of the rod and the tension in the string meet
at D. Therefore the third force also passes through D.
Dis the midpoint of CB (since AG =GB and DG is parallel to CA).
Therefore  ADC = 90°.
In triangle CAD, CA is parallel to the weight

AD is parallel to the hinge force

DC is parallel to the tension.

10 R T
Therefore ==

CA AD DC
But AD = DC = lcos45°
Therefore R = 10c0s45° = T

The tension in the string is of magnitude 7.07N and the reaction at the hinge,
also of magnitude 707N, is inclined at 45° to the vertical.
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7) Apoint A ona sphere of radius a, weight W and centre O, rests in
contact with a smooth vertical wall and is supported by a string of length @
joining a point B on the sphere to a point C on the wall. Find the tension in
the string in terms of W.

The reaction at the wall and the
weight both pass through 0,50
the line of action of the tension in
the string also passes through 0.
Thus OBC is a straight line and
0C =2a.

a
Hence cosf = — = —
2a

= 6 = 60°

Using Lami's Theorem gives

T w R
sin90°  sin120° | sin150°
2w

- T=""

V3

EXERCISE 3b

1) A particle of weight 24 N is attached to one end of a string 1.3m long
whose other end i fastened to a point on a vertical pole. A horizontal force
acting on the particle keeps it in equilibrium () 0.5m from the pole

(b) so that the string is inclined at 20° to the vertical. Calculate the tension in
the string and the magnitude of the horizontal force in each case.

2) A small object of weight 10N rests in equilibrium on a rough plane inclined
at 30° to the horizontal. Calculate the magnitude of the frictional force.

3) Aweight of 26N is supported by twosstrings AB and AC of lengths 0.5m
and 12m respectively. If BC is horizontal and of length 1.3 m, calculate the
tension in AC and the angle BCA.
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4) A small block of weight W rests on a smooth plane of inclination 0 to the
horizontal. Find the value of 6 if:

(2) aforce of 1 parallel to the plane is required to keep the block in
equilibrium,

(b) a horizontal force of 4 keeps the block in equilibrium.

5) Auniform rod AB of weight 20N is hinged to a fixed point at A. A force
actsat B holding the rod in equilibrium at 30° to the vertical through A.
Find the magnitude of this force if:

() itis perpendicular to AB,

(b) it s horizontal.

6) A uniform rod AB of weight W rests in equilibrium with the end A in
contact with a smooth vertical wall and the end B in contact with a smooth
plane inclined at 45° to the wall, Find the reactions at A and B in terms of W.

7) Three forces P,Qand R act on a particle. Pand Q are perpendicular to
each other and the angle between Q and R is 150°. If the magnitude of P is
12N find the magnitudes of Q and R.

8) A uniform rod AB, hinged to a fixed point at A is held in a horizontal
position by a string attached to B and to a point C vertically above A so that
angle ACB is 45°. Find the magnitude and direction of the force acting at the
hinge.

CONTACT FORCES

Two solid objects in contact exert equal and opposite forces upon each other.
The two forces due to frictionless contact are each perpendicular to the common
surface of contact and are known as normal contact forces, ot normal reactions,
or simply normals.

If however the objects are in rough contact and have a tendency to move relative
10 each other (without losing contact) then frictional forces arise which oppose
such potential motion. Again each object exerts a frictional force on the other
and the two forces are equal and opposite.
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Consider two wooden blocks A and B being rubbed against each other.

A In the diagram, A is being moved to

the right while B. is being moved

- o

General diagram

In order to see more clearly which forces act on A and which on B, a second
diagram is drawn showing a space between the blocks but they are still supposed
to be in contact.

Open contact ‘The two normal contact forces, each
diagram N of magnitude N, are perpendicular

L to the surface of contact between the

£< blocks.
D>
y The two frictional forces, each of
s Y "
N ‘magnitude F, act along that surface,
each in a direction opposing the

motion of the block upon which it
acts,

Now consider one block being pushed
along the ground as shown. Again each
solid object exerts a normal force and

a frictional force on the other and
these are marked separately on the
second diagram. In this case however,
the ground is fixed and the two forces
which act upon it do not have any
calculable effect on it. Consequently
they are rarely included in the diagrams
drawn to illustrate problems. The
fixed surface is often indicated by
shading.
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Fixed Objects

The earth is our frame of reference, i.e. it is treated as absolutely stationary
(fixed) and movement is observed relative to it. Other objects which are
immovably attached to the carth become virtually part of its surface and are
therefore also fixed. e.g. a wall built on the ground or a pole with its foot
bedded in the ground.

A fixed object cannot be moved relative to the earth.

Contact between a moveable object and a fixed one is described as external
contact and the contact force acting on the moveable object is an external force.
Contact between two moveable objects is infernal and the contact forces acting
on both objects are internal forces.

EXAMPLES 3c

1) A block rests on a smooth horizontal plane and a smooth rod is placed
against the block with one end on the ground. Draw diagrams showing the forces
acting on the block and on the rod, indicating which contacts are internal and
which are external.

® T
|
1

. o,

Open contact diagram

‘The forces acting on the rod are

the weight W,

the normal reaction, S, with the plane (external contact),

the normal reaction, N, with the block (internal contact).

The forces acting on the block are

the weight W,

the normal reaction, R, with the plane (extemal contact),

the normal reaction, N, with the rod (internal contact).

Forces R4 and §4 which act on the fixed plane are disregarded.

Note that the line of action of A’ is perpendicular to the rod.
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FRICTION

Friction is a property of contact between objects.
Two surfaces which can move one across the other without encountering any
resistance are in frictionless contact, or smooth contact.
Conversely two objects whose relative surface movement is resisted have friction
between them and their contact is rough.
It is now appreciated that the existence of friction between surfaces does not
depend on their roughness or smoothness in the everyday sense of these words.
In fact there can be very large frictional forces between two highly polished
flat metal surfaces. Consequently it is important, in mechanics, to interpret
smooth as frictionless rather than free from projections.
The results of experimental investigation into the behaviour of frictional forces
confirm that:

() friction opposes the movement of an object across the surface of another
with which it is in rough contact.

(b) the direction of the frictional force is opposite to the potential direction of
motion.

the magnitude of the frictional force is only just sufficient to prevent
movement and increases as the tendency to move increases, up to a limiting
value. When the limiting value is reached, the frictional force cannot increase
any further and motion is about to begin (limiting equilibrium). When the
frictional force, F, reaches its limit, its value then is related to the normal
reaction N in the following way:

The constant u is called the coefficient of friction and each pair of surfaces has
its own value for this constant.

In'fimiting equilibrilm £ = u.
Ingenenal F < pi,
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The Angle of Friction

At a point of rough contact, where slipping is about to occur, the two forces
acting on each object are the normal reaction N and frictional force uN.

Y

The resultant of these two forces is §, and § makes an angle A with the
normal, where

v
A
A S

The angle \ is called the angle of friction.

Ata point of rough contact when slipping is about to occur we can therefore use
either

or
N S atanangle A to the normal
. where S is the resultant contact
components N and u’ at right angles force or total reaction and \ is
to each other. the angle of friction,

Note. The use of S instead of A and uA reduces the number of forces in a
problem and can often lead to a three force problem.

SUMMARY

1) When the surfaces of two objects in rough contact tend to move relative to
each other, equal and opposite frictional forces act on the objects, opposing the
potential movement.

2) Up toa limiting value, the magnitude of a frictional force, F, s just
sufficient to prevent motion.

3) When the limit is reached HN  where N is the normal reaction
and g is the coefficient of friction fov the two surfaces in contact.

4) Atall times F < uN.
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5) The resultant of A and uV makes an angle A with the normal, where
tanA=p and X is the angle of friction.
EXAMPLES 3¢ (continued)

2) A particle of weight 10N rests in rough contact with a plane inclined at
30° to the horizontal and is just about to slip. Find the coefficient of friction
between the plane and the particle.

R’

‘The particle tends to slide down the
plane so the frictional force on the
particle acts up the pllne Friction is
limiting so

0
Resolving in the directions of uR and R we have

» MR —10sin30° = 0
N R—10c0s30° = 0

10sin 30° .
Hence = ——— = tan30'
10 cos 30
1
- K=

3) Aparticle of weight W rests on a horizontal plane with which the angle of
friction is A.

Aforce P inclined at an angle 0 to the plane is applied to the particle until it is
on the point of moving. Find the value of 8 for which the value of £ will be
least.

Using the total contact force ' inclined at A to the nomal, only three forces
act on the particle.
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Then Lami's Theorem gives
P W s
sin(180°—2)  sin(90°—0+X)  |sin(90°+6)|

P w
- LW

snd cos0—2)

Wsin)

cos (@~ )
P will be least when cos(8 — ) is greatest, since W and sin\ are constant,
ie.when cos(@~2)=1 and 0—A=

Therefore P isleast when 6 =X and its value thenis Wsin).

4) A uniform ladder rests against a smooth vertical wall and on rough horizontal
ground. The weight of the ladder is 10N and it is just about to slip when
inclined at 30° to the vertical. Calculate the coefficient of friction.

Three forces keep the ladder in equilibrium,
the normal reaction R with the smooth wall,
the weight W,

the total reaction S with the rough ground.
The three forces must be concurrent,

so § passes through C, the point of
intersection of R and .

CcD

DB’

S isinclined at A to the normal BD and tan\
But the coefficient of friction 4 is equal to tanA.

cD  }AD

Hence p=-—= (since CG is parallel to DB and AG = GB)
DB DB

ie. u = }un30®

_ 1
Y

The coefficient of friction is therefore V/3/6.
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5) A small block of weight 10N rests on a rough plane inclined at 30° to the
horizontal. The coefficient of friction is §. Find the horizontal force required:
(a) to prevent the block from slipping down,

(b) to make it just about to slide up the plane.

In this case, as the block is about to
slip downward, friction on the block
acts up the plane and is limiting.

Resolving parallel and perpendicular to the plane,
Ry + Pycos30° — 10sin 30°
N R,—Pysin30°—10c0s30° = 0

Hence 205sin 30° — 2P, c0s 30° = Pysin 30° + 10 cos 30°
- 10— 1.73P; = 0.5P; +8.66

- 134 = 223p,

So the required horizontal force is of magnitude 0.6N.

(b)

‘This time the block is about to slide
upward and the limiting frictional force
acts downward.

Resolving as before:
~ Pycos30° —}R,—10sin30° = 0
N Ry—Pysin30°—10cos30° = 0

Hence LT3P,—10 = 0.5P, +8.66

- 1.23P; = 18.66

This time the magnitude of the horizontal force is 15.2N.
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Note. In examples 3 and 4, a phrase frequently encountered in examination
questions is used, viz. ‘a body rests on a rough plane . . ",

This implies, incorrectly, that friction is a property of one surface.

The description ‘a body rests in rough contact with a plane . . ."is better
‘because it conveys the idea of friction berween rwo surfaces.

EXERCISE 3¢

1) A small block of weight W is placed on a plane inclined at an angle 0 to

the horizontal. The coefficient of friction between the block and the plane is 1.

(a) When 0=20"the block is in limiting equilibrium. Find 1.

(b) When p=4 and 8=30° ahorizontal force of 6N is required to
prevent the block from slipping down the plane. What s the weight of this
block?

(c) A force of 10N up the plane causes the block to be on the point of sliding
up.If W=20N and p=} find 0.

(@ If 6=40° and u=}% find the magnitude and direction of the least
force required to prevent the block from sliding down the plane when
W=12N.

2) Ablock of weight 20N rests on a rough plane of inclination 30°, the
coefficient of friction being 0.25. Find what horizontal force will be required:
() just to prevent it from slipping down,

(b) to make it just begin to slide up.

3) A sledge whose weight is 4000 N is pulled at constant speed along level
ground by a rope held at 30° to the ground. If w=} find the pulling force
required.

4) A uniform ladder rests on rough horizontal ground with its top against a
smooth vertical wall. If the angle of friction is 15° find the least possible
inclination of the ladder to the horizontal.

5) A small block of weight 8N is standing on rough horizontal ground. A
horizontal force P is applied to the block. If the coefficient of friction between
block and ground is 0.5, what is the value of the frictional force when:

(@ P=IN (b) P=4N (c) P=5N

State in each case whether or not the block moves.

6) A crate of weight 4000N is placed on a ramp inclined at 20° to the

horizontal, and is just on the point of slipping down the ramp. A workman then
attaches a rope to the crate, to haul it straight up the ramp. If the rope s parallel
to the ramp, what is the least force with which the workman must pull the rope?
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RESULTANT MOMENT OF COPLANAR FORCES IN EQUILIBRIUM

Consider a stationary object upon which a number of forces begin to act.
If, about a certain axis, the forces have a resultant anticlockwise moment, the
object will begin to rotate anticlockwise about that axis.
Similarly the object will begin to rotate clockwise if the forces acting on it have
a resultant clockwise moment.
If, however, the object does not begin 1o rotate at all, there can be no resultant
torque in either sense about any axis.
But one of the conditions necessary for a set of forces to be in equilibrium is
that they cause no change in rotation. It therefore follows that

if a set of forces is in equilibrium their resultant moment about any axis is zero.

‘This property can often be used to evaluate some of the unknown forces acting
on an object in equilibrium.

EXAMPLES 3d
1) A uniform rod AB of length 2m and weight 20N rests horizontally on

smooth supportsat A and B. Aload of 10N is attached to the rod ata
distance 0.4m from A. Find the forces exerted on the rod by the supports.

SR,
N1 1

Let X and ¥ be the magnitudes (in newtons) of the supporting forces at A
and B respectively.

Because the rod is at rest, the resultant moment of the forces acting on it is zero
about any axis.

Using the symbol A) to indicate that the resultant moment about an axis
through A is to be assessed in the sense indicated by the arrow, we have

A)  10x04+20x10—¥x20 =0 n
B) Xx20-10x16-20x10 =0 o]
Hence X=18 ad Y =12

Therefore the supporting forces are 18N at A and 12N at B.

The sum of the supporting forces is equal to the sum of the loads, confirming
that the resultant of the vertical forces acting on the rod is zero.
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2) A uniform plank AB of weight 100N and length 4m lies on a horizontal
roof, perpendicular to the edge of the roof and overhanging by 1.5m. Ifa load
of 200N is to be attached to the overhanging end A, what force must be
applied at the opposite end B just to prevent the plank from overturning?

When the plank is just on the point of overturning it is in contact with the roof
only at the edge E. The normal reaction therefore acts at E.

Let the normal reaction be Q and the force required at B be P (both in
newtons).

Then, E) 200%1.5—100x0.5—Px2.5 =
Hence P = 100.
Therefore a force of 100N is needed at B.

Note. The unknown force Q, which s not required, is avoided by choosing to
take moments about an axis through which Q0 passes.

3) A uniform rod AB of weight W is hinged to a fixed pointat A. Itis held
in a horizontal position by a string, one end of which is attached to B and the
other end toa fixed point C such that angle ABC is 30°. Find, in terms of

W, the tension in the string.

Let the length of the rod be 2a.
A)  Wa—Tx2asin30° = 0
ie. Wa—Ta = 0

(The unknown force R at the hinge
A isavoided by taking moments
about an axis through A)

Therefore the tension in the string is of magnitude W.
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4) Anon-uniform rod AB of length 2m is suspended in a horizontal position
by two vertical strings, one at each end. The weight of the rod actsat G where
AG=1.1m and is of magnitude 60N. Aload of 20N is placed on the rod
ata variable point P. If either string snaps when the tension in it exceeds 42N,
find the section of the rod in which P can lie.

e i

20 0

If the tensions at A and B are T and Tjnewtons and AP =.xmetres, then:

A 20x+60x1.1-2T; = 0
B) 27,—20Q2-x)—60%09 =0
Therefore T, = 47-10¢
and T, = 10v+33
But Ty, <42 and T, < 42
Therefore 47—-10x < 42
and 10x+33 < 42
giving x> 05 and x <09

The load can therefore be placed anywhere within the section PP, without
breaking either string, where AP, =0.5m and P;B=1.1m.

—0s e 1 ——=
A b, 3

EXERCISE 3d

1) A uniform beam AB of length 1.6m and weight 40N rests on two
smooth supportsat C and D where AC=BD=03m. Aload isattached
to A so that the supporting force at C is twice the supporting force at D.
Find the magnitude of the load.

2) A non-uniform rod of weight 40N and length 1m is suspended by a single
string attached to the mid-point of the rod. If the rod is horizontal when a weight
of 30N is attached to one end of the rod, find the supporting force which
would be required at the opposite end to keep the rod horizontal when the 30N
weight is removed.
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3) A uniform beam 3m long has weights 20 N and 30N attached to its ends.
1f the weight of the beam is SON find the point on the beam where a support
should be placed so that the beam will rest horizontally.

In Questions 4-8 each diagram shows an object in equilibrium. Using the
principle of moments calculate the forces or distances indicated (units are
newtons and metres throughout).

PR T S — P p——
W Caleulate X and ¥.
T
10 0
5) A rod is hinged at A. Calculate the

distance AB if the smooth support at
B exertsa force 25N on the rod.

Calculate X and Y.

7) Aplank AB weighs 100N, Findthe ~ #
least force F required to prevent the plank
overturning.

8 A T
ot 03 e Find W 5o that the
tensions are equal and

\L ha SVr find the tension.
50 w
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THE EFFECT OF COPLANAR FORCES

We are now going to consider the general effect of a set of non concurrent
coplanar forces acting on an object (the simplest object to visualise is a lamina
in the plane of the forces).

For reference purposes let O be some point in the lamina and Ox, Oy be
perpendicular lines through O in the plane of the lamina.

2

The movement of the lamina in its own plane can then be made up only of:
(a) linear movement parallel to Qx,

(b) linear movement parallel to Oy,

() rotation about some axis perpendicular to the lamina.

These three independent factors in the possible movement of the lamina are
caused respectively by:

(a) the algebraic sum of the force components parallel to Ox,

(b) the algebraic sum of all the force components parallel to Oy,

(c) the resultant moment of all the forces about the axis of rotation.

The ability of a set of coplanar forces to generate movement made up of three
independent factors is referred to as the three degrees of freedom of the force
system.

Coplanar Forces in Equilibrium

When a stationary object is in equilibrium under the action of a set of
coplanar forces, each of the three independent factors which comprise the
possible movement of the object must be zero,
ie. the object has:

(2) no linear movement parallel to Ox,

(b) no linear movement parallel to Oy,

(¢) no rotation about any axis.
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The set of forces must therefore be such that:
(a) the algebraic sum of the components parallel to Ox is zero,
(b) the algebraic sum of the components parallel to Oy is zero,
() the resultant moment about any specified axis is zero.

‘The use in a particular problem of this set of conditions for equilibrium leads to
the formation of not more than three independent equations relating the forces

in the system.

EXAMPLES 30

1) Arod AB rests with the end A on rough horizontal ground and the end B
against a smooth vertical wall. The rod is uniform and of weight W. A mass
also of weight W is attached at B. If the coefficient of friction at A is

find the angle at which the rod is inclined to the vertical when it is just about
toslip.

When the rod is about to slip the frictional
force at A is 3R

Let the length uflhe rod be 22 and its
inclination to the wall be 6.

‘Then, resolving parallel to the ground and
to the wall and taking moments about an
axis through A, we have:

- ~3R=0
t R-2W =0
A Wxasing + Wx2asing — Sx2acosf = 0
From [2] R=2w

From [1] s=3ew=3w
From [3] 5 =3wtang

‘Therefore 3w = 3wiang

= tang = 1

‘The rod is therefore inclined at 45° to the vertical.

m
2
131
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Alternative Conditions for Equilibrium of Coplanar Forces

When a stationary object s in equilibrium it is not rotating about any axis or
‘moving linearly in any direction. There are consequently many more equations
which could be formed by equating to zero the resultant moment about various
different axes or the collected force components in various different directions.
But, as the fotal number of independent equations is limited to three, the various
groups of equations which may be used are based on:

(a) resolving in any two directions and taking moments about one axis,

(b) resolving in one direction and taking moments about two axes,

() taking moments about three axes (which must not be collinear or the third
resultant moment would simply be the combination of the first two, giving
no extra information).

EXAMPLES 3e (continued)

2) Auniform rod AB of length 22 and weight W is smoothly pivoted to a
fixed point at A. A load of weight 2W is attached to the end B. The rod is
kept horizontal by a string attached to the midpoint G of the rod and to a
point C vertically above A. If the length of the string is 22 find, in terms of
W, the tension in the string and the magnitude of the reaction at the pivot.

‘The given lengths of AG and CG show
that

cosAGC = — =}

a
2
- AGC = 60°

More than three forces keep the rod in equilibrium, so they do not have to be
concurrent. Consequently we have no way of deciding upon the direction of the
hinge force. The easiest way of dealing with a force which is unknown both in
‘magnitude and in direction is to introduce it as a pair of perpendicular
components.

Using this technique for the hinge force, we have components X and ¥ acting
horizontally and vertically at A.
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Then, resolving hori and vertically and taki about an axis
through A, we have:
- X—Teos60° = 0 n
t Y+Tsin60°—3W = 0 12)
A) Wa+2W(2a)—Tasin60° = 0 [E)]
From (3] T=

10v3 ) (1) s
From [1] x:(—‘/_w) H:fw

3 2 3
10v3 \(V3

From [2] Y= 3w—(Tw)(%) = —aw

The reaction at the hinge i of magnitude R where
R = VXY = VEW+aW) = wWE

10v/3
3

The tension in the string is w.

3) Aladder rests in limiting equilibrium against a rough vertical wall and with its
foot on rough horizontal ground, the coefficient of friction at both points of
contact being 4. The ladder is uniform and weighs 300N. Find the normal
reaction at the wall and the angle 6 which the ladder makes with the horizontal.

s

The rod is in limiting equilibrium, so the frictional forcesat A and B are
4R and §S where R and S respectively are the normal reactions.
Let 2 be the length of the rod.
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Taking moments about two axes, through A and B, and resolving horizontally
we have:

A) 300 xacos§—S x2asin0 —4Sx2acosf = 0 1l
BY Rx2acosf—4R x2as5in6—~300xacosf = 0 2]
- s—iR =0 Bl

From [1] and [2], first di
300 = S(2tanf+1) = RQ2—tan0)

ding cach by acosf, we get

But R =125
Therefore (2un0+1) = 22—tanf)
- tang = 3

‘Therefore the ladder is inclined at an angle 36.9° to the horizontal.
300 300

From equation (1] Py
an E

Therefore the normal reaction at the wall is 120 N.

4) O is the centre of a circular disc of weight I which rests in a vertical plane
on two rough pegs A and B, the coefficient of friction with each being 0.5.
AO makes 60° and BO makes 30° with the vertical. Find, in terms of W,
the maximum force which can be applied tangentially at the highest point of the
disc without causing rotation in the sense from A to B.

When P has its maximum value the frictional forces at A and B are 4R
and §S. Let the radius of the disc be a.
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Taking moments about axes through A,Band O (which are not collinear) we
have:

A Px%a—{-Saf%Sa—Wg 0 m
B) =0 12
0) =0 31
From (1]
From [2] 3R = WHP(2+/3)
From (3] 2P = R+S
Therefore 2P = §[W+2P+y/3P| +/3W—3P
- (13—v3)P = (1+3V3)W
. (|+3¢3) _a +3\/3)(13+\/3)w

13=v3, 166

N (11+204/3)
The greatest force is therefore ~——-——1.

Note: The limitation to three independent equations is vital. If, mistakenly, a
fourth equation is introduced (e.g. by resolving twice and taking moments twice)
then, in the subsequent working, it will be found that everything cancels out and
some useless result suchas P =P will emerge. If, in a problem, there seem to
be four unknown quantities, so that three equations are not sufficient, the
fourth necessary equation must come from a different source, e.g. mensuration.

EXERCISE 3

In Questions 1-4 a uniform rod AB whose midpoint is M, is in equilibrium
in a vertical plane as shown in each diagram.

1) B
‘The rod rests on a rough pegat C
and a force F actsat A as shown.
If BC=CM and tana=§
find the coefficient of friction at C
and the force F.
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2)
Smooth
wall
1f the coefficient of friction at the
ground is §, calculate the normal
reactionsat A and B and find the
angle 0.
Roogh proumd
v
180N
3)

A vertical string i attached to A.
Find 7 in terms of W and
calculate the value of , the
Rough plane coefficient of friction at B.

B
9 P&~ The rod rests on a rough peg at A
and a smooth peg at C.
MC=CB
Find the coefficient of friction at A
and the normal reaction at C (in
v terms of ).

5) Adisc of mass m and radius a is free to turn in a vertical plane about a
smooth pivot through a point P on the circumference. A particle, also of

mass m is attached to the point Q on the rim of the disc diametrically opposite
to the pivot. What force should be applied to the lowest point of the disc to keep
PQ horizontal if:

() the force is tangential,

(b) the force is vertical.

Find, in each case, the magnitude of the reaction at the pivot.
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Questions 6-8 show sets of coplanar forces which are in equilibrium.

6)
D ‘
¥ [ v Calculate X, Y, d.
s ! T
P g p——
7
T}\' TY
Caleulate X, Y. PR ﬂ:, -.T_l
s 6 s
8)

Calculate X, Y, a.

9) A uniform rod AB of length 2a and weight W is inclined at 30° to the
horizontal with its lower end A on rough horizontal ground, the angle of
friction being 30°. The rod rests in contact with a smooth peg C (AC < AB),
Calculate the height of the peg above the ground and the reaction at the peg if
the rod is in limiting equilibrium.

10) A uniform ladder is placed with its foot on horizontal ground and its upper
end against a vertical wall. The angle of friction at both points of contact is 30°.
Find the greatest possible inclination of the ladder to the vertical. (The ladder
will not slip until limiting friction has been reached at both ends.)

11) A uniform rod AB of weight 200N is lying on rough horizontal ground
when a string attached to B begins to Lift that end of the rod. When AB is
inclined at 30° 1o the ground the end A is about to slip. If at this instant the
string is inclined to the vertical at 30° calculate the tension in the string and the
angle of friction between the rod and the ground.
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MULTIPLE CHOICE EXERCISE 3

(The instructions for answering these questions are given on page x.)

TYPEL

1) Two perpendicular forces have magnitudes 5N and 4 N. The magnitude of

their resultant is:

(@ 3N (b)) VIIN (¢) V4IN (d) IN.

1) Ablock of weight 12N rests in rough contact with  horizontal plane and
=1 Aforceof 3N is applied horizontaly to the block. The frictional

force acting on the block is:

@ 4N (b) 3N () —4N () zero because the block does not move.

3) Forces represented by 2i+5j, i—8j and pi+gqj arein equilibrium,

therefore:

@ p (b)yp==3 and g=3

©p @p and 40.

4) Alight string is attached at one end to a point on a vertical wall and at the

other end to a smooth sphere. When the sphere rests in equilibrium against the

wall the direction of the string is:

(a) at 45° tothe wall (b) horizontal (c) tangential to the sphere

(d) through the centre of the sphere.

5) A particle rests in equilibrium on a rough plane inclined at 30° to the

horizontal therefore:

1 ! 1 1
@ u=7 (b)u=;/3 © usy (d)u>$

TYPE I

6) Three forces F, F; and Fy are in equilibrium, therefore,
(a) Fy = Fp+Fy

(b) Fy+Fy+Fy = 0

©) Fi~F;—F3 = 0

(@) ~F, = F;+Fs.

7) Three concurrent forces represented by 2i+3j, i—4j and —
(a) are in equilibrium,

(b) have zero linear resultant,

(¢) have an equilibrant,

(d) exert a turning effect.

8) ABCD is a rectangle. Forces represented in magnitude and direction by
AB, BC, CD and DA:

(a) are in equilibrium,

(b) obey Lami’s Theorem,

(¢) have zero linear resultant,

(d) have a resultant 2AC.
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9) Aladder is resting at 30° to a rough vertical wall with its foot on a
horizontal plane.

(a) Friction acts on the ladder.

(b) The plane is smooth.

(c) The ladder is about to slip.

(d) Friction acts on the wall.

TYPE I
10) (a) Three non-parallel forces are concurrent.
(b) Three non-parallel forces are in equilibrium.
11) () The resultant of a set of forces is F.
(b) An extra force —F added to a set of forces produces a state of
equilibrium,
12) (a) Two objects are in rough contact with each other.
(b) Two objects are in contact and each exerts a frictional force on the
other.
13) (a) Aforce of 2N is applied to a block of weight 4N in an attempt to
move it across a rough table.
(b) The coefficient of friction between a block and a table is §.

14) (a) A supporting force just prevents a particle from slipping down a rough
inclined plane.
(b) A particle is in a state of limiting equilibrium on an inclined plane.

15) (a) The resultant torque of a set of forces is zero.
(b) A set of forces is in equilibrium.

16) (a) Arod AB whose midpoint is M is in equilibrium.
(b) The forces acting on a rod AB have zero resultant torque about axes
through each of the points A, B and the midpoint M of AB.

17) (a) The moment of a force £ about an axis through A is zero.
(b) Aforce F acts through a point A.

TvPE IV
18) Three forces P,Q and R act on a particle. Find the magnitude of P.
(a) P isinclined at 120° to R.

(b) P isinclined at 150° to Q.

(c) The magnitude of Q is 10N,

19) A block rests on a rough inclined plane. Find the coefficient of friction
between block and plane:

(a) the weight of the block is 8N,

(b) the elevation of the plane is 30°,

(c) friction is limiting.
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20) Determine whether or not three forces are in equilibrium:
(a) the magnitudes of the forcesare P=3,
(b) the angle between Pand Q is 60°,

(c) the angle between Q and R is 150°.

21) Aladder is placed with its foot on horizontal ground and the other end
leaning against a smooth vertical wall. Find the angle between the ladder and
the wall when the ladder is about to slip:

() the weight of the ladder is SOON,

(b) theground is rough and =1},

() the length of the ladder is Sm.

22) A non-uniform rod AB rests horizontally on two supports at points C
and D. Calculate the forces at the supports if:

(b) DI

© lhe weight of the rod is 40N,

(d) the length of the rod is 2m.

23) A uniform rod AB is hinged to a vertical wall at A. The midpoint is
attached by an inelastic string to a point on the wall above A. Find the tension
in the string if:

(a) the weight of the rod is 20N,

(b) the rod and the string have the same length,

(¢) the rod is horizontal,

(d) the string is inclined at 30° to the wall.

TYPEV
24) Three forces acting along the sides of a triangle are in equilibrium.

25) Lami's Theorem states that when three forces act on a particle each force

is proportional to the sine of the angle between the other two forces.

26) Ifa frictional force acts on a body, it is not necessarily of value uR where
R is the normal contact force.

27) The angle of friction is the angle between the frictional force and the
normal reaction.

28) Three forces in equilibrium must be concurrent.

29) If aset of forces is in equilibrium the resultant moment about any two axes
is zero.

30) Ifa body is kept in equilibrium by four unknown forces, these forces can be

found by resolving in two perpendicular directions and taking moments about
two different axes.
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MISCELLANEOUS EXERCISE 3

1) ABCD isa square. CD is produced to E so that DE=CD. Forces of
‘magnitudes 2,3v/2,4 and 22 units act along AB, AC, DA and AE
respectively. Find the magnitude and direction of their resultant. A fifth force
actingat A is added so that the system s in equilibrium. What is the magnitude
and direction of the extra force?

2) O isany point in the plane of a regular hexagon ABCDEF. Prove that
forces OK, OF, CB, CB and 2FO are in equilibrium.

3) Auniform rod AB of weight I is freely hinged at A. The rod is in
equilibrium at an angle 6 to the vertical when a horizontal force W actsat B.
Calculate 0 and the reaction of the hinge on the rod.

4) A small object of weight 4 in rough contact with a horizontal plane is
acted upon by a force inclined at 30° to the plane. When the force is of
‘magnitude 2W the object is about to slip. Calculate the magnitude of the
normal reaction and the coefficient of friction between the object and the plane.
5) Three telegraph cables are attached to the top of a telegraph pole. Their
tensions, in order, are 2500, 3000 and 3500N and the cables are separated by
angles of 20°. A fourth cable is to be attached to the same point on the post in
order to ensure that the post is in equilibrium. Assuming that all the cables are
horizontal find the tension which the fourth cable must take.

6) ABCDEF is a regular hexagon. Forces of 2,4+/3,10and 6 N act along
AB, AC, DA and AF respectively. Show that these forces are in equilibrium.

7) A sphere of radius 9cm rests on a smooth inclined plane (angle 30°). It is
attached by a string fixed to a point on its surface to a point on the plane 12cm
from the point of contact and on the same line of greatest slope. Find the
tension in the string if the weight of the sphere is 100N.

8) Find the values of the unknown forces in each of the following cases. Each
set of forces s in equilibrium.

(2 )

o N

Vaon 12N
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In each case use calculation to solve the problem but in addition sketch the
vector polygon.

9) Aweight W is suspended by two ropes which make 30° and 60° with the
horizontal. If the tension in the first rope is 20N, find the tension in the other
and the value of W.

10) A uniform bar AB, 1m long can be balanced about a point 0.2m from A
by hanging a weight of 5N at A. Find the weight of the bar. What additional
weight should be hung from A if the point of support is moved 0.1m nearer
to A?

11) A uniform rod BC, of length 0.6m and weight 2N, s hinged to a fixed
pointat B. It is supported in equilibrium by a string 0.8m long attached to C
and toa point A vertically above B. If AB=1m calculate the tension in

the string.

12) A uniform plank AB rests on a horizontal roof and B overhangs by 2m.
If the length of the plank is 10m and its weight is SEON, find how far a man of
weight 1400N can walk along the overhanging section without causing the
plank o tip up. Find also what weight should be placed at A to allow the man
towalk to the end B in safety.

13) Aloft door OA of weight 100N
is propped open at 60° to the
horizontal by a light strut AB.

‘The door is hinged at 0.

If OA=0B=12m and the

weight of the door acts through
apoint C on the door where
0C=04m, find the force

in the strut.
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14) A uniform beam AB, Sm long and of weight 60N is supported ina
horizontal position at A and at one other point. A load of 10N is suspended
from B and loads of SON and 40N are suspended from points distant 1.8m
and 3 m respectively from B. If the supporting force at A is 40N find the
position of the other support.

15) A diving board of mass 150 kg is clamped at one end. A diver of mass

75 kg walks gently along the board which is 3m long. What torque is exerted
on the clamp when the diver is:

(@) 1m from the free end,

(b) at the free end.

16) Arod XY isoflength (x-+y) and its weight acts through a point
distant x from X. It rests on two supports equidistant from X and Y and
distant = apart. Prove that the forces exerted by the supports are in the ratio

(x—y+2):(r—x+2).

17) A uniformrod AB of weight 12N is free to turn in a vertical plane about a

smooth hinge at its upper end A. Itis held at an angle 6 to the vertical by a

force P actingat B.

(@) P is SN applied horizontally. What is the force at the hinge?

(b) P is horizontal and 6 is arctan3. What is the force at the hinge?

(c) P isat right angles to AB and of magnitude 3N. What is the force at the
hinge?

(@) P isat right angles to AB and 0 is arctan. Find P and the hinge force.

18) A cylinder of weight 100N rests in the angle between a smooth vertical
wall and a smooth plane inclined at 30° to the wall. Find the thrusts of the
cylinder on the wall and the plane.

19) With reference to perpendicular axes Ox and Oy, A and B are points with
coordinates (2a,0) and (22,4a). A force with components X and ¥ parallel to
Ox and Oy passes through a point P on the x axis. Its anticlockwise moments
about axes perpendicular to the xy plane through O, A and B are respectively
“+4Fa,—4Fa and + 10Fa. Find, in terms of Fanda, the magnitude and
direction of the force and the distance OP.

20) A uniform rod AB, 2m long and of weight 200N, is suspended
horizontally by two vertical ropes one attached 0.2m from A and the other
03m from B. If the first rope snaps when its tension exceeds 140N and the
second snaps when its tension exceeds 160N find where on the rod a load of
100N can be placed without snapping either rope.
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21) A non uniform beam AB. rests on two supports in a horizontal line, one at
A andoneatapoint C. AB=5m, AC=4m and the weight of the beam
is 3SON. If the supports exert equal forces on the beam find the point on the
beam where the weight acts. If an extra weight W is then attached to B find
the value of W if:

() the supporting force at C is twice the supporting force at A,

(b) the beam is just about to rotate.

22) A uniform plank of mass 80kg and length 4m overhangs a horizontal
100 by 1.5m. A man can walk to within 0.5m of the overhanging end when
amass of 12kg is placed on the opposite end. What is the mass of the man
and how much bigger a load must be placed at the end of the plank to enable
the man to walk right to the overhanging end.

23) The foot of a uniform ladder, of length 7 and weight W, rests on rough

horizontal ground, and the top of the ladder rests against a smooth vertical wall.

The ladder is inclined at 30° to the vertical. Find the magnitude of the force

exerted by the ladder on the wall.

Given that the coefficient of friction between the ladder and the ground is

V3, show that a man of weight 4I cannot climb to the top of the ladder

without the ladder slipping, and find the least weight which when placed on the

foot of the ladder would enable the man to climb to the top of the ladder.
(UofL)

24) A uniform rod AB, of length 22 and weight W, is hinged to a vertical
postat A and is supported in a horizontal position by a string attached to B
and toa point C vertically above A, where £ABC=0. Aload of weight
2W is hung from B. Find the tension in the string and the horizontal and
vertical resolved parts of the force exerted by the hinge on the rod. Show that,
if the reaction of the hinge at A is at right angles to BC, then

AC = V5 (Uof L)

‘The diagram shows a uniform rod AB
resting in the angle between a vertical
plane and a plane inclined at 60° to
the vertical. Find the angle 0 if:
(a) both planes are smooth,
(b) the inclined plane is smooth but
the vertical plane is rough,
A is on the point of slipping down
and p=}
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26) A uniform rod AB, of length 2/ and weight W, is in equilibrium with the
end A ona rough horizontal floor and the end B against a smooth vertical
wall. The rod makes an angle tan™'2 with the horizontal and is in a vertical
plane which is perpendicular to the wall. Find the least possible value of 4, the
coefficient of friction between the floor and the rod.

Given that = 5/16, find the distance from A of the highest point of the
rod at which a particle of weight W can be attached without disturbing
equilibrium. (UofL)

27) A uniform ladder of weight W rests on rough horizontal ground against a
smooth vertical wall. The vertical plane containing the ladder is perpendicular
to the wall and the ladder is inclined at an angle a to the vertical. Prove that, if
the ladder is on the point of slipping and 4 is the coefficient of friction between
itand the ground, then  tanac= 21, (©)

28) A uniform rod AB of weight W is in limiting equilibrium at an angle of
45° to the horizontal with its end A on a rough horizontal plane and with a
point C in its length against a horizontal rail. This rail is at right angles to the
vertical plane containing AB. The coefficient of friction between the rod and
the plane is § and between the rod and the rail is . Calculate the magnitude
and direction of the resultant reaction at A. (AEB)

29) A ladder rests with its foot on smooth horizontal ground and its upper end
against a smooth vertical wall. The ladder is uniform, weighs 300N and is
inclined to the wall at an angle 8. What horizontal force must be applied to the
foot of the ladder to prevent it slipping if

(a) 0=30°

(b) 6 =arctan.

30) A uniformrod AB of length 2a and weight W has its lower end A on
rough horizontal ground. It is supported at 60° to the horizontal by a string
attached to its upper end B and at right angles to the rod. Find the tension in
the string and the frictional and normal forces at the ground.

31) A uniform ladder of weight W rests inclined at an angle 8 to the
vertical, with one end against a smooth vertical wall and the other end on
rough horizontal ground. Find, in terms of W, the magnitude of the frictional
force when 0 = arctan . If the angle of friction between the ladder and the
ground is arctang, find the value of @ when the ladder is about to slip.
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32) A heavy uniform sphere of radius & has a light inextensible string attached
to a point on its surface. The other end of the string is fixed to a point on a rough
vertical wall. The sphere rests in equilibrium touching the wall at a point distant
It below the fixed point. If the point of the sphere in contact with the wall is
about to slip downwards and the coefficient of friction between the sphere and
the wall is ¢, find the inclination of the string to the vertical.

If p =z’—' and the weight of the sphere is W, show that the tension in
a

w
the sringis 52 (1°+ i (UofL)

33) The figure shows a uniform rod AB of weight W resting with one end A
against a rough vertical wall, One end of a light inextensible string is attached at
B and the other end is attached at a point C, vertically above A. The points
A,Band C lic in the same vertical plane with  AB=BC=4a and AC=a.
If equilibrium is limiting, calculate:

(a) the tension in the string.

(b) the angle of friction between the rod and the wall.

(c) the magnitude of the resultant force acting at A.

(AEB)

34) A particle rests on a rough plane inclined at an angle 0 to the horizontal.
The coefficient of friction between the particle and the planc is . When the
weight of the particle is I, a horizontal force of magnitude 2 just prevents
the particle from slipping down the plane. If however a force of magnitude 2P
acts parallel to the plane, the particle is on the point of slipping up the plane.
‘The same force acting on a particle of weight 2 just prevents it from slipping
down the same plane. Find the values of 0 and , andexpress P interms of W.
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35) A uniform rod AB, of weight W and length 2/, rests in equilibrium with
the end A on rough horizontal ground and with the end B in contact with a
smooth vertical wall, which is perpendicular to the vertical plane containing the
rod. If AB makes an angle a with the horizontal, where tana =4/3, find
the least possible value of g, the coefficient of friction between the rod and the
ground, for equilibrium to be preserved.

If p=}, find the distance from A of the highest point of the rod at which
aload of weight W can be attached without equilibrium being disturbed.

UofL)

36) ABCDEF is a regular hexagon, lettered in an anticlockwise direction.
A system of forces in the plane of the hexagon has total anticlockwise moment
M, about A, M, about B and Ms about C. Show that the moment of the
system about D is M, —2M;+2Ms, and find the moments about E and F.

37) A uniform rod AB of weight W hasitsend A on rough horizontal
ground and rests at 45° to the vertical against a small smooth peg at C, where
AC=3AB. If the rod is on the point of slipping in the vertical plane containing
the rod, calculate p, the coefficient of friction between the rod and the ground.
If u=3 calculate the largest vertical downward force which can be applied
totherodat C without disturbing the equilibrium. (AEB)



CHAPTER 4

VELOCITY AND ACCELERATION

MOTION IN A STRAIGHT LINE

When a particle moves in a straight line its displacement, velocity and
acceleration can have one of only two possible directions. Positive and negative
signs are used to distinguish between the two directions by taking one sense as
positive and the other as negative.

UNIFORM VELOCITY

In Chapter 1, speed was defined as the rate at which a moving body covers its
path and velocity was defined as the speed of the body together with the
direction in which the body is moving. So a particle moving with uniform
velocity has a constant speed in a fixed direction.

Consider a particle moving with uniform velocity along a line as shown in the
diagram, O being a fixed point on that line.

o -
o A B

1 1 T

_-_—me—— o

(a) If at some instant the particle is at A and 2 seconds later it isat B, it has
covered a distance of 4 metres in 2 seconds. So its speed is 2ms™".
It is moving in the positive direction so its velocity is +2ms™.
Alternatively the displacement from O has increased by +4 metres in
2 seconds.
Therefore its displacement from O is increasing at the rate of +2ms”
its velocity.

1
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(b) Ifat some instant the particle is at B and 2 seconds later it is at A, it has
again covered a distance of 4 metres in 2 seconds and its speed is therefore
again 2ms™',

This time it is moving in the negative direction so its velocity is —2ms™.
Alternatively the displacement from O has decreased by 4m, or increased
by —4m, in 2s.

Therefore its displacement from O is increasing at the rate of —2ms™
and this is its velocity.

In both examples velocity is the rate of increase of displacement and the

velocity of any moving object, whether uniform ot not, is defined in the same

way.

Displacement-Time Graph

When a particle is moving in a straight line, a graph of its displacement, s,
from a fixed point on the line plotted against time, ¢, is often a useful way
of representing the motion. When the velocity is uniform, equal distances are
covered in equal intervals of time, so the graph is a straight line.

5 (metre)’

6—

.

ol T tcand)

1

Thisisa_ displacement-time graph for the motion discussed in example (a).
‘The gradient of the line is +2 and this is the velocity of the particle.

5 (metre)’

6

£ (sccond)

Thisis a displacement-time graph for the motion discussed in example (b).
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The gradient of this line is —2 and this is the velocity of the particle.
Thus in both examples the gradient of the line represents the velocity.
In general, for uniform velocity,

the gradient of the displacemient-time graph represents the velocity.

Average Velocity
A cyclist starting from a point A travels 200m due North to a point B at

a constant speed of Sms~'. He restsat B for 30 seconds and then travels
300m duc South toa point C at a constant speed of 10ms™.

Displacement from A (m)

200
100
TS = el 40 60 50 100
-— Time s)
~100. Y

The time taken for the whole journey is 100s.
The total distance travelled is 500m.

The average speed for the whole journey is the constant speed that would be
required to cover the total distance in the same time.

‘Thus the average speed for the journey is o0, s,

00
100 sms
‘The average velocity for the whole journey is the uniform velocity that would

be required 10 achieve the final increase in displacement from A in 100 seconds.
‘The increase in displacement from A after 100 seconds is —100m.

Thus the average velocity for the journey is 'I oo s i —lms™
On the displacement-time graph for the journey, this average velocity is
tepresented by the gradient of the chord AR.
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In general, for any type of motion, over a given interval of time,
Distance covered in that interval of time
Average speed = oo

Interval of time

Increase in displacement n that interval of time

Average veloclly Interval of time

Ina displacement-time graph

ient of a chord represents the average.velGeity.

EXERCISE 4a

1) A cyelist rides his bicycle along a straight road for 30 minutesat 10 ms™
and then gets off and pushes his bicycle for 10 minutes at 1.5 ms™. Draw a
displacement-time graph and find his average velocity for the whole journey.

2) A man walks up a hill at constant speed taking 10 minutes to cover a distance
of 800m. He rests for 2 minutes and then walks down again at constant speed
in 6 minutes. Draw a displacement-time graph and find his average speed for

the whole journey.

3) A ballis rolled along a line on the floor at a constant speed of 3ms™,
towards a wall whichis Sm from its starting point. It bounces on the wall and
returns at a constant speed of 2ms™" along the same line and is caught when it
is 7m from the wall. Draw a displacement-time graph showing the displacement
of the ball from its starting point and find the average speed and the average
velocity of the ball for its complete journey.

4) A particle is made to move along a straight line at constant speeds in such a
way that, measuring from a fixed point O on the line, it goes forward a distance
of 12m at 1.5ms™, then backwards a distance of Sm at 2.5ms™ and then
forward again a distance of 3m at 1 ms~. Draw a graph plotting the
displacement of the particle from O against time and find the average speed
and the average velocity of the particle for its complete journey.
5) A particle is moving along a straight line and O is a fixed point on that line.
The table shows the displacement (5) of the particle from O at given instants
of time ()
1(mnnd)|o|||z|3|4|s| 6
s(mcm)|0|2|4|6|6[2'—-2
Assuming that the particle has constant speeds over the intervals of time 7= 0
t01=3, 1=31t01=4, t=4 to =6, drawa displacement-time graph
and find the average velocity of the particle over the interval of time
(@ t=0tor=3 (b)r=11w1t=5 (c)r=21t0t=6.
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VELOCITY AT AN INSTANT

A particle is moving along a straight line where O is a fixed point on that
line. The table below gives the displacement of the particle from O at given
instants of time.

recond) [0 [ 1| 2] 3] 4] s

5 (metre) |ol ||4|9||6|25

The displacement-time graph is not a straight line as varying distances are
covered in equal intervals of time.

5 (m)4

o 1 2 3 4 [ )

‘The gradient of the chord AB is 6 so the average velocity over the interval of
time from =2 to r=4 is 6ms™.

‘This can be taken as an approximate value for the actual velocity at the instant
when r=2. Itis clearly not a very good approximation but better
approximations can be found by taking smaller intervals of time.

The actual velocity at the instant when =2 is represented by the gradient
of the tangent to the curve at_A and this can be estimated from the graph.
From the graph, the gradient of AT is approximately 4ms™.

Therefore the velocity at the instant when =2 is approximately 4 ms™.

it genaral, the velocity at aninstant can be found by determining the gradient
of the tangent 10 the displacement-time geaph af that instant.,
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EXAMPLE ab
A particle moves along a straight line and O is a fixed point on that line.

The displacement s metres of the particle from O at time ¢seconds is given by

= (t=1)t=5).

Draw a displacement-time graph for the interval of time from =0 to #=6.

From the graph find:

(a) the average velocity over the interval from

(b) the distance covered in the interval from ¢

(c) the time at which the velocity is zero.

0tor=4,
0tor=4,

Using s=(:—1)(r—5) andtaking =0,1,2,3,4,5,6, the following
table can be completed:

recond) | 0 | 1| 2| 3] 4] 5]

serewe) | 5 | 0 [=3[=a[=3[0 s

The displacement-time graph can then be drawn.

s (m)

H s

(a) the gradient of the chord AB is
So the average velocity over the interval from ¢

tor=4 is —2ms"

() From (=0 to r=3 the particle is moving in the negative sense
along the line.

When £=0, its displacement from O is Sm.

When 7=3, its displacement from O is —d4m.
‘Therefore the distance covered between =0 and =3 is 9m.
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From r=3 to r=4 the particle moves in the positive sense along the line.
When =3 its displacement from O is —4m.
When 7=4 its displacement from O is —3m.
Therefore the distance covered between ¢=3 and =4 is Im.
So the distance covered from r=0 to =4 is 10m.
(c) The gradient of the tangent to the curve represents the velocity at an instant.
From the graph we see that the gradient of the tangent is zero at the point C
where ¢=3. Therefore the velocity is zero when 7=3.

EXERCISE 4b
1) A particle is moving along a straight line and O is a point on that line. The
displacements, s, of the particle from O at given instants of time, 1, are
shown in the table.
tGecond) [ 0 [ 1] 2|3 ]a] 5] 6
s(metre) | 0 | 3 | E | ) |75|~12

Draw a displacement-time graph and find the average velocity over the interval
of time
@ from =0 10

() from =0 to 1=

2) A particle is moving along a straight line and O is a fixed point on the line.
The displacement, s, of the particle from O at given instants of time, 1, is
shown in the table.

1 (second)

5 (metre)

Draw a_displacement-time graph.
Find the average velocity over the interval of time from ¢
estimate the velocity at the instant when £ =1.

to =2 and

3) A particle moves along a straight line and O is a fixed point on that line.
‘The displacements from O at given instants of time are shown in the table.

teecond) [0 | 1 |2 ]3] s
s(mure)}o|3]8f9[o|—zs

Draw a displacement-time graph and find, over the interval of time from 1= 1
to =4,

(a) the increase in displacement, (b) the distance covered,

(c) the average speed, (d) the average velocity,

Estimate the velocity when 1 =4.
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4) A particle is moving along a straight line, Its displacement, s, from a fixed
point O on the line, at time 1, is given by s = —5¢%,

Draw a displacement-time graph for the interval =0 to =6,

Measuring s in metres and ¢ in seconds, use your graph to find

(a) the average velocity over the interval =2 1o t=

(b) the velocity when ¢ =4,

(c) the time at which the velocity is zero.

5) A particle is moving along a straight line and O is a fixed point on that line.
Its displacement smetres from O at time fseconds is givenby s =6 +1—
Draw a displacement-time graph for the interval of time from r=—1 to ¢=5.
Use your graph to find:

(a) the distance travelled in the interval from =0 to r=2,

(b) the displacement of the particle from O when ¢=0.

(©) the velocity when =0,

(d) the time at which the velocity is zero.

MOTION OF A PARTICLE WITH CONSTANT VELOCITY

Consider a particle moving with constant velocity v, which passes through a
point A with position vector p when the time ¢ is zero.
Because v is constant the particle is travelling along a straight line through A.

o :

If the particle is at a point P, with general position vector r, at a time 7, then
A=

But OF = OA + AP

Hence r=phov

This is the equation of motion of the particle.

Note it is also the equation of the path of the particle, each value of ¢ gives the
actual position of the particle at that time and not just any point on the line.
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EXAMPLE 4c
A particle travels with speed S0ms™" from the point (3,~7) in a direction
7i— 24j. Find its position vector after
(a) 1seconds
(b) 3 seconds.
The velocity vector of the particle is given by

7i— 24§
v =50 = 14i—48
25

Soafter rseconds the position vector of the particle is

48j)

After 3 seconds,

3i—7Tj+ 30141

48j)
= 45i—151j

EXERCISE 4c

Find the position vector of an object with constant speed ¥ in a direction d
from a point with position vector p, (a) at time ¢ (b) when £ =2, if

1) V=10, d=2i+j p=4i

) V=8, d=it+j, p=3i+j
d=i=3j, p=j
d=4i, p=2j

d=10i-24j, p

ACCELERATION

1f a particle moving in a straight line has a velocity of 2ms™ at one instant,
and 4 seconds later it has a velocity of 10ms™, its velocity has increased by
8ms™ in4 seconds.
If the velocity is increasing steadily, its rate of increase is 2ms™ each second
(written 2ms?) and the particle is said to have a constant acceleration
of 2ms?.
1f, on the other hand, the particle has a velocity of 10ms™ at one instant
and 4 seconds later it has a velocity of 2ms™, its velocity has decreased
by 8ms™ in 4 seconds, or has increased by —8ms™! in 4 seconds.
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I this increase i steady then the rate of inerease of velosiy is —2ms™ each
second, so the acceleration is —2ms,

In general acceleration is the rate of increase of velocity,

EXAMPLE 4d

A particle moving in a straight line has a constant acceleration of —2ms™2.
If it has a velocity of —4ms™ at one instant, find its velocity 3 seconds later.

The acceleration is —2ms’

Therefore the velocity is increasing at a rate of —2ms™ each second.
Therefore the increase in velocity after 3 secondsis —6ms™!.

‘The initial velocity is —4ms™.

So the velocity after 3 seconds is —10ms™.

EXERCISE 4d

1) A particle moving in a straight line with constant acceleration has a velocity
of 8ms™ at one instant and 3 seconds later it has a velocity of 2ms™. Find
its acceleration.

2) A particle is moving in a straight line with a constant acceleration of 3ms™
and has a velocity of 2ms™ at one instant. Find its velocity 2 seconds later.

3) A particle moving in a straight line with a constant acceleration of —3ms™

has a velocity of 15ms™ at one instant. Find its velocity:

(a) 4 seconds later,

(b) 5 seconds later,

() 6 seconds later.

4) A particle moving in a straight line with constant acceleration has a velocity
of —8ms™ at one instant. If the acceleration of the particle is 2ms™, find
its velocity after S seconds.

5) A particle is moving in a straight line with constant acceleration. At one
instant its velocity is —10ms™ and 4 scconds later its velocity is 2ms™
Find its acceleration.

Velocity-Time Graph

A graph of velocity plotted against time is a useful way of representing
motion in a straight line. When the acceleration is constant the increase in
velocity is the same for equal intervals of time so the graph is a straight line.
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Consider a particle, moving in a straight line with constant acceleration, which
has a velocity of 2ms™ at one instant and 3 seconds later has a velocity
of 8ms™

oims™)

i B o
The acceleration is §ms™? ie. 2ms™.

This s represented on the graph by the fraction Lo which is the gradient of

AC
the line AB.

In general, the gradient of the velocity-time graph represents thy

As the graph is a straight line the average velocity over the interval of three

seconds is the numerical average of the initial velocity 2ms™ and the final
velocity, 8 ms™.
So the average velocity in the interval from £
is §(2+8)ms”

Sms,

In general when a particle is moving in @ strajght line with constant acceleration
the average velocity over an interval of time is the average of the initial and
final velocities in that interval of time.

Consider again the definition

Increase in displacement

Average velocity = ———— T
Time

On the graph, the average velocity is represented by (A0 + BD)

and the interval of time is represented by OD.

Hence the increase in displacement is represented by ~ §(AO +BD)OD.

But this is the area of the trapezium OABD.
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In general, the area bounded by the velocity-time graph, the time axis and the
ordinates at 1, and f, represents the increase in displacement over the interval
of time from =1, to r=15

EXAMPLES 40
1) A car is moving along a straight line. It s taken from rest to a velocity of
20ms™ by a constant acceleration of 5ms™2. It maintains a constant velocity
of 20ms™ for 5 seconds and then is brought to rest again by a constant
acceleration of —2ms™. Draw a velocity-time graph and find the distance
covered by the car.

[ 0 16

When velocity decreases, as happens in this case between ¢ =9 and = 19,
the acceleration is negative and is sometimes referred to as a deceleration or a
retardation.

The increase in displacement while the car is accelerating s represented by the
area of triangle OAD.

‘The increase in displacement at uniform velocity is represented by the area of
rectangle ABED.

The increase in while the car is is by the
area of triangle BEC.

Therefore the total increase in displacement is represented by the area of the
trapezium OABC

ie. by 4(AB+0CYAD) = §(5+19)x20 = 240

So the increase in displacement is 240 m.

As the car is travelling in the same sense along the line at all times, the distance
covered is equal to the increase in displacement.

Hence the distance covered is also 240m.
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2) A particle is travelling in a straight line. It has a velocity of 10ms™ when
itis subjected to an acceleration of —2ms~? for § seconds.

Draw a velocity-time graph for this interval of eight seconds and find:

(a) the increase in displacement,

(b) the distance covered for the interval of eight seconds.

H H C

From 1 to t=5 the velocity is positive, so the particle is travelling
in a positive sense along the line.

So the area of triangle OAB represents an increase in displacement of 25 m.
From =5 to r=8 thevelocity is negative, so the particle is travelling
in a negative sense along the line.

This time the area of triangle BCD represents a decrease in displacement of 9m,
or an increase in displacement of —9m.
Therefore the increase in displacement from

(25-9)m = 16m

The distance covered from =0 to r=5 is 25m.
The distance covered from =5 to r=8 is 9m.

to =8 is (25+9)m=34m.

=0 to r=8 is

So the distance covered from 7
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EXERCISE 4e

1) A car accelerates uniformly from a velocity of 10ms™ to a velocity of
40ms™ ina time of 10s. Draw a velocity-time graph and find the accelera-
tion and the distance covered by the car in this time of 10s.

2) A train is brought to rest from a velocity of 24ms™ by a constant
acceleration of —0.8ms™. Draw a velocity-time graph and find the distance
covered by the train while it is decelerating.

3) A particle moving in a straight line moves from rest with  uniform
acceleration of 4ms~? for 4 seconds. It is then brought to rest again by a
uniform acceleration of —2ms~2. Draw a velocity-time graph and find the
total distance covered by the particle.

4) A particle moves from rest in a straight line with an acceleration of 4ms™?
for 3 seconds. It maintains a uniform velocity for 6 seconds and is then brought
to rest again in a time of 4 seconds with a uniform retardation. Draw a velocity-
time graph and find the final acceleration and the final displacement of the
particle from its starting point.

5) A particle moves in a straight line with a constant velocity of Sms™ for

2 seconds. It then moves with a constant accleration of —2ms™? for 8 seconds.
Draw a velocity~time graph for the interval of 10 seconds and find:

(a) the final velocity,

(b) the total distance covered by the particle,

(c) the increase in displacement of the particle.

6) A particle moves in a straight line. It has a velocity of 6ms™ when it is
subjected to an acceleration of —3ms~? for 3 seconds. It maintains a uniform
velocity for 2 seconds and is then brought to rest in a time of 2 seconds.

Draw a velocity-time graph and find, for the 7-second interval:

(a) the final acceleration,

(b) the distance covered,

(c) the increase in displacement.

EQUATIONS OF MOTION FOR A PARTICLE MOVING IN A STRAIGHT
LINE WITH CONSTANT ACCELERATION

Motion in a straight line with constant acceleration occurs frequently cnough
tojustify obtaining general equations which can then be applied to a particular
problem, removing the need to go back to first principles each time.
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Consider a particle which is moving in a straight line with a constant acceleration
a and which has an initial velocity # and a final velocity v after an interval of
time 1.

velocity

In the velocity-time graph the acceleration is represented by the gradient of the
v—u
line BC s0 @ = ——

- v = u¥at U]
The increase in displacement, s, in time ¢ is represented by the area of ABCD.
ie. s=Huto) 2]

Eliminating v from equations [1] and [2] gives s = }[u+(u+an)t

- s Bl
Eliminating u from equations [1] and [2] gives s = }[(v—ar)+¥]t
= s = vr—dat &3]
Eliminating ¢ from equations (1] and [2] gives s = }(u+v)(v—u)
- P+ 2as 8]

Equations [1], [2], (3], [4], [5] can now be used for solving any problem
involving motion in a straight line with constant acceleration and they should
be memorised.

When deciding which of these equations o use in solving a particular problem it
helps if a list is made of the information given and that required.
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EXAMPLES 41
1) A particle is moving along a straight line with a constant retardation of
3ms~2. If initially it has a velocity of 10ms™" find the time when the velocity
is zero. :

Information given: Using the equation v = u-+ar
v=0 = 0=10-3
a=-3 - =3

Information required: ¢

Hence the velocity is zero after 3§ seconds.

2) A particle is moving along a straight line with a constant acceleration of
—2ms~2 It passes through a point A on the line with a velocity of 6ms™.
Find the displacement from A of the particle after 5 seconds and the distance
travelled by the particle in this time.

Given u=6 Using the equation s = ut +jar®
a=-2 = 5 =130-25
r=s - s=5

Required: s

Therefore the displacement of the particle from A after Ss is Sm.

A velocity-time graph for a problem often leads to a quick solution, especially
when distances or displacements are involved, so a sketch graph should always
be drawn.

From the sketch we can see that the distance covered in S's is represented by
area of AOAB + area of ABDC
Therefore the distance covered in 5s is (9+4)m or 13m.

(The increase in displacement is represented by~ area of AOAB—area of ABCD)
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3) A train travelling along a straight line with constant acceleration is observed
to travel consecutive distances of 1km in times of 30s and 60s respectively.
Find the initial velocity of the train.

velocity,

time

305 — o e 605

1f we let wmetre/second be the initial velocity then, as units must be consistent,
the distance must be measured in metres.

Required:
Given: when s = 1000, ¢ = 30
when s = 2000, ¢ = 90
Using s = ut+4ar® twice, we have
1000 = 30u +450a [}
2000 = 90u + 4050z @21
Eliminating a from cquations [1] and [2] gives
200—9u = 9(100—3u)
- u =389

The initial velocity of the train is 389 ms"
Alternatively:

velocity,
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For the first 1000m  the average velocity is 2 ms™
Hence the velocity is ®2ms™ when 7=15.

For the second 1000m  the average velocity is 10 ms™!

Hence the velocity is $ms™ when 7=60.

For the interval of time from 7'=15 to T=60,

=45, u=12 wd v=9
Using o=utar gives £ =10+45
- a=-§

For the interval of time from T=0 to
Y

15, a=%
Using v=u-tar gives 9=y
- u =389

Therefore the initial velocity of the train is 38.9ms™.

4) A particle starts from a point O with an initial velocity of 2ms™! and
travels along a straight line with a constant acceleration of 2ms™2. Two
seconds later a second particle starts from rest at O and travels along the same
line with an acceleration of 6ms™?. Find how far from O the second particle
overtakes the first.

‘When the second particle overtakes the first they will both have the same
displacement from O. Let that displacement be d metre.

If the first particle takes 7 seconds to reach this point the second particle takes
(7—2) seconds to reach the same point.

velocity
(ms)

[ SRR NOS——

time (5)
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For the first particle s=d

using 5 = ut+lar® gives
d = 2T+T? n

using s = ur+Jar® gives
-2 d = 3(r-2) 21

2
T
2
For the second particle s = d
0
T
6

Eliminating d from equations [1] and [2] gives

2T+7? = 3(T-2)?

- T*~7T+6 = 0
- (T=6)(T—1) = 0
(T#1 because this is before the second particle starts)
Therefore T=6
and d =48

Therefore the second particle overtakes the first 48m from O.

5) A train takes § minutes to cover a distance of 3km between two stations

P and Q. Starting from rest at P, it accelerates at a constant rate to a speed of
40kmh~" and maintains this speed until it is brought uniformly to rest at Q.
If the train takes three times as long to decelerate s it docs to accelerate, find
the time taken by the train to accelerate.

o (ms ),

100
o

D

- T —300 47 3T ——— (5)

s the tine involved is farly small we will use seconds and, for consistency of
units, metres per second. So we convert 40kmh™! to
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Let the time taken to accelerate be 7 seconds so that the time taken to
decelerate is 3T seconds.

Then the time for which the speed is constant is (30047 seconds.

The area of trapezium ABCD represents the distance travelled by the train, so

the area of ABCD = §(300+{300—4T})(}®)

= 3000 = §(600—4T)(!2)
= 540 = 600—4T
- T=15

Therefore the time taken to accelerate is 15s.

EXERCISE 4f

1) A particle with an initial velocity of 2ms™ moves in a straight line with a
constant acceleration of 3ms? for § seconds. Find the final velocity and the
distance covered.

2) A particle is moving in a straight line with a constant acceleration of —4ms™.
If the initial velocity is 10ms™ find the increase in displacement after
@ 25 (b)4s.

3) A particle moving in a straight line with constant acceleration has a velocity
of 5ms™ at one instant and 4 seconds later it has a velocity of 15ms™.
Find the acceleration and the distance covered by the particle in the 4 seconds.

4) A particle is moving in a straight line with constant acceleration. Initially it is
at rest and after 6 seconds its velocity is 1Sms™. Find the acceleration and the
distance covered in the 6 seconds.

5) A paticle which is moving in a straight line with constant acceleration 2ms™
is initially at rest. Find the distance covered by the particle in the third second of
its motion.

6) A particle moving in a straight line with a constant acceleration —5ms™?

has an initial velocity of 15ms~". Find when the velocity is zero.
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7) A particle moving in a straight line with a constant retardation of 3ms™2
has an initial velocity of 10ms™. Find after what time it returns to its starting
point.

8) A particle which is moving in a straight line with constant acceleration covers
distances of 10m and 15m in two successive seconds. Find the acceleration.

9) A particle moving in a straight line with constant acceleration takes 3 seconds
and § seconds to cover two successive distances of 1 m. Find the acceleration.

10) A particle moving in a straight line with constant acceleration of —3ms™?
has an initial velocity of 15ms~. Find the time at which its displacement from
the starting pointis () 15m (b)) —15m.

11) A particle starts from rest at a point O on a straight line and moves along
the line with a constant acceleration of 2ms™2. Three seconds later a second
particle starts from rest at O and moves along the line with constant
acceleration 4ms~>. Find when the second particle overtakes the first particle.

12) Two particles are travelling along a straight line AB of length 20m. At

the same instant one particle starts from restat A and travels towards B with
a constant acceleration of 2ms~2 and the other particle starts from rest at B
and travels towards A with a constant acceleration of Sms~%. Find how far
from A the particles collide.

13) A particle starts from rest and moves along a straight line with a constant
acceleration until it reaches a velocity of 15ms™. It is then brought to rest
again by a constant retardation of 3ms~2 If the particle is then 60m from
its starting point, find the time for which the particle is moving.

14) A car takes 60 seconds to travel between two sets of traffic lights, starting
from rest at the first set and coming to rest again at the second set. It
accelerates uniformly toa speed of 12ms™ and then uniformly decelerates
to rest. Find the distance between the two sets of lights.

15) A train stops at two stations P and Q whichare 2km apart. It accelerates
uniformly from P at 1ms2 for 15 seconds and maintains a constant speed
for a time before decelerating uniformly to rest at Q. If the deceleration is
0.5ms"? find the time for which the train is travelling at a constant speed.
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VERTICAL MOTION UNDER GRAVITY

Before the time of Galileo it was thought that if two objects of different
‘masses were dropped the heavier object would fall faster than the light one. In
a famous series of experiments Galileo showed that this was not true. (He
allegedly dropped objects from the top of the leaning tower of Pisa and timed
their descent by the Cathedral clock opposite.)

The results that Galileo observed are that if air resistance is ignored all bodies
(whatever their mass) have the same constant acceleration towards the centre
of the earth when they are moving under the action of their weight only.

‘This acceleration is denoted by the letter g, and a good approximation to its
valueis 9.8ms™2.

When a body is thrown vertically upward, o is dropped, it moves in a vertical
straight line. The only force acting on it is its weight, causing a constant vertical
acceleration g, so the equations for motion in a straight line with constant
acceleration apply. In some problems it is convenient o take the downward
direction as positive, in which case the acceleration is +g, but in other problems
it is convenient to take the upward direction as positive, in which case the
acceleration is —g.

EXAMPLES 4g

1) A stone is thrown vertically upward from the top of a tower and hits the
ground 10scconds later with a speed of $1ms™. Find the height of the
tower.

‘Taking the downward direction as positive

we have,
given: v =5l
s a=98
=10
required: 5

Simst

Using s = vr—Jar® gives

= 510—(50%9.8)

= s=2

Therefore the tower is 20m high.
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2) Aball is thrown vertically upward from a point 0.5m above ground level
with a speed of 7ms™. Find the height above this point reached by the ball
and the speed with which it hits the ground.

fc0mmmepmWaae o

osm

T |

‘This time we will take the upward direction as positive. The velocity of the ball
is zero when it reaches its greatest height above its initial position. So we have,

jven: =1
given: “ Using ©* = u?+2as gives
2=0
0 = 491965
a=-98
=  s=25
required: s

Therefore the stone reaches a height of 2.5 m above its initial position.

‘When the stone hits the ground it is 0.5m below its initial position.

Given w=1
s =-05 Using v? = u?+ 25 gives
a=-98 v? = 49+98

Required: v - v = £7.66

When the stone reaches the ground it is travelling downwards, so
but the speed is the magnitude of the velocity,
therefore the stone hits the ground with a speed of 7.66ms™.
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3) A ball is thrown vertically upward with a speed of 14ms™, Two seconds
Iater a second ball is dropped from the same point. Find where the two balls
meet.

‘The balls will meet when they have the same displacement (d metre) from the
starting point.

If the time taken by the first ball to achieve this displacement is T second, the
time taken by the second ball is (7'—2) second.

Taking the upward direction as positive, we have,

for the first ball: u=14
a=-98| Using s =ur+lar
t=T = d = 14T—49T [
s=d

for the second ball: ~ u = 0
a=-98 Using s = ut+ar®
t=1-2| = d = —49(T—2) 21
s=d

Eliminating d from equations (1] and [2] gives
27077 = —0.(T—2)

= T =235

which gives d=-110

Therefore the balls meet 11.0m below their initial position.

EXERCISE 4g
1) A stone is dropped from a cliff 100m above the sea. Find the speed with
which it hits the sea.

2) A stone is thrown vertically upward with a speed of 10ms™. Find the
greatest height reached by the stone.

3) Aball is thrown vertically upward to a height of 10m. Find the time taken
to reach this height and the initial speed of the ball.

4) A particle is projected vertically upward from ground level with a speed of
20ms™. Find the time for which the particle is in the air.

5) A stone is thrown vertically upward with a speed of 7ms™ from the top of
a cliff whichis 70m above sea level. Find the time at which the stone hits the
sea.
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6) A stone is projected vertically upward with a speed of 21 ms™.. Find the
distance travelled by the stone in the first 3 seconds of its motion.

7) A ball is thrown vertically upward with a speed of 15ms™" from a point
whichis 0.7m above ground level. Find the speed with which the ball hits the
ground.

8) A particle is projected vertically upward from ground level with a speed of
50ms™. For how long will it be more than 70m above the ground?

9) A falling stone takes 0.2 seconds to fall past a window whichiis 1 m high.
From how far above the top of the window was the stone dropped?

10) A stone is projected vertically upward with a speed of 7ms™ and one
second later a second stone is projected vertically upward from the same
point with the same speed. Find where the two stones meet.

11) A stone is dropped from the top of a building and at the same time a
second stone is thrown vertically upward from the bottom of the building with
aspeed of 20ms. They pass each other 3 seconds later. Find the height of
the building.

INTRODUCTION TO MOTION IN A PLANE

Consider a particle P moving along a curve; the curve is called the path of

the particle.

If the particle is at a point with coordinates (x, ) at time 1, its displacement
from O is OP or 1.

x in the direction of Ox

OF hus components  in the direction of Oy

So we can say

£=xityj
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&
The velocity component in the direction Ox is i (denoted by ¥) and

4
the velocity component in the direction Oy is d—ii or y.

So,if v is the velocity of the particle at time 7 we can say

v Xi+yj
- dt
nde

Further, the components of the acceleration, a, of the particle at time ¢ are
A 8
%) (denoted by ¥) in the direction Ox and %(:’—) or ¥, in the

direction Oy, so that

Xi+jij

Note that, if 0 is the angle between the direction of v and the x axis, then
y_dy fdx _dy "

tang =2 = L[ tat P

an il n = gradient of tangent a

Therefore the direction of v is the direction of the tangent at P 1o the path of
the particle. This is the direction of motion of the particie.
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EXAMPLE 4h

A particle moves in the xy plane such that, at time 1, its displacement from a
fixed point O isgivenby r=2ri+ 7. Show that its acceleration a is
always 2j and find its direction of motion when 1= 1.

I or= the velocity v is given by
v= d— 2+
dv
=Sy
Then a=g =3

This does not depend on the value of ¢ so the acceleration is always 2j.

From v we see that, when

L =2 and =
The angle between the dircction of motion and the x axis i therefore
arctan}, ie. 45°

EXERCISE 4h

In Questions 1-4 find v and a (a) attime 7 (b)when ¢
Find also the direction of motion when 7= 1.

1) r=2i+

2) r=3i—r%
3) 1=+ i+ (1-A)
4) r=ri-rj

5) A particle moves in the xy plane so that, at time 7, its displacement from a
fixed point O is given by r=dri+(3r—5%)j. Find its velocity vector at
time ¢ and hence find the velocity components when 7=0. Show that the
acceleration is constant.

Do you notice anything significant about this acceleration?

ANGULAR VELOCITY

Consider a particle P which is moving round the circumference of a circle.
It can rotate about O in only two senses, clockwise or anticlockwise. Positive
and negative signs are used to differentiate between these two senses and it is
customary to take the anticlockwise sense as positive.
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If, initially, the particle isat Q and after an interval of time itisat R, thenif
angle QOR is 0.

the angular velocity of 2 is defined as the rate of increase of 6.

Angular velocity is usually denoted by <.
If 0 is increasing at a constant rate then the angular velocity ¢ is uniform.

Angles are measured in radians so the unit of angular velocity is the radian per
second (rads™).
EXAMPLE 4i
The hour and minute hands of a clock coincide at exactly 12.00 hours. Find
when they next coincide.
‘The hour hand rotates through
12.00hr 1 revolution in 12 hours,
ie. 2 rad in 12 hours,
So the angular velocity of the
\ hour hand is 3 rad/min.
P (This is a more convenient unit
than the rads™" in this problem.)
‘The minute hand rotates at the
steady rate of 2 rad per hour.
Therefore the angular velocity of
the minute hand is g rad/min.

If they next coincide after ¢ minutes when they make an angle 0 radians with
their initial position, then the hour hand will have turned through an angle of
6 radians and the minute hand through an angle of (2n+6) radians.

For the hour hand n

For the minute hand (=04 21
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[1] and 2] give 5"5' = ému
- 12t = 14720
- = 6545

Therefore the hands next coincide 65.5 minutes after 12.00 hours
ie.at 13.05 hours.

ionship Between Angular Velocity and Linear Velocity

[~

Consider a point P which is rotating in a circle of radius r with a constant
angular velocity w. Its direction of motion at any instant is tangential,
as we saw on p. 135,

If P tums through an angle 0 from its initial position Q in a time ¢ then
0= wt 0

The length of the arc PQ is 78, where 0 is measured in radians, and this is the
distance covered by P in this time.

Therefore the speed of P is 5’9 8]

Substituting for 0 from equation [1] shows that the speed of P is rco,
therefore

the linear velocity is re in the direction of the tangent to the circle

Thus a point which is rotating in a circle of radius 2m  with an angular velocity
of 4rads™ has aspeed of $ms™.
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EXERCISE 4i

1) Find the angular velocity, in rads™, of a record which is rotating at a rate
of:

(a) 33 revolutions per minute,

(b) 45 revolutions per minute.

2) Find the angular velocity, in rads™, of the second hand of a clock.

3) A wheel of radius 2m is rotating at the constant rate of 20rads™. Find
the speed of a point on its circumference in ms”

4) Find the speed,in kmh™, of a point on the equator of the earth, assuming
it to be a circle of radius 6400km.

5) The minute and hour hand of a clock coincide exactly at 12 o'clock. Fing the
time between 3 o’clock and 4 o'clock when they coincide.

Constant Angular Acceleration

Angular sceeleration is defined as the rate of increase of angular velocity.

‘The unit of angular acceleration is the radian per second per second (rad s™
When the angular velocity increases at a steady rate the angular acceleration is
constant. In this case if angular velocity is plotted against time the graph is a
straight line.

Consider a particle describing a circle with constant angular acceleration a.

angular velocity,

o D

b ¢

I, initially, the particle is at Q with an angular velocity © and, after an
interval of time ¢, itisat P with angular velocity e then

the increase in angular velocity is w—S

-e
So the rate of increase of angular velocity is ‘“’T
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w—N

ie. a= = w=Qta 0]

As the angular acceleration is constant the average angular velocity for this
interval of time is  3(Q2+w).

So,if 6 is the angle tumed through by the particle in time 1,

0 = JQ+w)r 2]
Eliminating w from [1] and [2] gives 0 = Qr+lar? B
Eliminating € from [1] and [2] gives 0 = wr—lar? 4]
Eliminating ¢ from [1] and [2] gives W= Q1+ 200 [s]

These five equations are the equations for circular motion with constant angular
acceleration and can be quoted in any problem involving circular motion with
constant acceleration.

(Note the similarity to the equations for motion in a straight line with constant
acceleration. This should be a help in recalling them.)

EXAMPLE 4j

A wheel rotates with constant angular acceleration and, starting from rest, it is
abserved to make 5 complete revolutions in 3 seconds. What is the angular
velocity in radians per second at the end of the 3 seconds?

The wheel makes 3 revolutions in 3 seconds, so it turns through an angle of
107 radians in this time.

Given: 6= 107
t=3 Using 0 = YQ+w) gives
Q=0 107 = jwx3

Required w - E2

Therefore the angular velocity of the wheelis 7 rads

EXERCISE 4j

1) A wheel rotates with a constant angular acceleration of 3rads~2. If it starts
from rest find its angular velocity 2 seconds later.

2) A particle describes a circle with constant angular acceleration. It makes one
complete revolution in 2 seconds starting from rest. What is its angular
acceleration?
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3) The angular velocity of a rotating wheel changes from 2rads™ to 4rads™
in 5 seconds. Assuming that the angular acceleration is constant find the angle
the wheel turns through in this time and the angular acceleration.

4) A flywheel rotates with constant angular acceleration. If its angular velocity
changes from 10 revolutions per second to 4 revolutions per second in one
revolution of the flywheel find the angular acceleration.

5) A wheel makes 4 complete revolutions in 3 seconds. If at the end of the

3 seconds it has an angular velocity of m rads™, find its angular acceleration
assuming this to be constant.

6) A particle starting from rest moves in a circle with a constant angular
acceleration of §rads~. Find the angle it turns through in the third second
of its motion.

SUMMARY

Velocity is the rate of increase of linear displacement.
Acceleration is the rate of increase of velocity.

Angular velocity is the rate of increase of angular displacement.
Angular acceleration is the rate of increase of angular velocity.

Equations of Motion with Constant Acceleration

Motion in a straight line: ~ = u+ar
Ju+or
s = ut+dar®
s = w—la*
v? = ul+2as
Circular motion: w=Q+at
0= Jw+ay
0 = Qu+jar®
0 = wt—lar®
o = QP+ 200,
. dr
General motion: V=
dr
dv
a=
dr

I the velocity is constant and the particle passes through p when =0,

r=ptwv
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MULTIPLE CHOICE EXERCISE 4
(The instructions for answering these questions are given on page x.)

TYPE |
n

displacement (m),

20

time (5)

The diagram shows the displacement-time graph for a particle moving in a
straight line. The average velocity for the interval from 1=0 to =5
@0 (b)) 6mst  (-2ms?  (@2ms? (&) —4ms”

displacement (m)

10

5 time(s)

‘The diagram shows the displacement-time graph for a particle moving in a
straight line. The distance covered by the particle in the interval from 7 =0
to 1=5 is:

(@ 20m (b)) 25m () 15m  (d) Sm  (c) 10m
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time

‘The diagram shows the velocity~time graph for a particle moving in a straight

line. The sum of the two shaded areas represents:

(a) the increase in displacement of the particle,

(b) the average velocity of the particle,

(¢) the average acceleration of the particle,

(d) the distance moved by the particle,

(e) the average speed of the particle.

4) A particle moving in a straight line with a constant acceleration of 3ms™?

has an initial velocity of —1ms™. Its velocity 2 seconds later is:

@5ms?  ()6ms?  ()4msT ()0 () ~Tms

5) A particle moves in a straight line and passes through O, a fixed point on

the line, with a velocity of 6ms™. The particle moves with a constant

retardation of 2ms~ for 4 seconds and thereafter moves with constant
ocity.

How long after leaving O does the particle return to 07

@3s  (b)8s () mever () 4s  (e) 6s.

TYPE Il

6) When a number of particles, all of different weights, are dropped, the
acceleration of each particle:

(a) is constant but different for each particle, depending on its weight,
(b) is constant and the same for each particle,

() increases as the particle falls.

7) If a particle is moving in a straight line with constant acceleration and a
velocity~time graph is drawn for the motion, the gradient of the graph
represents:

(a) the acceleration,

(b) the rate of increase of velocity,

(c) the rate of decrease of velocity.
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8) A particle is rotating in a circle with constant angular acceleration. With the
usual notation, the speed of the particle at any time ¢ is:
(@) r(Q+ar),

o
(b) e
() re.

9) A particle passes through a point with position vector i+j when =0
and moves with velocity 3i—j

(a) its position vector at time  is  3i—j+ 1(i+j),

(b) its speed is constant,

() it s accelerating.

TYPE I

10) (a) A particle is moving in a straight line with constant acceleration.

(b) The average velocity of a particle moving in a straight line is the
average of the initial and final velocities.

11) (a) A particle is movingin a straight line with a constant acceleration of
2ms2

(b) A particle moving in a straight line with a constant acceleration has
avelocity of 2ms™ at one instant and a velocity of 8ms™ three
seconds later.

12) Using the standard notation for a particle moving in a straight line with
constant acceleration:

(2) The particle covers a distance s in time ¢ where s =ut+}ar®.

() u>0 and 2<0.

TYPEIV
13) A particle is moving in a straight line. Find when the particle returns to its
initial position.

(a) The particle is thrown vertically upwards.

(b) The initial velocity of the particle is 10ms™2.

(c) The weight of the particle is 20N.

14) A particle is moving in a circle. Find the speed of the particle when it returns
o its nitial position.

(2) The acceleration is constant and equal to a.

(b) The initial angular velocity is 2.

() The radius of the circle is r.
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15) Two particles A and B are moving along a straight line and initially B is
behind A. Determine whether B overtakes A

(a) B moves with a constant velocity of 6ms™".

(b) B is 4m behind A initially.

(c) A moves with a constant acceleration of 3ms™,

16)

ety
‘The diagram shows a sketch of a
velocity-time graph for a particle
moving in a straight line. Find the
value of 7.

° T time

(a) The distance covered is 100m.

(b) The maximum velocity reached is 10ms™ and is maintained for five

seconds.

(¢) The acceleration is twice the retardation.

TYPEV
17) Velocity is the rate of increase of distance.

18) A particle moving in a straight line with a constant acceleration of
—2ms~? hasa velocity of 3ms™ at one instant and a velocity of —3ms™
three seconds later.

19) A particle moving under the action of its weight only has a constant
acceleration g vertically downwards.

20) A particle is moving with constant acceleration in a straight line. At one
instant it has a velocity u and 1 seconds later it has a velocity .
Its acceleration is  (u—v)/r.

21) A particle is moving in the positive sense on the circumference of a circle
of radius 2m. The particle has a constant angular acceleration of 3rads™2 At
one instant the speed of the particle is 2ms™ and one second later it is 8 ms™.

22) A particle is moving in a straight line. A displacement-time graph is drawn
for its motion. The gradient of the tangent to the graph at time T  represents
the velocity of the particle at time 7.

23) A car travels from A to B ataconstant speed of 30kmh~! and returns
to A immediately at a constant speed of 40kmh~'. The average speed for the
journey is 35kmh™'.

24) Ifa particle moving in a straight line has a negative acceleration then this
always means that the speed is decreasing.
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MISCELLANEOUS EXERCISE 4

1) A stone is dropped from the top of a building 20m high. A second stone is
dropped from half-way up the same building. Find the time that should clapse
between the release of the two stones if they are to reach the ground at the same
time.

2) A particle is describing a circle of radius 4m with a constant angular
acceleration. At one instant it has a speed of 2ms™ and 4 seconds later it has
aspeed of 10ms™. Find its angular acceleration and the distance it has
travelled in this time.

3) A particle is describing a vertical circle of radius 2m with a constant angular
acceleration of Frads™2. If itis initially at rest at the lowest point of the circle
find its speed 2 seconds later and its displacement from its original position.

4) A toy train is moving along a straight length of track. It accelerates uniformly
from rest to a velocity of 0.5ms™ and maintains this velocity for a time before
decelerating uniformly to rest again. If the time taken for this journey is

2 seconds and it moves a distance of 0.8m along the track, find the time for
which the speed of the train is uniform.

5) A car has a maximum acceleration of 6ms™ and a maximum deceleration
of 8ms2. Find the least time in which it can cover a distance of 0.2km
starting from rest and stopping again. What is the maximum speed reached by
the car in this time?

6) A particle moving in a straight line covers distances of 90m and 240m in
successive times of 2 seconds and 4 seconds. Show that the particle has a
constant acceleration and find it.

7) A particle P moves along the x axis and a particle Q moves along the
yaxis. P starts from rest at the origin and moves with a constant acceleration
of 2ms™2 At the same time Q is at the point (0,3) with a velocity of
2ms™ and is moving with a constant acceleration of —3ms2. Find the
distance between P and Q 4 seconds later.

8) Aparticle P starts from rest from a point A and moves along a straight line
with constant acceleration 2ms™. At the same time a second particle Q is
Sm behind A and is moving in the same direction as P with a speed of
Sms™. If Q hasa constant acceleration of 3ms™ find how far from A it
overtakes P.

9) Aparticle P which is moving along a straight line with a constant
acceleration of 0.3ms™ passesa point A on the line with a velocity of
20ms™". At the time when P passes A a second particle Q is 20m behind
A and is moving with a constant velocity of 30ms™. Prove that the particles
collide.
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10) A bus moves away from rest at a bus stop with an acceleration of 1ms™
As the bus starts to move a man who is 4m behind the stop runs with a constant
speed after the bus. If he just manages to catch the bus find his speed.

11) A particle moves so that its position vector after ¢ seconds is given by
@Br=20i-2j

Find the acceleration of the particle when =2,

12) A model aeroplane is constrained to fly in a circle by a guide line which is
3m long. It accelerates from a speed of 2ms™ with a constant angular
acceleration of 5 rads~ for 2§ revolutions. The guide line then breaks. Find
the speed of the ae(oplane when the guide line breaks.

13) A stone is thrown vertically upward with a speed of u metres per second.
A second stone is thrown vertically upward from the same point with the same
initial speed but 7 seconds later than the first one. Prove that they collide at a
i —
distance of Tg) metres above the point of projection.
3

14) A stone is dropped from the top of a tower. In the last second of its motion
it falls through a distance which is a fifth of the height of the tower, Find the
height of the tower.

15) A particle moving in a straight line OD with uniform retardation leaves
point O at time =0, and comes to instantaneous rest at D. On its way to
D the particle passes points A,B,C at times =T,2T, 4T, respectively
after leaving O, where  AB=BC=/. Find, in terms of /, (a) the length of
(IMB)

CD and (b) the length of OA.

16) Three points A, B,C on a motor racing track are such that B is 1km
beyond A and C is 2km beyond B. A car X, moving with uniform
acceleration takes 1 minute to travel from A to B and 1} minutes to travel
from B to C. Find its acceleration in km/h/min and show that its speed at

C is 92km/h. Another car Y, which is moving with uniform acceleration of
8km/h/min. passes C 15 seconds earlier than X, and its speed is then
75km/h. Find where X passes Y. ©

17) Inamotor race,a car A is 1km from the finishing post, and s travelling
at 35ms™ with a uniform acceleration of Fms™2. At the same instant a
second car B is 200m behind A and is travelling at 44ms™' with a uniform
acceleration of ms~2. Show that B passes A 220m before the finish.
Show also that, if these accelerations are maintained, B arrives at the finishing
post I second before A. (©
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18) A flywheel is brought to rest by a constant retarding torque. From the
instant this torque is applied, the flywheel is observed to make 200 revolutions
in the first minute and 120 revolutions in the next minute. Calculate how many
more revolutions the wheel makes before coming to rest and the time taken to
stop the wheel. (AEB)

19) A flywheel starts from rest and is uniformly accelerated to an angular

speed of 120 revolutions per minute. It maintains this speed until it is uniformly
retarded to rest again. The magnitude of the retardation is three times the value
of the starting acceleration. Between starting and coming to rest again the
flywheel completes A revolutions in five minutes.

Sketch the angular speed-time graph and hence find, in terms of N, the time

for which the flywheel is travelling at the maximum speed.

Show that 300 <N < 600.

If N'=480, find the starting acceleration and the number of revolutions
completed in the first two minutes. (AEB)

20) Two trains, P and Q, travel by the same route from rest at station A

10 rest at station B. Train P has constant acceleration f for the first third of
the time, constant speed for the second third and constant retardation f for

the last third of the time. Train Q has constant acceleration f for the first

third of the distance, constant speed for the second third and constant retardatiox
J for the last third of the distance. Show that the times taken by the two trains
arein the ratio  3v/3:5. (UofL)

21) The brakes of a train, which is travellingat 30ms™, are applied as the
train passes point A. The brakes produce a constant retardation of magnitude
3Ams™? until the speed of the train is reduced to 10ms™. The train travels
at this speed for a distance and is then uniformly accelerated at Ams~? until it
again reaches a speed of 30ms™ as it passes point B. The time taken by the
train in travelling from A to B, a distance of 4km, is 4 minutes. Sketch the
speed-time graph for this motion and hence calculate

(a) the value of A,

(b) the distance travelled at 10ms~.

22) A particle is uniformly accelerated from A to B, a distance of 192m,
and is then uniformly retarded from B to C, a distance of 60m. The speeds
of the particle at A and B are 4m/s and ¥'m/s respectively and the particle
comes to rest at C. Express, in terms of ¥ only, the times taken by the
particle to move from A to B and from B to C.

Given that the total time taken by the particle to move from A to C is

22 seconds, find:

(a) the value of ¥,

(b) the acceleration and the retardation of the particle.



CHAPTER 5

NEWTON'S LAWS OF MOTION

The study of mechanics is based on three laws which were first formulated by
Newton:

1. Every body will remain at rest or continue to move with uniform velocity
unless an external force is applied 10 it.

2. When an external force is applied to a body of constant mass the force
produces an acceleration which is directly proportional to the force.

3. Whena body A exertsa force ona body B, B exerts an equal and opposite
force on A.

NEWTON'S FIRST LAW

‘This law in effect defines force: it states that if a body is travelling with
uniform velocity there is no extemal force acting on the body; conversely if
there is an external force acting on the body its velocity changes: i.e. force is
the quantity which, when acting on a body, changes the velocity of that body.
There is often more than one external force acting on a body so, to cause the
body to accelerate, there must be a resultant force acting on it. Conversely there
will be no acceleration if the resultant force acting on the body is zero.
Summing up:

121 body s an decRlération iéreis 4 resultant force:4éiig on a(H6AY:
2. 14 body has o acceleration the forces acting on the body are in equilibrium

1f a body has zero acceleration it can cither be at rest or moving with uniform
velocity. This should dispel the notion that because a body is moving with
uniform velocity there s a force responsible for the maintenance of that
velocity: there is not.

149
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EXAMPLE 5a

1) The diagram shows the forces that are acting on a particle. Has the particle
an acceleration?

4NV 7 4N

%g + 4c0s30°—4c0s30° = 0

1 4sin30°+4sin30°—6 = —2

v
6N

We see that there is a resultant force acting on the particle.
Therefore it has an acceleration.

2) A particle of weight 4N is attached to the end of a vertical string. If the
particle is moving upwards with a uniform velocity find the tension in the string.

As the particle is moving with uniform
T velocity the forces acting on it are in
equilibrium.

t T-4=0
- T=4

Therefore the tension is 4 N.

EXERCISE 52

The diagram shows the forces acting on a particle. In Questions 1-4 determine
whether or not the particle has an acceleration.

o Vk
1) P=Q=R=6, 6 =120°
2) P=Q=R=4, 6 = 150°
3) P=8,0=R=4, 0 =120°
4) P=Q=3,R=4, 6 = 135°
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5) The diagram shows the forces acting on a particle:

T

ongt B Find R and 0 if the particle is moving
with uniform velocity.

NEWTON’S SECOND LAW

This law gives the relationship between force, mass and acceleration. It
states that when a force is applied to a body causing it to accelerate, the
is directly ional to the force. Experi evidence also
shows that the acceleration is inversely proportional to the mass of the body so,
if the force is £ the mass is m and the acceleration is a,

F
ae ~ o Fam
m

a constant of tion, k, this ionship becomes
F = kma
Nowif m=1 and g=1 then F=k so theamount of force needed
togive 1kg an acceleration of 1ms™ isequal to k.

and

If we choose this amount of force to be the unit of force, then &
the relationship above takes the simple form

F = ma

A gives 3 rass of 1kg an

Theiunitof fireeis oy detined as that force wh
acceletation of | ms~ This nnit of force is called a fiewon (N).

The equation £ =ma s the basic equation of motion and it is of fundamental
importance to the study of the motion of a body with constant mass. It should
be noted that, as force and acceleration are both vector quantities, the equation
F=ma isa vector cquation: therefore as well as the magnitudes of both sides
being equal, force and acceleration have the same direction. If the force is
constant the acceleration will also be constant and, conversely, if the force

varies so does the acceleration. There is often more than one force acting on a
body and in this case F represents the resultant force acting on the body.
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Summing up:
1. The resultant force acting on a body of constant mass is equal o the mass of
the body multiplied by its acceleration:
F(newton) = m(kilogram) x a(metre/second®)

2. The resultant force acting on a body and the acceleration of the body are both
in the same direction.

3. A constant force acting on a constant mass produces a constant acceleration,

Weight and Mass

Consider a body of mass m which is falling under the action of its weight
only. It has an acceleration gms downwards.

Weight Acceleration of gms ™
Using F=ma gives

weight = mgnewton
d.e.a body of mass m kilogram has a weight of mg’ newton

(It s interesting to note than an average sized apple has a mass of about 0.1 kg,
so it has a weight of about 1 N!)

Problem Solving

When using Newton’s Laws to solve a problem it is helpful to draw a diagram
showing the forces that are acting on the body under consideration, and the
acceleration of the body. It must also be remembered that:

(a) the resultant force and the acceleration are both in the same direction,
(b) if there is no acceleration the forces are in equilibrium.

In problems which involve a large body (as opposed to a particle) the body is,
at present, treated as a particle of equal mass.
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EXAMPLES 5b

1) A particle of mass 5kg slides down a smooth plane inclined at 30° to the
horizontal. Find the acceleration of the particle and the reaction between the
particle and the plane.

B

B3
30° 30°

Forces Acceleration

As the acceleration is down the plane, the resultant force is also down the
plane. (it is the resultant force that causes the acceleration.)

The resultant force down the plane is ~ Sgsin 30°

Using F=ma gives Sgsin30° = Sz

- a=1g

Therefore the acceleration of the particle is 4gms™ down the planc.

There is no component of acceleration perpendicular to the plane, so there is
no component of force perpendicular to the planc.

Resolving perpendicular to the plane gives,
R—Sgcos30° = 0
V3
2

= R =

gv/3
Therefore the reaction between the particle and the plane is N.

2) Ablock of mass 2kg rests on the floor of a lift which has an acceleration of
Sms™ upwards. Find the reaction between the block and the lift.

r Sms
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The resultant upward force on the block is R —2g

Using F=ma gives R=2g = 2x5
Hence R =10+
- R =296

Therefore, the reaction between the block and the liftis 29.6N.

3) A particle of mass kg is pulled along a rough horizontal surface by a string
which is inclined at 60° to the horizontal. If the acceleration of the particle is
1gms~ and the coefficient of friction between the particle and the plane is 3,
find the tension in the string.

tgms~?

s¢
As there is no vertical component of acceleration, the vertical component of
the resultant force is zero.
Resolving vertically gives
R+Tsin60°=5g = 0 0]
The friction is limiting, so
F=3R 21
The resultant horizontal force to the leftis T cos 60°—F
Using F=ma gives
Teos60°—F = §¢ 3]
Eliminating 7 and R from equations [1], [2] and [3] gives,
Tcos60°— 3(5g—T'sin 60°) = §¢
= T = 10832 —V3).

4) Acar of mass 1000kg is brought to rest from a speed of 40ms™ ina
distance of 80 m. Find the braking force of the car assuming that it is constant
and that there is a constant resistance to motion of 100N.
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As the braking force is constant the acceleration of the car is constant, Taking
the direction of motion as positive we have
u=40, v=0, 5s=80
w*+2as gives 0 = 1600+ 160

Using 2/

b a=-10

Therefore the car has an acceleration of —10ms’

N

10m
L Direction
of mation

1000g N
In the diagram F is the braking force and R is the resistance.
So the resultant horizontal force is  F+R.
Using Newton’s Law gives ~ F+R = 1000x 10
But R=100 so F = 10000—-100

= 9900
Therefore the braking force of the caris 9900N.

EXERCISE 56

1) A particle of mass 2kg has an acceleration of §ms™

of the resultant force acting on the particle

. Find the magnitude

2) A particle has a resultant force of magnitude 8N acting on it. If the mass
of the particle is 3 kg, find the magnitude of its acceleration.

3) A particle of mass § kg is pulled along a smooth horizontal surface by a
horizontal string. If the acceleration of the patticle is 3ms~ find the tension in
the string.

4) A particle of mass 10kg is pulled up a smooth slope inclined at 60° to the
horizontal by a string parallel to the slope. If the acceleration of the particle is
£ms™ find the tension in the string.

5) A particle of mass 8 kg is pulled along a smooth horizontal surface by a
string inclined at 30° 1o the horizontal. If the tension in the string is 10N
find the acceleration of the particle.
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6) A particle of mass 4kg is pulled along a rough horizontal surface by a
string paralle] to the surface. If the tension in the string is 20N and the
coefficient of friction between the particle and the plane is § find the
acceleration of the particle.

7) A particle of mass 8 kg slides down a rough plane which is inclined at
arcsin ! to the horizontal. If the acceleration of the particle is & find the
coefficient of friction between the particle and the plane.

8) Ablock of mass 15kg rests on the floor of alift. Find the reaction
between the block and the floor of the lift if the lift is accelerating down at
4ms,

9) A block of mass 12kg rests on the floor of a lft. If the reaction between
the block and the lift floor is 20N find the acceleration of the lift.

10) A bullet of mass 0.02kg is fired into a wall with a velocity of 400ms™.
If the bullet penetrates the wall to a depth of 0.1m find the resistance of the
wall assuming it to be uniform.

11) Alift of mass 500kg is drawn up by a cable. It makes an ascent in three
stages: it is brought from rest to its maximum speed by a constant acceleration
of $g. it then moves with its maximum speed for an interval of time and is
then brought to rest by a deceleration of g. Find the tension in the cable in
each of the three stages.

12) A car of mass 300kg is brought to rest in a time of 4 seconds from a
speed of 20ms™. If there is no resistance to motion find the force exerted by
the brakes assuming it to be constant.

13) A car of mass 500kg is capable of braking with a deceleration of §. If
the resistance to motion is constant and equal to SON find the braking force
assuming this to be constant.

14) The diagram shows the forces that are acting on a wedge which is in contact
with a rough horizontal table.

& N
A N

W

If the mass of the wedge is 10kg, R = 6¢ and the coefficient of friction
between the wedge and the table is 3 find the acceleration of the wedge.
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NEWTON'S THIRD LAW

‘This states that action and reaction are equal and opposite:

-

ie.ifabody A exertsaforce onabody B then B exerts an equal and
opposite force on A. This is true whether A and B are in contact with each
other or if they are some distance apart; it is also true whether A and B are
‘moving or are stationary. However, we are mainly concerned with the forces
between two bodies which are in contact and the statements in Chapter 3 on
contact and internal forces are based on this law. A rigid body may be considered
as a collection of particles that are held together by forces of attraction between
the particles. Newton's Third Law states that these forces occur in equal and
opposite pairs; thus their net effect on the whole body is zero. This justifies the
fact that only the external forces acting on a body are considered.

Note. Most of us have an intuitive idea of what a force is and the effect that it
produces but it required Newton’s genius to express these ideas in such basically
simple terms. Under normal conditions the results that are obtained from the
use of Newton's Laws agree very closely indeed with observed results and this

is justification enough for their use. Although it is now known that they do not
represent the whole truth, significant errors arising from their use cannot be
found unless conditions are extreme (very high temperatures, very small masses
such as atomic particles, etc.).

MOTION OF CONNECTED PARTICLES

Consider two particles, of unequal mass, connected by a light string passing
over a fixed pulley as shown in the diagram.
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If the pulley is smooth the tension in the string is the same throughout its
length.

If the pulley is rough the tensions in the portions of the string on either side of
the pulley are different.

If the string is inelastic (i.e. its length does not alter under tension) the
acceleration of the particles attached to it have the same magnitude. Also, at a
given instant of time, the particles have equal speeds and have covered equal
distances.

To analyse the motion of the system the forces acting on each particle must be
considered separately and the equation F=ma applied to cach particle in
tum.

EXAMPLES 5¢

1) Two particles of mass Skg and 3 kg are connected by a light inelastic
string passing over a smooth fixed pulley. Find the accelerations of the particles
and the tension in the string when the system is moving freely.

B

For the 3kg mass the resultant upward forceis ~ T—3g

Applying F=ma to the 3kg mass gives T-3%=3 0]
For the §kg mass the resultant downward force s Sg—7"

Applying F=ma tothe Skg mass gives Sg—T=5z 2l
m+er = 2 = 8a

- a

Then, from [1], T=3g+3%
‘Therefore the acceleration of the system is jgms

and the tension in the string is §gN.
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2) A particle of mass 2kg rests on the surface of a rough plane which is
inclined at 30° to the horizontal. It is connected by a light inelastic string
passing over a light smooth pulley at the top of the plane, to a particle of mass
3kg which is hanging freely. If the coefficient of friction between the 2kg
‘mass and the plane is } find the acceleration of the system when it s released
from rest and find the tension in the string. Find also the force exerted by the
string on the pulley.

Consider the 2kg mass.
There is no component of acceleration perpendicular to the plane.

Therefore resolving perpendicular to the plane gives
N—2gc0s30° = 0 = N = g\/3

There is an acceleration @ up the plane.
The resultant force parallel to the planeis 7'~ {V—2gsin 30°

Soapplying F=ma gives

T—iN—2gsin30° = 2
- T—ie(W/3+3) = 2% 4]
For the 3kg mass the resultant force is 3g—T  vertically downwards.

Soapplying F=ma gives %-T =3a )
Adding [1] and [2) = 3g—ie(/3+3) = 5z

Hence a = £6—V3e

and, from [2], T = 19+

Therefore the acceleration of the system is §(6—+/3)gms™2 and the tension
in the stringis  §(9+v/3)gN.
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‘The forces acting on the pulley are
T acting down the plane and T
acting vertically downward.

% These two forces are equal so their

resultant, R, bisects the angle
between them, so

R acts at an angle of 30° to the
> $r vertical.

Resolving in the direction of R gives 27T cos30° = R
= R =TV3=3G3V3+1)g

S0 the force acting on the pulley is  3(3v/3+ 1)gN  actingat 30° to the
vertical.

3)

The diagram shows a particle of mass 8kg connected to a light scale pan by
a light inextensible string which passes over a smooth fixed pulley. The scale
pan holds two blocks A and B of masses 3kg and 4kg respectively,
with B resting on top of A. Find the acceleration of the system and the
teaction between A and B.
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7
‘The reaction forces between A and B and between A and the scale pan are
internal forces when considering the scale pan and its contents as one unit.
For the scale pan and its contents the resultant force upwardsis  T—7g
F=ma = T-Tg=1Ta n
For the 8kg mass the resultant force downwardsis 8g— 7'
F=mi = 8-T =8 )}

%8

To find the reaction between A and B, let us consider the forces that act on B.

From [1] and [2] we get

‘The upward acceleration of B is
fgms? and the upward resultant
forceis R—4g

F=ma = R—4g =

Y

- R=

SR e
%

Therefore the reaction between A and B is $gN.

4) Two particles of masses Skg and 8kg are connected by a light inelastic
string passing over a fixed pulley. The system is released from rest with both
portions of the string vertical and both particles at a height of 3m above the
ground. In the subsequent motion the 8 kg mass hits the ground and does not
rebound. Find the greatest height reached by the S kg mass if the pulley is of
such height that the mass never reaches the pulley.
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Before the 8kg mass reaches the ground the two particles are moving as a
connected system, but when the 8 kg mass hits the ground there is a sudden

change in the conditions of the system. After the 8kg mass has hit the ground
the S kg mass is moving on its own with the string slack. These two conditions

must be considered separately.

2 _ ., tnidal
, ’ position
sm

After that the string goes slack and

the Skg mass moves under the action

of its weight alone, so it has a

downward acceleration of g. When it

reaches its highest position its velocity

is zero so we have

v=0, u=Vi8/3, a=

Using v*=1u?+2as
0= fe—2gs

- s=5

iethe Skg mass rises a distance 35 m

after the 8 kg mass hits the ground.

gives

Therefore it reaches a height of 6 m
above the ground.

Using F=ma we have,

for Skg mass: 1 T—5g
for 8kg mass: | 8g—T = 8a

- a = 3g/13
As the 8kg mass moves 3m down
the 5kg mass moves the same
distance up.

Therefore considering the motion of
the Skg mass we have:

a=3/13, u=0, s=3
Using o*=u?+2as gives
v? = 18¢/13
So the 5 kg mass has an upward
velocity of +/18g/13ms™ at the

instant when the 8kg mass hits the
ground.

Position of 5 kg

8 kg mass hie the
ground
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EXERCISE 5¢

1) Two particles of mass Skg and 10kg are connected by a light inextensible
string which passes over a smooth fixed pulley. Find the acceleration of the
system and the tension in the string.

2) Two particles of mass 9kg and 10kg are connected by a light inelastic
string which passes over a smooth fixed pulley. Find the acceleration of the
system and the tension in the string.

3) Two particles of mass m_and M are connected by a light inelastic string
which passes over a smooth fixed pulley. Find the acceleration of the system
and the tension in the string.

4) A particle of mass 4kg rests on asmooth plane which is inclined at 60° to
the horizontal. The particle is connected by a light inelastic string passing over a
smooth pulley at the top of the plane to a particle of mass 2kg which is hanging
freely. Find the acceleration of the system and the tension in the string.

5) A particle of mass 4kg rests on a smooth horizontal table. It is connected
by a light incxtensible string passing over a smooth pulley at the edge of the
table to a particle of mass 2kg which is hanging freely. Find the acceleration
of the system and the tension in the string.

6) A particle of mass 5kg rests on a rough horizontal table. It is connected by
alight inextensible string passing over a smooth pulley at the edge of the table
toa particle of mass 6kg, which is hanging fireely. The coefficient of friction
between the S kg mass and the table is . Find the acceleration of the system
and the tension in the string.

7 A

In the diagram particles A and B are of mass 10kg and 8 kg respectively and

test on planes as shown. They are connected by a light inextensible string

passing over a smooth fixed pulley at C. Find the acceleration of the system

and the tension in the string if:

(a) the planes the particles are in contact with are smooth,

(b) the planes are rough and the coefficient of friction between each particle
and the plane s §.
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8) Two particles A and B of mass
10kg and Skg are connected by a

¢
light inextensible string passing over a

smooth fixed pulley C and rest on

inclined planes as shown in the

diagram. Find the acceleration of the N .

system and the tension in the string if:
(a) both planes are smooth,
(b) both planes are rough and the A A
coefficient of friction is 5 for
both particles.
9)
A particle A of mass 5kg is
connected by a light inextensible
string passing over a smooth fixed light
pulley to a light scale pan C as shown
in the diagram. C holds a block B of
A mass 8kg. Find the tension in the
string and the reaction between B and

10) Two particles A and B rest on
the inclined faces of a fixed triangular
wedge as shown in the diagram.

A and B are connected by a light
inextensible string which passes over
alight smooth pulley at C. The faces
of the wedge are smoothand A and
B are both of mass 7kg. Find the
force exerted by the string on the
pulley at C when the system is
moving freely with both particles in
contact with the wedge.

11) A particle of mass 10kg lies on a rough horizontal table and is connected
by a light inextensible string passing over a fixed smooth light pulley at the edge
of the table to a particle of mass 8 kg hanging freely. The coefficient of friction
between the 10kg mass and the table is }. The system is released from rest
with the 10kg mass a distance of 1.5m  from the edge of the table. Find:

() the acceleration of the system,

(b) the resultant force on the edge of the table,

(c) the speed of the 10kg mass as it reaches the pulley.
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12) Two particles of mass 3kg and 4 kg are connected by a light inextensible
string passing over a smooth fixed pulley. The system is released from rest with
the string taut and both particles at a height of 2m above the ground. Find the
velocity of the 3kg mass when the 4kg mass reaches the ground.

13) Two particles of mass Skg and 7kg are connected by a light inelastic
string passing over a smooth fixed pulley. The system is released from rest with
the string taut and both particles at a height of 0.5m above the ground. Find
the greatest height reached by the 5 kg mass, assuming that the pulley is of
such height that the 5kg mass does not reach the pulley, and that the 7kg
mass does not rebound when it hits the ground.

Two particles A and B of
mass Skg and kg
respectively rest on the smooth
faces of a fixed wedge as shown
in the diagram. They are
connected by a light inextensible
string passing over a smooth
pulley at C and are released
from rest from the position
shown in the diagram. In the
subsequent motion B hits the
ground and does not rebound.

Find:
(a) the speed of the particles when B hits the ground,

(b) the acceleration of A after B hits the ground,

(c) the distance of A from C when A first comes to rest.

In problems concerned with connected particles and moveable pulleys or
bodies in contact where each body is free to move, the accelerations of different
parts of the system will not necessarily have the same magnitude. However, a
relationship between the accelerations can be found by considering the physical
properties of the system. As before, Newton’s Law must be applied to each body
of the system. However, it is not always convenient to apply the law in the
direction of the acceleration.

As F=ma = Fcosd=macos, the equation can be applied in any
diection i this form: i.e. the component of the resultant force in a chosen
ditection is equal to the mass multipled by the component of the acceleration
in the same direction.
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EXAMPLES 5d

1 The diagram shows two particles

A and B, of masses 3kg and Skg,
connected by a light inextensible
string passing over two fixed smooth
pulleys and under  light smooth
moveable pulley C, which carries a
particle D of mass 6kg. The system
is released from rest. Find:

() the acceleration of the particle A,
(b) the acceleration of the pulley C,
(©) the tension in the string.

If A moves up with an acceleration & and Bmoves up with an acceleration f
then  the portion of the string PQ moves down with acceleration a

and  the portion of the string RS moves down with acceleration f.

So the pulley C moves down with an acceleration which is equal to the average
of a and £, ie. Ya+f)

(If we are wrong about the directions we have chosen for the various accelerations,
the answers we obtain will be negative.)

Applying F=ma to each part of the system we have

for A: 1 T-3% =3 m
for B: 1 T-5 = 5f )
for C: 4 6g—2T = 3@+f) 8]

Sx[1] +3x2] = 8T~30g = 15@+/) [l
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Eliminating 7" from [3] and [4] —6g = 27a+f)

= 1athH =g 5]
Therefore the pulley C moves wp with an acceleration of jgms~?
Substituting [5] in [3] = 6g—2T = —3g

= T=Y¢ 161
‘Therefore the tension in the stringis g N.

Substituting [6] in [1] = Re-3g =3

- a=le

Therefore the mass A has an upward acceleration of gms~

2) Aparticle A of mass 6kg is connected by a light inextensible string passing
over a fixed smooth pulley to a light smooth moveable pulley B. Two particles
C and D of masses 2kg and 1kg are connected by a light inextensible st
passing over the pulley B. When the system is moving freely find the acceler
of the 1 kg mass and the tensions in the strings.

(There are two strings involved in this problem: their tensions are not necessarily
the same.)
If A moves down with an acceleration @, B moves up with an acceleration a.
If B were stationary, C would accelerate downwards and D would have an
equal acceleration upwards. But as B has an acceleration a upwards then
as an acceleration (f+a) upward and
C anacceleration (f—a) downwards.
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Applying F=ma toeach part of the system, we have

for A: 4 6g—T = 6a ]
for B: 1 T-21" =0 (B haszeromass)  [2]
for C: 4 21" = 2Af~a) 31
for D: 1 T'~g = (f+a) 4
m+py = 6g—2T" = 6a

- T = 3g-3 [s1
[5]in 3] = —g =25 (6]
[5]in (4] = 2 =[t4 ]
Now from [6] and [7] a =g and f=fg,
Then [1] and [2] give =18 and 7' =g

Therefore D moves up with acceleration {jgms™2.
The tension in CD is g N and the tension in AB is f§gN.

3) A particle of mass m is in contact with a smooth sloping face of a wedge
which is itself standing on a smooth horizontal surface. If the mass of the wedge
is M and the sloping face of the wedge is inclined at an angle of 30° to the
horizontal find the acceleration of the wedge in terms of m and M.

80 ™

Forces acting on the particle

Vg
Forces acting on the wedge:

Accelorations

‘The wedge will move horizontally, so let it have a horizontal acceleration a.
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‘The particle will move down the slope AB, so if the wedge were stationary it
would have an acceleration in the direction AB. But as it remains in contact
with the wedge as the wedge moves, the particle

an acceleration of @ horizontally
and an acceleration of f in the direction AB.

Applying F=ma to each part of the system:

For the particle, in the direction perpendicular to AB,
mgcos30°—~N = masin30° 11}

For the wedge, along the plane,

Nsin30° = Ma 2
Eliminating N gives = Ma
mg\/3
- o= VS
(m+4M)

megv/3
‘Therefore the acceleration of the wedgeis — .~ horizontally.
(m+4M)

Note. Newton's Law can be applied in any direction: the direction perpendicular

to AB was chosen so that £, which is not required, does not appear in any
equation.

4) Two particles A and B of masses 3kg and 2kg are connected by a light
inextensible string. The particles are in contact with the smooth faces of a wedge
DCE of mass 10kg resting on a smooth horizontal plane, When the system is
moving freely find the acceleration of the wedge and the acceleration of B.
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[
Accelerations

If the wedge were stationary, A would have an acceleration down CD and, as

A and B are connected bylsmng, B would have an cqual acceleration up EC.

But the wedge has an , therefore the

A and B are made up of componzms as shown in diagram (i)
Applying F'=ma to each part of the system we have:

for A,
w 3gcosd5°—N = 3acosdS® = 3g-NV2 = 3
4 3g—Ncosds®—Tcosds® = 3fcosds® = 3gv/2-N—T = 3f
for B,
2 R—2gcos45” = 2acos45° = RV2-2% =2

1 TcosdS"+ReosdS*—2g = 2f cosds® = T+R—2gV2 =2
for the wedge,
- Ncos45°+Tcos45°~ T cos45° R cos45° = 10a

= N=R = 10av2

Adding [1] and [3] g-(V—-RW2 = 5a
Substituting from [5] g—(10av/2/2 = Sa
Hence a

Therefore the acceleration of the wedge is Fgms~>.

of

8}
2]

B3]
14

51
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Adding [2] and [4] gV/2—(N—R) = 5f
Substituting from [S] §V2—10av2 = 5
10gv/2
2 =,
- (3% 3s f
32
Hence _ B2
25

The acceleration of B is composed of two components as shown.

vz Resolving to find the magnitude and

direction of the resultant we have
& % _ %
35 25 25
3
z *
‘T T

/13
So B has an acceleration of magnitude = —z—s—ms’2 in a direction making

arctan § with ED.

EXERCISE 5d

For all questions in this exercise: all strings are light and inextensible, all
pulleys are light and smooth, all surfaces are frictionless, the wedges are free to
move.

Find, in each case, the acceleration of A and the tensions in the strings.

2)
) ) e 3)
A
sk b
A
2he sk okg

skg
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4 5
) ) )
A
20
A b
akg The 2kg hA
kg

7

SUMMARY
Force is a quantity that changes the velocity of a body.

The resultant force acting on a body is equal to the mass of the body multiplied
by the acceleration of the body =ma.

The resultant force and the acceleration are both in the same direction.
The weight of a body is its mass multipled by g.

To analyse the motion of a system of bodies which are not rigidly connected,
Newton's Law (F=ma) must be applied to each separate part of the
system.

MULTIPLE CHOICE EXERCISE §

(Instructions for answering these questions are given on page .)

TYPEL

1) A particle of mass 5k is pulled along a smooth horizontal surface by a
horizontal string. The acceleration of the particle is 10ms™. The tension in
the string is:

@ 2N () SON () SN (d) ISN (¢) 10N,
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2) A particle of mass 3 kg slides down a smooth plane inclined at arcsin § to
the horizontal. The acceleration of the particle is:

@ jgms (b) gms? (¢) Ims? (@) 3gms? (e) 0.

3) Ablock of mass 10kg rests on the floor of a lift which is accelerating
upwards at 4ms~%. The reaction of the floor of the lift on the block is:

(a) 104N (b) 96N () 60N (4) 30N (¢) 140N.

4

5

The pulley in the diagram is smooth
and light. The masses of A and B
are Skg and 2kg. The acceleration
of the system is:

[OF ® 3
© 3¢ @ 3¢
© 3¢

‘The pulleys in the diagram are all
smooth and light. The acceleration
of A is a upwards, the acceleration
of C is / downwards. The
acceleration of B is:

@ 3@—up

®) @+ up

(© Y@+f) down

@ $—a)up.

The two pulleys in the diagram are
smooth and light. The acceleration of
B is @ downwards. The acceleration
of A is:

(a) aup

(b) 2aup

() adown

(d) 2a down

() 0.
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TYPEN
7) A particle is moving with uniform velocity.
(2) The forces acting on the particle are in equilibrium.
(b) The particle has a zero acceleration.
(¢) There is a resultant force acting on the body in the direction of the velocity.
8) A particle is moving horizontally with constant acceleration.
(a) The sum of the horizontal components of the forces acting on the particle
is not zero,
(b) The sum of the vertical components of the forces acting is not zero.
(c) The forces acting on the particle are not in equilibrium.
9) A body of mass 10kg has a resultant force of 20N acting on it.
(a) The weight of the body is 10gN.
(b) The acceleration of the body is 2ms2.
(c) The body is moving in a straight line.
10) Two particles A and B of masses 3 and 4 kg are connected by a light
inelastic string passing over a smooth fixed pulley.
(a) The acceleration of A is §gms™? upwards.
(b) The tension in the string is g N.
(c) The acceleration of B is —jgms? upwards.

TYPE I
11) (a) A particle is moving with constant acceleration.
(b) The resultant force acting on a particle is constant.
12) (@) A particle of mass 2k has a resultant force of 5N acting on t.
(b) A particle is moving with a constant acceleration of §ms™2.
13) (a) A particle is moving vertically downwards with a constant
acceleration gms=.
(b) The only force acting on a particle i

ts weight.

14) (a) A particle is moving with a constant velocity.
(b) The forces acting on a particle are in equilibrium.

TYPE IV

15) Two particles A and B are connected by a light inelastic string passing
over a small smooth light fixed pulley. The particles are released from rest when
both are at the same height above the ground. Find the speed of the particles
when the heavier one hits the ground.

(a) The initial position of the particlesis 1.5m above the ground.

(b) The masses of A and B are 8kg and 10kg respectively.

(c) The length of the string is greater than 3m.
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16) A ring is free to slide down a rough straight wire. Find the acceleration of
the ring.

(a) The coefficient of friction between the wire and the ring s .

(b) The wire is inclined at an angle 8 to the horizontal.

(c) The mass of the ringis m.

17) A particle is placed on the inclined face of a wedge which is itself resting on
a horizontal surface. Find the acceleration of the particle when the system is
moving freely.

(2) The sloping face of the wedge is inclined at a° to the horizontal.

(b) The contact between the wedge and the horizontal surface s smooth.

() The mass of the particle is 7.

18) A particle slides down a rough plane. Find the coefficient of friction
between the particle and the plane.

(a) The plane is inclined at o° to the horizontal.

(b) The mass of the particle is m.

(c) The acceleration of the particle is a.

19) Two particles A and B are connected by a light inelastic string passing
over a smooth pulley. Find the acceleration of A if the pulley is moving upwards
with an acceleration of 2ms™2

(a) The mass of A is Skg.

(b) The mass of B is 4kg.

(9) The pulley is light.

20) A car is brought to rest by the action of its brakes which are assumed to
exerta constant force on the car. Find the distance moved by the car before
coming to rest.

(a) The mass of the car is 750 kg.

(b) The initial velocity of the car is 40ms™!

(c) The time taken s 5 seconds.

21) A particle is projected up a rough plane. Find how far it moves up the plane.
(a) The mass of the particle is 2kg.

(b) The coefficient of fiction between the partile and the plane is J.

(&) The initial velocity of the particle is 10ms™".

TYPEV
22) One newton s the force which wil ive a body of mass | kg an
acceleration of 1ms~.

23) Ifa body has a resultant force acting on it the body will accelerate in the
direction of the force.

24) Two bodies A and B are in contact. A exertsa force F on B and B
exertsaforce R on A. F and R are equal only if the bodies A and B are
stationary.
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25) Ablock A rests on asmooth horizontal table. It is pushed horizontally by
another block B. B exertsa force £ on A. By Newton’s Third Law the block
A exerts an equal and opposite force on B, so the total horizontal force acting
on A is zero.

26) A particle is hanging freely attached to a light inextensible string. The
string is made to accelerate vertically upward. The tension in the string is
greater than the weight of the particle.

27) Two particles of masses 3kg and Skg are connected by a light
inextensible string passing over a fixed rough pulley. The acceleration of the
systemis 1g.

MISCELLANEOUS EXERCISE 6

1) A bullet of mass 2m is fired horizontally into a fixed block of wood which
offers a constant resistance R to the motion of the bullet. Find the deceleration
of the bullet.

2) Atingof mass 2kg slides down a wire which is inclined at 30° to the
horizontal. If the ring has an acceleration of magnitude }g find the coefficient
of friction between the ring and the wire.

3) A particle of mass 5kg is projected up a rough plane inclined at 45° to the
horizontal. The coefficient of friction between the particle and the plane is §.
If the initial specd of the particle is 7m ™!, find how far it travels up the plane
and the time it takes to return to ts initial position.

4) Abullet of mass m is fired horizontally into a block of wood of mass M
which is resting on a smooth horizontal surface. If the block offers a constant
resistance R to the motion of the bullet, find the acceleration of the bullet and
the acceleration of the block.

5) Two particles of mass 3kg and Skg are connected by a light inextensible
string passing over a smooth pulley which is fixed to the ceiling of a lift. Find
the tension in the string when the system is moving freely and the lift has a
downward acceleration gms~2.

6) A particle P slides from rest down the rough surface of a plane inclined at
30° to the horizontal. If P travels a distance of 3.8m down the plane in 25,
find the coefficient of friction between P and the plane.

7) A heavy particle is suspended by a spring balance from the ceiling of a lft.
When the lift moves up with constant acceleration fm/s* the balance shows a
reading 1.8kg. When the lift descends with constant acceleration 37m/s? the
balance shows a reading 1kg. Find the mass of the particle and the value of f.
(Uof Lp
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Aparticle A of mass m rests ona
smooth horizontal table and is
connected by a light inextensible
string passing over a smooth fixed
pulley at the edge of the table and
under a smooth light pulley C toa
fixed point on the ceiling as shown in
the diagram. The pulley C carries a
particle B of mass 2m. Find the
acceleration of C and the tension in
the string.

Particles A and B of mass Skg
and 3kg are connected by a light
inextensible string passing under a
smooth light pulley C which carries
aparticle D of mass 4kg. Aand B
est on horizontal rough surfaces as
shown in the diagram. The coefficient
of friction is the same for both A
and B and is just sufficient to
prevent A, butnot B, from
moving. Find the coefficient of
friction.

10) Two particles of mass 8kg and 3kg are connected by a light inelastic
string passing over a smooth fixed pulley. The system is held at rest with the
string taut and the 8 kg mass at a height of 0.8m above the ground. The
system is then released and the 8kg mass hits the ground and does not rebound.
Find the time for which the string is slack.

11) A man of mass M carries in his hand a parcel of mass m. He stands in a lift
of mass X which is descending with an acceleration a(<g).

Find

(a) the reaction R, between his hand and the parcel;
(b) the reaction R; between his feet and the lift;
(c) the tension 7" in the cable supporting the Lift.

If the man drops the parcel, find the values of R, and T during the period
when the parcel is in the air, and also during the period after the parcel has hit
the inelastic floor of the lift, assuming that the acceleration of the lift remains

unchanged throughout these periods.

©
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In the diagram, ABC is the right section of a prism; the angle BAC is 6(<45°)
and the angle ABC is 90°. Two particles, each of mass m, are on the smooth
sloping faces of the prism and are connected by a light inextensible string which
passes over a smooth pulley on the top edge of the prism.

The prism stands on a horizontal plane which is rough enough to prevent the
prism moving. The system is released from rest when the string is in the plane
ABC. Find the acceleration of the particles and the tension in the string when
the particles are moving freely. If the prism is of mass M, find the vertical
component of the reaction between the prism and the horizontal plane. (U of L)

13) A particle A of mass 2m is intially at rest on a smooth planc inclined at
anangle a to the horizontal. It is supported by a light inextensible string which
passes over a smooth light pulley P at the top edge of the plane. The other end
of the string supports a particle B, of mass m, which hangs freely. Given that
the system is in equilibrium, find @, and the magnitude and direction of the
resultant force exerted by the string on the pulley.

A further particle of mass m is now attached to B and the system is released.
Find, for the ensuing motion, the tension in the string, the acceleration of B,
and the magnitude and direction of the resultant force exerted by the string on
the pulley. (UofL)

14) A light inextensible string passes over a smooth fixed pulley and has a
particle of mass Sm attached to one end and a second smooth pulley of mass m
attached to the other end, Another light inextensible string passes over the
second pulley and carries a mass 3m at one end and a mass m at the other end.
If the system moves freely under gravity, find the acceleration of the heaviest
particle and the tension in each string. (UofL)

15) One end of a light inextensible string is attached to a ceiling. The string
passes under a smooth light pulley carrying a weight C and then over a fixed
smooth light pulley. To the free end of the string is attached a light scale pan in
which two weights A and B are placed with A on top of B as shown. The
portions of the string not in contact with the pulleys are vertical.
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Each of the weights A and B has a mass
M and the weight C hasa mass kM. If
the system is released from rest find the
acceleration of the moveable pulley and
of the scale pan and show that the scale
pan will ascend if k>4. When the
system is moving freely find:

(a) the tension in the string,
(b) the reaction between the
weights A and B.
(Uof L)

16) An aeroplane is travelling horizontally at height 1200m above horizontal
‘ground when a parachutist of mass 80kg steps out of the aeroplane and falls
freely under gravity with negligible air resistance. After falling xm, he opens
his parachute, and s then subject to a vertical resistive force of 1120N. When
the parachutist reaches the ground, the vertical component of his velocity is
zer0. Show that x=360. Find also the total time taken for the fall.

17) A smooth plane and a rough plane, both inclined at 45° to the horizontal,
intersect in a fixed horizontal ridge. A particle P of mass m is held on the
smooth plane by a light string which passes over a small smooth pulley A on
the ridge, and is attached to a particle Q0 of mass 3m which rests on the rough
plane. The plane containing P, Q and A is perpendicular to the ridge. The
system is released from rest with the string taut. Given that the acceleration of
each particle is of magnitude g/(5v/2), find

(a) the tension in the string,

(b) the coefficient of friction between Q and the rough plane,

(c) the magnitude and direction of the force exerted by the string on the pulley.

18) Two wooden discs X and Y of thickness 22 and 4 respectively are
fixed at a small distance apart with their plane faces vertical and parallel. A
small bullet of mass m is fired horizontally into X with initial speed u at
right angles to the plane faces. It emerges from X with speed v and then
enters Y into which it penetrates a distance a_before being brought to rest.
If the motion of a bullet through X and Y is opposed by constant forces
Ry, Ry tespectively, find expressions for Ry and Ry in terms of u, 9, a
and m.
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A second bullet of mass m is now fired horizontally into Y with initial

speed u at right angles to the plane faces in a direction towards X. Show that
this bullet will emerge from Y if 2< Ju.

If v=4u and the second bullet enters X after emerging from Y, find the
distance which it penetrates into X before being brought o rest.

(The effect of gravity may be ignored.) ©

19) Two points A and B on a rough horizontal table are at a distance a
apart. A particle s projected along the table from A towards B with speed u,
and simultaneously another particle is projected from B towards A with
speed 3u. The coefficient of friction between each particle and the table is p.
By considering the distance travelled by each particle before coming to rest,
show that the particles collide if 1?3} pag.

If u*=$%uag, show that the collision occurs after a time [¢/(Tug)} and
at a distance Fa from A. ©)

20) A smooth wedge of mass 671 has a normal cross-section ABC such that

AB = AC and the angle BAC is a right angle. The face containing BC is in

contact with a horizontal plane, and a light taut string joining two particles of

mass 3m, m lies in the plane ABC so that each particle is in contact with one

inclined face of the wedge. The centroid of the wedge lies in the plane ABC.

If the system is released from rest, determine the acceleration of the wedge.
(Uof L)

21) Three particles A, B, C are of masses 4, 4, 2kg respectively. They lie at
rest on a horizontal table in a straight line, with particle B attached to the
mid-point of a light inextensible string. The string has particle A attached at
one end and particle C at the other, and is taut. A force of 60N is applied to
A in the direction CA produced, and a force of 15N is applied to C in the
opposite direction. Find the acceleration of the particles and the tension in each
part of the string

(a) if the table is smooth,

(b) if the coefficient of friction between each particle and the table is §.

(Take g as 10m/s%] (UofL)



CHAPTER 6

WORK AND POWER

WORK

When a body moves under the action of a force it is useful to study the
combination of the force and the distance moved by the body and from this
study arises the following concept of work.
When a Hody is moved by the action of a-constant force the work done by

that foree is the component of the force in the direction of motion multiplied
by the distance moved by the point of application of the force.

So when a particle is moved from A to B by a constant force F
the work done by F is givenby (¥ cos0)(AB)

Note. This definition applies only to the work done by a constant force. The
work done by variable forces is dealt with in the next volume.
The Unit of Work

‘The unit of force is the newton and the unit of distance is the metre so that the
unit of work done by a force is the newton metre and is called the joule. (J)

181
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When a body moves under the action of several forces, the work done by each
force acting on the body can be found separately.

Consider a block which is pulled a distance s along a rough horizontal surface
by a string inclined at an angle 0 to the horizontal.

‘The point of application of each force moves a distance s.

The work done by the tension in the string = T'cosf xs = Tscosf

The work done by the frictional force = ~Fxs =
‘The work done by the weight = 0xs 0
‘The work done by the normal reaction = 0xs =0

‘These equations show that when an object moves under the action of several
forces, not all of these forces do positive work. Those forces that have no
component in the direction of motion (the weight and the normal reaction in
this example) do o work.

When the work done by a force is negative, work is said to be done against that
force, i.¢. in this example, Fs is the work done against the frictional force.
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Work Done against Gravity

Consider a body of mass m which is raised a vertical distance 4.

v
o

‘The work done by the weight is — mgh.

‘mgh “is called the work done against gravity

If an agent, such as a crane, is responsible for lifting the body, then mgh is
referred to as the work done by the crane against gravity.

Similarly if a vehicle of mass m climbs a hill, and in doing so raises itself a
vertical distance , then mgh is called the work done by the vehicle against
gravity.

Work Done by a Moving Vehicle

M

‘The diagram shows the forces that commonly act on a moving vehicle.
R s the resistance to motion (this is always in the direction opposite to the
direction of motion) and F is the driving force of the engine.
The work done by F is referred to as the work done by the vehicle.

Note. If the vehicle is not accelerating, the forces acting on it are in equilibrium.
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EXAMPLES 62

1) A man lifts 20 boxes each of mass 15kg to a height of 1.5 m. Find the
work done by the man against gravity.

‘The work done against gravity in lifting one box = 15gx1.5]
= 225¢)

‘The work done against gravity in lifting 20 boxes = 20x22.5¢J

= 450gJ.

2) A light tank, of mass 9 tonne, travels a distance of 10m up a bank which is

inclined at arcsin § to the horizontal. If the average resistance to motion is

200N, find the total work done by the tank against the resistance and gravity.

Representing the resistance by R and the weight by W we have

00
So the work done against R~ = 200x10J = 2000]
W = 9000g
Height risen by tank = 10x §m
So the work done against gravity = 9000gx 10x4J = 294000J
Therefore the total work done by the tank = 296000]
3) A carof mass 1500kg climbs a hill at a constant speed of 20ms™. If the
hill is inclined at arcsin f5 to the horizontal, find the work done by the car
against gravity in one minute. If the total work done by the car in this time is
24x10%J, find the resistance to motion.
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In one minute the distance moved up the slope by the caris 20x 60 m
Therefore the vertical distance raised in one minute is 1200x ym = 120m
So the work done against gravity in one minute = 1500gx 120J

= 1764000]

As the car is not accelerating, the forces acting on it are in equilibrium so,
resolving parallel to the hill, we have

P = R+1500gxfy = R+ 1470
The work done by the car in one minute, i.¢. the work done by P in one

minute, is given by Px12003

= (R+1470)x1200]
Therefore 24x10° = 1200(R +1470)
- R=5s

So the resistance to the motion of the car is S30N.

EXERCISE 6o
1) A block is pulled a distance x along a rough horizontal table by a horizontal
string. If the tension in the stringis T, the weight of the block is W, the
normal reaction is R and the frictional force is F, write down expressions for
the work done by each of these forces.

2) A particle is pulled a distance  down a rough plane inclined at an angle &
to the horizontal by a string inclined at an angle § to the horizontal
(+B<90°). I the tension in the stringis 7, the normal reaction between
the particle and the plane is R, the frictional force is # and the weight of the
particle is I, write down expressions for the work done by each of these
forces.

3) Ablock of mass 500k is raised a height of 10m by a crane. Find the
work done by the crane against gravity.

4) Ablock of mass 10kg is pulled a distance Sm up a plane which s inclined
at 15° to the horizontal. Find the work done against gravity.

5) A train travels 6km between two stations. If the resistance to motion
averages 500N, find the work done against this resistance.
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6) Aforce 2i—j acts on a particle which undergoes a displacement of 3i.
Find the work done by the force.

7) Two forces F, and F, act on a particle P causing it to move through a
distance of 2m. Find the work done by the resultant force if F; = i—j
and F, is of magnitude 10N and acts in the direction 4i+ 3j.

8) A cable car travelling at a steady speed moves a distance of 2km up a slope
inclined at 20° to the horizontal. If the mass of the cable car is 1200kg and
the resistance to motion is 400N, find the work done by the tension in the
cable.

9) A man climbs a mountain of height 2000m. If the weight of the man is
700N, find the work he does against gravity.

10) A man pushes his bicycle a distance of 200m up a hill which is inclined at
arcsin fg to the horizontal. If the man and his bicycle together weigh 850N,
find the work he does against gravity. If the average resistance to motion is

30N, find the total work done by the man.

11) A block is pulled along a rough horizontal surface by a horizontal string. If
the string pulls the block at a steady speed and does work of 100J in moving
the block a distance of $m, find the tension in the string.

12) A block is pulled at a constant speed of Sms™" along a horizontal surface
by a horizontal string. If the tension in the string is 5N, find the work done by
the string in ten seconds.

13) A block is pulled up an incline of arcsin 4 to the horizontal at a steady
speed of 6ms™". If the work done against gravity in one second is 400, find
the weight of the block.

14) A particle of mass Skg is pulled up a rough plane by a string parallel to the
plane. If the plane is inclined at 30° to the horizontal, and if the work done by
the tension in the string in moving the block a distance of 3m at a steady speed
is 901, find the coefficient of friction between the block and the plane.

POWER
Power is the rate at which a force does work.

If a force does 10 of work in five seconds, the average rate at which it is
workingis 2Js7%.
Unit of Power

The unit of power is the joule per second and this is called the watt (W). So the
power of the force in the example above is 2 W. When large amounts of power
are involved, a more convenient unit is the kilowatt (kW) where 1kW = 1000W.
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The Power of a Moving Vehicle

‘The power of a vehicle is defined as the rate at which the driving force is working.

Consider a vehicle moving at a constant speed v metres per second. The driving
force is £ newtons.

The distance moved in 1second is v metres
The work done by the driving force in 1 second is Fvjoules

Hence the power of the vehicle is Fv watts,
So,if P is the power, P =Fv

i.e. the power of a vehicle is given by multiplying the driving force by the
velocity.

When the velocity is not constant this relationship gives the power at the instant
when the velocity is v.

EXAMPLES 6b

1) A train has a maximum speed of 40ms™" on the level against resistive
forces of magnitude 30000 N. Find the maximum power of the engine.

At the maximum speed there is no acceleration, so the forces acting on the train
are in equilibrium.

Therefore -r
- F = 30000N

At maximum speed the train is working at maximum power, so using 7= Fv
we have

maximum power = 30000x40W = 1200kW
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2) A train of mass 200 tonne has a maximum speed of 20ms™ up a hill
inclined at arcsin & to the horizontal when the engine is working at 800kW.
Find the resistance to the motion of the train,

N

200%10°g
800x10° _
20

At maximum speed, the forces acting on the train are in equilibrium.

40000.

Since P =Fuv, F=

P
v

Resolving parallel to the hill,
F = R+200x10% x &

- 40000 = R+39200
Therefore the resistance is 800N.
3) A cyclist moves against a resistance to motion which is proportional to his
speed. At a power output of 75W he has a maximum speed of Sms™! ona
level road. If the cyclist and his machine together weigh 800N, find the
maximum speed he reaches when travelling down a hill inclined at arcsin
to the horizontal when he is working at the rate of 25 W.

N

800

When travelling at any speed v,

When travelling on the level
As there is no acceleration
But R = kx5

Therefore 15=kx5 = k=3

- R =30 atany velocity o
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I

rcsings 840

When travelling down the hill at maximum speed ¥V,

2
L} and R =3V

F=v=5

There s no acceleration so, resolving parallel to the hill, we have

F+800x4 = R
25
= Frw=3v

- 31220025 =

Hence ¥=7.7 (the negative root is not applicable).

o

The maximum speed downhill is 7.7ms"

4) Acar of mass 1500kg hasa maximum speed of 150kmh~ on the level
when working at its maximum power against resistances of 60N. Find the
acceleration of the car when it is travelling at 60kmh™! on the level with the
engine working at maximum power assuming that the resistance to motion
remains constant.

1500
At maximum speed there is no acceleration.
So F=R=60
Also P=Fp
= 60x150% & = 2500
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When the speed is 60kmh™, ie. 60xfms, wehave
P 2500x18 _

v 60x5

As the car is accelerating, there is a resultant force in the direction of this
acceleration of magnitude F—R

F=R = 90
If the acceleration is ams™, Newton’s Law gives
F-R = ma
90
Therefore @ = seg = 006

The accelerationis 0.06ms

5) An engine of mass 100 tonne pulls a train of mass 400 tonne. The resistance
to motion of the engine is 1000 N and the resistance to motion of the train is
20000 N. Find the tension in the coupling between the engine and the train at
the instant when the speed of the train is 80kmh™ and the engine is exerting a
power of 4000 kW.

v v
400%10% 100x10%
_ 4000x 10°x 18
T s0xs

= F = 180000

By considering the forces acting on the engine and train together, T is not
brought into the calculations as it is an internal force.
The resultant force in the direction of motion is given by ~F —(Ry+Ra)
ie. (18000021 000)N = 159 000N
‘Therefore the train is accelerating.
If this acceleration is @ms™, Newton’s Law gives
159000 = 500x10°xa
159000

4= _—— = 0318
500x 10°
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Now that the acceleration of the engine and train is known, T can be found by
considering the forces acting on either the train or the engine.

Considering the forces acting on the train, the resultant force in the direction of
motion is T—R,

So T—Ry = (400x10°x0.318) (Newton’s Law)
- T = 400x10°x 0318 + 20000
Hence the tension in the coupling is 147 200N,

6) The resistance to motion of a car is proportional to the square of its speed.
The car has a mass of 1000kg and can maintain a steady speed of 30ms™
when travelling up a hill inclined at arcsin J to the horizontal with the engine
working at 60kW. Find the acceleration of the car when it is travelling down
the same hill with the engine working at 40kW at the instant when the speed
is 20ms™.

The resistance to motion at any speed v is given by R = kv*.

3

Troindy 1000¢

P
When the car is travelling up the hill £ =~
v

_ 60x10°
30

= 2000

The forces acting on the car are in equilibrium so
F = R+1000g x %
- R = 2000490 = 1510
But R=k* so 1510 = kx900
151
90



192 Mathematics — Mechanics and Probability

N

A

sin gy 1000

P
When the car is travelling down the hill  F = v

40x10°
=——— = 2000
20
The resultant force down the hill = F+1000gx%—R

151
= 2000+ 490~ x 200
%

= 1819

1f the acceleration of the caris @, 1819 = 1000z (Newton's Law)

So the acceleration is 1.82ms™?

EXERCISE 6b

1) A train has a maximum speed of 80kmh™ on the level against resistance of
S0000N. Find the power of the engine.

2) A car has a maximum speed of 100kmh™ on the level with the engine
workingat SOKW. Find the resistance to motion.

3) A train of mass 500 tonne has a maximum speed of 90kmh™" up an
incline of arcsin & against frictional resistance of 100000 N. Find the power
of the engine.

4) A cyclist working at 20W has a maximum speed of 30kmh~' down an
incline of arcsin & to the horizontal. Find the frictional resistance to motion
if the mass of the cyclist and his machine is 100 kg.

5) A car of mass 750kg has a maximum power of 30kW and moves against a
constant resistance to motion of 800N. Find the maximum speed of the car:
(a) on the level,

(b) up an incline of arcsin 5 to the horizontal,

(c) down the same incline.

6) An engine of mass 75 tonne moves against a resistance to motion which is
proportional to its speed. It has a maximum speed of 40ms™ on the level with
the engine working at 1500kW. Find the maximum speed of the engine up an
incline of arcsin g to the horizontal with the engine working at the same power,
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7) A hoist with a power input of 220W can lift a block of weight 600N toa
height of 10m in 30seconds at asteady speed. Find the resistance to the
motion of the hoist.

8) A constant force of 6N moves a particle of mass 12kg from rest through a
distance of 30m. Find the work done by the force and the maximum power
achieved.

9) A car of mass 2000kg has a constant frictional resistance to motion of
2000N. Find the acceleration of the car when it has a speed of 20kmh~' on
alevel road with the engine working at 100kW.

10) A car of mass 1000kg has a constant resistance to motion of 3000 N.
If the maximum power of the car is SOKW find the acceleration when travelling
at 20kmh™" up a hill inclined at arcsin g to the horizontal.

11) A train of mass 400 tonne is travelling down an incline of arcsin g to the
horizontal against resistances of 30000 N. Find the acceleration of the train
when it s travelling at 20ms™" and the power output of the engine is SOKW.

12) A car of mass 2000kg pulls a caravan of mass 400kg. The resistance to
motion of the car is 1000N and the resistance to motion of the caravan is
100N. Find the acceleration of the car and the caravan at the instant when
their speed is 40kmh™! with the power output of the engine equal to 100KW.
Find also the tension in the coupling between the car and the caravan at this
instant.

13) A cyclist moves against resistance to motion of (3 +kv?)N where k isa
constant and his speed is ¥ms™*, If his maximum speed on the levelis 10ms™
when he is working at the rate of 75W, find his acceleration on the level at the
instant when his speed is Sms™ and he is working at the same rate. The mass
of the cyclist and his machine is 90 kg.

14) A car of mass 1500 kg tows another car of mass 1000kg up a hill inclined
at arcsin g to the horizontal. The resistance to motion of the cars is

0.5N perkg. Find the tension in the tow rope at the instant when their speed
is 10ms™ and the power output of the towing car is 150kW.

SUMMARY

Work:  The work done by a constant force is the product of the component of
the force in the direction of motion and the distance moved by the
point of application of the force.

Power: Power is the rate at which a force does work.
‘The power of a vehicle is the rate at which the driving force works.
i.e. the power of a vehicle = driving force x velocity.
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MULTIPLE CHOICE EXERCISE 6
(Instructions for answering these questions are given on page x.)

TYPEI
1) The work done against gravity in
moving the block a distance s up
the slope is:

(@ mh  (b) mgs

) ms () mgh

(e) gh.

2) A block of weight W is pulled a distance / along a horizontal table.
The work done by the weight is:

W mo @ @ ©w

3) A child builds a tower from three blocks. The blocks are uniform cubes of
side 2 cm. The blocks are initially all lying on the same horizontal surface and
each block has a mass of 0.1kg. The work done by the child is:

@) 4 (6) 0043 () 6] (4) 061 (e) 0.061.

4) A car is moving with a constant speed of 20m s~ against a resistance of
100N. The power exerted by the car is:

(@) 2kW (b)) SW (c) 200W (d) KW (e) 20kW.

5) A particle of mass m moves from rest under the action of a constant force
F which acts fo( two seconds. The maximum power attained is:

22
(a) 2Fm (b) @ @ (=) 5

TYPE I

6) (a) A train is moving with its engine working at constant power.
(b) A train is moving with its engine exerting a constant driving force.

7) A particle is pulled by a stringa distance s along a horizontal surface.
‘The tension in the stringis 7.

(a) The work done by the tension in the string is 7.

(b) The string is inclined at an angle @ 1o the horizontal.

TYPEIV
8) Find the work done by a forklift truck in lifting two uniform boxes which
are stacked vertically.

(a) The boxes are cubes of side 0.6m.
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(b) The mass of each box is 20 ke.
(c) The boxes are lifted vertically a distance of 3m.

9) A car tows  caravan. Find the tension i the coupling between the car and
caravan at the instant when their speed is 15 ms™.

(a) The mass of the car is 900kg.

(b) The car s working at a steady rate of SOKW.

(c) The resistance to motion of the car and caravan s 1000N.

10) A caris climbing a hill against a resistance to motion which is proportional

to its speed. Find the maximum power of the car.

(a) The car has a maximum speed of 20ms™ up the hill and a maximum
speed of 40ms™ on the level.

(b) The inclination of the hillis arcsin 5 to the horizontal.

(c) The mass of the car is 1000 k.

11) Find the maximum power at which a cyclist can work.

(2) The cyclist has a maximum speed of 70kmh~" on the level.

(b) The resistance to the motion of the cyclist is constant at 10000N.
(c) The mass of the cyclist and his machine is 90kg.

TYPEV
12) Work is a scalar quantity.

13) If the engine of a car is working at constant power the acceleration of the
car must be constant.

14) The unit of work is the newton metre per second.

15) A car is towing a van at constant speed. The resistance to the motion of the
caris R and the driving force of the car is . F and R are in equilibrium.
16) A car s towing a van and is accelerating. The tension in the tow rope is
greater than the resistance to the motion of the van,

17) A train covers a distance of 20m in two seconds at a constant speed, with

the engine exerting 2 driving force of 2000 N. The engine is working at the
rate of 20kW.

MISCELLANEOUS EXERCISE 6

1) A carof mass 900kg accelerates uniformly from rest to a speed of 60km/h
ina time of two seconds when travelling on a level road. If there is a constant
resistance to motion of 20N find the maximum power of the engine.

2) Acarof mass 1500kg has a maximum speed of 150km/h on a level road
when the engine is exerting its maximum power of 200kW. Find the resistance
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to motion at this speed. If this resistance is proportional to the speed of the car
find the maximum speed of the car up a road inclined at arcsin gy to the
horizontal.

3) Acar of mass 1000kg has a maximum speed of 90km/h up a slope
inclined at arcsin 4 to the horizontal and a maximum speed of 180 km/h

down the same slope. If the resistance to motion varies as the speed of the car
find the maximum power of the car.

4) A cyclist and his machine have a total mass of 100kg. When travelling up a
hill inclined at arcsin & to the horizontal against a resistance to motion of 20N
the cyclist can maintain a speed of 12km/h. Find the rate at which he is
working. If the resistance to motion is unchanged, find the acceleration of the
cyclist when travelling at 10km/h on a level road and working at the same rate.

5) A car has a maximum power of 200kW. Its maximum speed on a level
road is twice its maximu speed up a hill inclined at arcsin & to the horizontal
against a resistance to motion of 1600N in each case. Find the mass of the

car. Find also the acceleration of the car at the instant when its speed is 30 km/h
on the level with the engine working at full power, assuming the resistance to
motion is unchanged.

6) A car of mass 1000kg is travelling on a level road against a resistance to
‘motion which varies as the square of its speed. If the maximum power of the
engine is 60kW and the car has a maximum speed of 150km/h, find an
expression for the resistance to motion at any speed. Find also the aceleration
when the engine s working at three-quarters full power and the speed is 30 km/h.

7) An engine of mass 5 tonnes pulls a train of mass 50 tonnes against a
constant resistance to motion of R newtons per tonne. The train has a maximum
maximum speed of 110km/h on the horizontal when the engine is working at
its maximum power of 1500kW. Find R.

Find also the tension in the coupling between the engine and the train at the
instant when it s travelling at 30km/h on the horizontal with the engine
working at half power.

8) A carof mass 1200kg tows another car of mass 800kg, the frictional
resistances being 120N and 80N respectively. If the tow rope has a breaking
tension of 2000 find the maximum acceleration possible, and the maximum
power the towing car can use at the instant when the speed is 10km/h.

9) A car of mass 1000kg has a maximum speed of 15m/s up a slope inclined

atanangle 0 to the horizontal where sing =0.2. There is a constant

frictional resistance equal to one tenth of the weight of the car. Find the

‘maximum speed of the car on a level road.

I the car descends the same slope with its engine working at half its maximum

power, find the acceleration of the car at the moment when its speed is 30 m/s.
(UofL)
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10) A lorry of mass 10000 kg has a maximum speed of 24km/h up a slope
of 1in 10 against a resistance of 1200 newtons. Find the effective power of the
engine in kilowatts.

If the resistance varies as the square of the speed, find the maximum speed on
the level to the nearest km/h, (UofL)

11) A car of mass 1000kg whose maximum power is constant at all speeds
experiences a constant resistance R newtons. If the maximum speed of the car
on the horizontal is 120km/h and the maximum speed up a slope of angle 0
where sin0 = 1/100 is 60km/h, calculate the power of the car. Calculate
also the maximum speed of the car () on the horizontal and (b) up the slope
‘when it is pulling a caravan of mass 1000kg if the total resistance to the
motion of the car and the caravan is 3R newtons. (UofL)

12) At the instant a car of mass 840Kkg passes a sign post on a level road its
speed is 90km/h and its engine is working at 7OKW. If the total resistance is
constant and equal to 2100, find the acceleration of the car in m/s at the
instant it passes the sign post. Calculate the maximum speed in km/h at which
this car could travel up an incline of arcsin (1/10) against the same resistance
with the engine working at the same rate. (AEB)

13) A car of mass 1000 kg is moving on a level road at a steady speed of
100km/h with its engine working at 60kW. Calculate in newtons the total
resistance to motion, which may be assumed to be constant.

The engine is now disconnected, the brakes are applied, and the car comes to
restin 100 metres. Assuming that the total resistance remains the same, show
that the retarding force of the brakes is about 1700 newtons.

If the engine is still disconnected, find the distance the car would run up a hill
of inclination arcsin 4 before coming to rest, starting at 100 km/h when the
same resistance and braking force are operating. ©

14) A car of weight W has maximum power H. In all circumstances there is a

constant resistance R due to friction. When the car is moving up a slope of

Linn (arcsind) its maximum speed is » and when it is moving down the same.

slope its maximum speed is 20. Find R in terms of W and n,

The maximum speed of the car on level road is . Find the maximum

acceleration of the car when it is moving with speed $u up the given slope.
(AEB)

15) The engine of a car, of mass M kg, works at a constant rate of HkW. The
non-gravitational resistance to the motion of the car is constant. The maximum
speed on level ground is ¥ m/s. Find, in terms of M, V, H, a and g,
expressions for the accelerations of the car when it is travelling at speed 4V’ m/s
(a) directly up a road of inclination a, (b) directly down this road.
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Given that the acceleration in case (b) is twice that in case (a), find sina in
terms of M, V, H and g. Find also, in terms of ¥ alone, the greatest steady
speed which the car can maintain when travelling directly up the road. (U of L)

16) A car of mass 1000kg moves with its engine shut off down a slope of
inclination «, where sina=1/20, at a steady speed of 15ms™. Find the
resistance, in newtons, to the motion of the car. Calculate the power delivered
by the engine when the car ascends the same inclination at the same steady
speed, assuming that resistance to motion is unchanged.

[Take g as 10ms~?] (UofL)

17). A locomotive of mass 20000kg is connected to carriages of total mass
130000 kg by means of a coupling. The train climbs a straight track inclined at
sin”" (1/200) to the horizontal with the engine of the locomotive working at
350 kW. The non-gravitational resistances opposing this motion are constant and
total 2000 for the locomotive and 8000N for the carriages. Given that, at a
particular instant, the train is moving at 15 m/s, calculate

() the driving force produced by the engine of the locomotive,

(b) the acceleration of the train,

() the tension in the coupling between the locomotive and the carriages.

Show that the greatest steady speed that the train can achieve up this incline
under the given conditions is 20 m/s. If the train sustains this speed for 2km,
‘measured along the track, calculate, in joules, the total work done by the engine
of the locomotive in covering this distance.

[Take the acceleration due to gravity to be 10m/s?] (AEB)

18) A car has an engine capable of developing 15 kW. The maximum speed of
the car on a level road is 120 km/h. Calculate the total resistance in newtons at
this speed.

Given that the mass of the car is 1000 kg and that the resistance to motion is
proportional to the square of the speed, obtain the rate of working, in kW to
two decimal places, of the engine when the car is moving at a constant speed of
40km/h up a road of inclination @, where sin@ = 1/25. (UofL)



CHAPTER 7

HOOKE'S LAW. ENERGY

ELASTIC STRINGS

A string whose length changes when forces are applied to its ends is said to be
elastic.
‘The length of the string when no forces are acting on it is its natural length.
In order to stretch an elastic string, equal and opposite extending forces must
be applied outwards to the ends of the string. The string is then in tension and
exerts an inward pull (tension) at each end, equal in magnitude to the extending
force.
‘The difference between the natural length of the string and its stretched length
is the extension.

fength s
E— No tension in string

P o Lo of Sui srvched o

—_— i ———— - String in tension

It can be shown experimentally that, up to a point, the tension in the stringis
directly proportional to the extension

ie. Tax

This relationship, discovered in the seventeenth century, by Hooke, is known as
Hooke's Law and is used in the form
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where T'is the tension in the string,
a is the natural length,
x is the extension,

and X is the modulus of elasticity of the string.

Elastic Limit

If x is progressively increased, there comes a stage when the string becomes
overstretched and will not retun to its natural length when released. The string
has then exceeded its elastic limit and no longer obeys Hooke’s Law. In this
state the string is no longer of any mathematical interest to us as, at this level,
we study only those strings which have not reached their elastic limit and which
do therefore obey Hooke’s Law.

Modulus of Elasticity

For an elastic string of natural length a, Hooke's Law can be arranged in the
form

NI
v

. iie. the length of the string is doubled, then
A=T

From this we see that A, although a constant of proportion, has the dimensions
of force and s equal to the tension in an clastic string whose Jength has been
doubled.

Because A has the dimensions of force it is measured in newtons.

SPRINGS

A spring s very similar to an elastic string with one important difference;
a spring can be compressed as well as stretched.
When stretched, a spring behaves in exactly the same way as a stretched elastic
string.
When the spring is compressed (i.e. has its length reduced from the natural
length) the forces in the spring are an outward push (thrust) at each end. These
forces again tend to restore the spring to its natural length and the spring is
in compression
The reduction in length is the compression.
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tengtha
I No tension or thrust

5 s
_— e U e Tensioninspring

R E——— Soring compressed by x

where T is now the thrust in the spring
and  x is the compression.

SUMMARY

Elastic strings and springs obey Hooke's Law 7 =

a
X is the modulus of elasticity and has the dimensions of force.
X is equal to the force required to double the length of the string or spring.

EXAMPLES 7a

1) An elastic string of natural length 2m is fixed at one end and is stretched to
2.8m in length by a force of 4 N. What is its modulus of elasticity?

Tension = Extending Force
= T=4
Using Hooke's Law gives

r=a(2

Mo

20

Therefore A= 4(5)

So the modulus of elasticity is 10N.
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2) An elastic string of natural length 4/ and modulus of elasticity 4mg is
stretched between two points A and B which are on the same level, where
AB=4l. A particle attached to the midpoint of the string hangs in equi
with both portions of string making 30° with AB. What is the mass of the
particle?

st

1
'
'
I
1
|

Mg

Let M be the mass of the particle and let C be the midpoint of the string.
Resolving vertically at C,  2Tsin30° = Mg

- T =Mg
The stretched length of the string AC is 2/ sec30°
bd AC = 231

The extension in the stringis ~ AC—2/ = 031/

Using Hooke's Law gives

So the mass of the particle is 0.62m

3) Anelastic spring is fixed at one end. When a force of 4N is applied to the
other end the spring extends by 0.2m. If the spring hangs vertically supporting
amass of 1kg at the free end, the spring is of length 249 m. Find the natural
length and modulus of elasticity of the spring.
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<
e —— 02—

Let the natural length of the spring be /m.
Extending Force = Tension
- T,=4

X 0.2
Hooke's Lawgives T3 = A|

4l
- A=gs=W
2491
Now Ty = A[==—
1
and T3 = (@) = 98
as9-p So 98 = 20:(%7')

= 98 = 49820/
> =2

‘The natural length of the springis 2m and the modulus of elasticity is 4ON.

4) Two springs AB and BC are joined together end to end to form one long
spring. The natural lengths of the separate springs are 1.6m and 1.4m and
their moduli of elasticity are 20N and 28N respectively. Find the tension in
the combined spring if it is stretched between two points 4m apart.

I —_-— 14—

A3 d B T T

Measuring all lengths in metres,
let the extension in spring AB be x = AB = (1.6+x)
then the length of spring BC is 4—(16+x) = BC = (24-x)
But the natural length of spring BC is 1.4

So the extension in the spring BC is (2.4—x—1.4) = (1—x)
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Because the point B is in equilibrium, the tensionsin AB and BC are equal.

Using Hooke’s Law for AB = T= zol‘L6 n
-
and for BC = T= zs% 3]
205 (1-x)
H Lx
ence e =B
- x = 16(1-%)
16
- Y1
26
20 (16
i == (2 = 74
Then, in [1], T=3 (2.6) 9

So the tension in the spring s 7.69 N.

5) Arod AB of length 4a and weight W rests at 60° to a smooth vertical
wall. It is supported with the end A in contact with the wall by an elastic
string connecting a point C on the rod to a point D on the wall vertically
above A. If the natural length of the stringis 32 and the distances AC and
AD are a, find the modulus of elasticity of the string.

w

In ADAC, DA = AC therefore  ADC = ACD
But angle DAC is 60° so triangle DAC is equilateral.

Hence the string is at 60° to the wall and DC =a.
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‘The rod is in equilibrium under the action of three forces which must therefore
be concurrent. The line of action of the tension in the string must therefore pass
through P, the point of intersection of R and W.

T w
Lami’s Theorem gives — =
sin90°  sin 30°
= T =2W
For the string, natural length = o

stretched length = a

extension = }a

modulus = X
4

Y

a

Hooke's Law gives w=n
3

So the modulus of elasticity is 6W.

6) When an elastic string of natural length 2m is fixed at one end and hangs
vertically supporting a particle of mass 4kg at the other end, it stretches to a
length of 2.8m. A horizontal force of 28N is then applied gradually to the
mass until it is once again in equilibrium. Calculate the length and the inclination
to the vertical of the string in this position.

(0]
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In diagram (i) Hooke's Law gives
Ty =2\ (ﬁ]

The mass is in equilibrium so

T, =4
20
- A= (o.a) =98
In diagram (ii) Lami’s Theorem gives
T 28 4
5in90°
T
or S
5in 90
H wno = 22
ence ang = = =
’ 4
- 0 =355°
2
Hence Ty = ——— = 48.17
sin35.5
x
Using Hooke's Law 73 = A5
(2
= x === [>|482) = 098
A \os,

So the length of the stringis (2.0 + 098)m = 298m
and the inclination of the string to the vertical is 35.5°

7) Two identical elastic strings AB and BC of natural length @ and modulus
of elasticity 2mg are fastened together at B. Their other ends A and C are
fixed to two points 4a apart in a vertical line (A above C). A particle of
mass m is attached at B, Find the height above C at which the particle
rests in equilibrium.
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Y Let x be the extension in AB

T
! Then the extension in BC is
? (da—2a-x) = (a—x)
l n
|
i

The particle at B is in equilibrium

. s0 Ty = Tytmg ol
[ U Using Hooke’s Law gives
v x

= ’*v 7= 2% = omgZ 2
g a a

!
i

Combining 1], [2] and (3] gives

x
2mg X =
i
x
- 2% o
a
x
- PEI
a
- x=ta

So the height of B above C is 2 —x+a=}a

i.e. the particle rests in equilibrium at a height Ja above C

EXERCISE 7a
1) An elastic string of natural length 3 m s fixed at one end. A force of 2N
is applied to the other end 5o as to stretch it. To what length will the string
extend if its modulus of elasticity is:

@ 03N (b) 2N (c) 4N?

2) The length of an elastic spring whose modulus of elasticity is 25 N, which
i fixed at one end, s reduced by 0.5m when a force of 20N compresses it.
What is the natural length of the spring?
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3) A string will break if the tension in it exceeds 10N. If the maximum
extension it can be given is } of its natural length, find its modulus of elasticity.

4) A spring of unstretched length / and modulus A hangs with a scale pan of
mass m at its free end. If a mass M is placed gently on the scale pan find how
far the new equilibrium position is below the old one.

5) What is the length and modulus of elasticity of an elastic string which has
length a, when supportinga mass M, and length a, when supporting a mass
A

6) A spring is fixed at one end. When it hangs vertically, supporting a mass of
2kilogram at the free end, its length is 3 metre. The mass of 2 kilogram is

then removed and replaced by a particle of unknown mass. The length of the
spring is then 2.5 metre. If the modulus of elasticity of the springis 9.8 newton,
find the mass of the second load.

7) A particle of mass M is attached to the midpoint of an elastic spring whose
modulus is 2Mg and whose unstretched length is 22. One end P of the spring
is attached to the ceiling, and the other end Q to the floor, of a room of
height 4a. If P is vertically above Q find the distance from the ceiling of the
particle when it is in equilibrium.

8) A mass of 4kilogram rests on a smooth plane inclined at 30° to the
horizontal. It is held in equilibrium by a light elastic string attached to the mass
and to a point on the plane. Find the extension in the string if it is known that a
force of 49 newton would double the natural length of 1.25 metre.

9) Theend A of an elastic string AB of natural length @ and modulus of
elasticity 2mg is fastened to one end of another elastic string AC of natural
length 2 and modulus of elasticity 3mg. The ends B and C are stretched
between two points 6a apart in a horizontal line. Find the length of AB.

10) A light spring of natural length / is fixed at one end to a point O ona
smooth horizontal table. The other end is attached to a particle P of mass m
which rests on the table. The particle is pulled away from O until OP = 5//2.
If the modulus of elasticity of the spring s 2mg find the tension in the spring
and the initial acceleration of the particle when released.

WORK DONE IN STRETCHING AN ELASTIC STRING

If a force is applied to the end of an elastic string 5o that the string stretches,
the force is moving the object to which it is applied and is therefore doing work.
Let us consider an elastic string of natural length a which is fixed at one end.
A force is applied steadily to the other end until the extension in the string is x.
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Calculation of the Amount of Work Done

The extending force will not be constant because it is always equal to the
restoring tension in the string, which varies uniformly with the extension.
The extending force is therefore directly proportional to the extension.

Consider the string when
(a) the extension is x, and the extending force is 7y
(b) the extension s x; and the extending force is T3
‘While the extension increases from x, 10 x;, the average extending force
is §(Ty+T2)
The work done in stretching the string by  (x;—x;) can be calculated using

work done = average force xextension = (7 +7a)x2—x1)

If the string is initially unstretched, then x,=0 and T;=0 and we see
that the amount of work then required to produce a general extension x,
x
is 4Tx where T=2>.
a
Therefore, when the string is stretched from its natural length @ to a +x,

Ax?

work done =

u

Those students who are sufficiently familiar with calculus may prefer to derive
the expression for the work done in stretching an elastic string by using
integration, as follows:

e N

When the extension s 5 the magnitude of the extending force is .
a
The work done in producing a further small extension 8s is therefore

approximately (’f (55).
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The total work done in stretching the string from a to (a+x) is given by
r lxds _ )\_x_

Note. The work dore when a spring of moduls A and natural length @ is

!
compressed a distance x is also given by -~

EXAMPLES 7b

1) An elastic string of natural length 2m and modulus of elasticity 6N is
stretched until the extending force is of magnitude 4N. How much work has
been done and what is the final extension?

e - xm——

At maximum extension, Tension = Extending Force = 4N.

Using Hooke's Law, T = A=, gives
a

4= 6%
- x=
The average force is  §(0+4)N =
Hence work done = 2x$J = §J.
So the work done = 237 and the maximum extension = 1jm

2) An elastic spring of modulus A and natural length a s fixed at one end and
s attached to a load of mass m at the other end. How much work is done in
stretching the spring slowly from its natural length to the position of equilibrium
of the load?



n

When the load is in equilibrium
T=mg
But using Hooke’s Law gives
AT
mga
- x =" M
Then the work done in stretching the spring is given by
g

PSRy (mga)*

% " u n

3) A spring of natural length 2/ and modulus of elasticity mg is compressed
toalength / and an elastic string of modulus 2mg is stretched to a length 31.
If the work done in both cases is equal, find the natural length of the string.

For the spring,

4 » - M= mg
o ! == 7= compression = [
M mgl
work done = o = "
221 4
For the string,
) ’E' - A = 2mg
— natural length = a

extension = 3 —a

Work done = A =——
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As equal work is done 'L:’ = "7’3(;:—")’

- al = 41—
= al = 9P~ 12al+4a*

- 40>~ 13al+ 91

= 0 = (da—90)a—0)
Therefore a=1 o §I

But §/ cannot be the natural length of the string as it is greater than the
stretched length 31.

So the natural length of the string is /.

ExeRcise 7
1) An elastic string breaks if the tension in it exceeds 3N. The unstretched
length of the stringis 4m and its modulus of elasticity is 2N. Find the work
done in stretching it to breaking point and the length of the string at that
‘moment.

2) If the work done in halving the length of a spring of modulus 4N is
1.2J what is the natural length?

3) Two elastic strings AB and CD are each fixed with one end fastened to
the ceiling and the other to the floor of a room of height 2.6m.

For AB A=2N and natural length = 1.4m.

For CD A=3N and natural length = 1.8m.

If both strings are vertical find the ratio of the work done in stretching them.

4) Find the work done in stretching a rubber band round a roll of papers of
radius 4 centimetre if the band when unstretched will just go round a cylinder
of radius 2 centimetre and its modulus of elasticity is 0.5 N.

5) The work done in compressing a spring of natural length 3/ to a length 2/
is twice as great as the work done in doubling the length of a string of natural
length /. Show that the moduli of elasticity are in the ratio 12:1.
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ENERGY

Abody is said to possess energy if it has the capacity to do work.
When a body possessing energy does some work, part of its energy is used up.
Conversely if work is done to an object the object will be given some energy.
Energy and work are mutually convertible and are measured in the same unit,
the joule,

ie. Work done = Change in energy

There are various forms of energy. Heat, electricity, light, sound and chemical
energy are all familiar forms. In studying mechanics however we are concerned
chiefly with mechanical energy. This type of energy is a property of movement
or position.

Kinetic Energy

Kinetic Energy, (K.E.), is the capacity of a body to do work by virtue of its
motion.

Ifa body of mass m has a velocity v its kinetic energy is equivalent to the
work which an external force would have to do to bring the body from rest up
to its velocity 2.

‘The numerical value of the kinetic energy can be calculated from the formula

KE. = jm?

This formula can be derived as follows.

Consider a constant force F* which, acting on a mass m initially at rest, gives
the mass a velocity 2. If, in reaching this velocity, the particle has been moving
with an acceleration a and has been given a displacement s, then:

F=ma (Newton's Law)
% = 2as (Motion of a particle moving with uniform acceleration.)
Fs

‘Combining these relationships we have:

= Work done by the constant force

work done =
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But the K.E. of the body is equivalent to the work done in giving the body its
velocity.

Hence KE. = imi?

Note. Since both m and & are always positive, K.E. is always positive and does
not depend upon the direction of motion of the body.

Potential Energy

Potential energy is energy due to position.

If a body is in a position such that if it were released it would begin to move, it
has potential energy.

There are two common forms of potential energy, gravitational and clastic.

Gravitational Potential Energy, (P.E.), is a property of height.

When an object is allowed to fall from one level to a lower level it gains speed
due to gravitational pull, i.e. it gains kinetic energy. Therefore, in possessing
height, a body has the ability to convert ts height into kinetic energy,

i.e. it possesses porential energy.

‘The magnitude of its gravitational potential energy is equivalent to the amount
of work done by the weight of the body in causing the descent.

Ifamass m isata height /i above a lower level the P.E. possessed by the
massis (mg) (k).

g

Since 4 is the height of an object above a specified level, an object below the
specified level has negative potential energy.
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~= Specified level where P.E. is zer0

l PE.of myis  mgay

PE.of myis —maga

mg

Note. The chosen level from which height is measured has no absolute position.
Itis important therefore to indicate clearly the zero P.E. level in any problem
in which P.E. is to be calculated.

Elastic Potential Energy, (E.P.E.) is a property of stretched strings and springs
or compressed springs.

The end of a stretched elastic string will begin to move if it is released. The string
therefore possesses potential energy due to its elasticity.

The amount of elastic potential energy stored in a string of natural length @ and
modulus of elasticity A when it is extended by a length x is equivalent to the
amount of work necessary to produce the extension.

Ax?

Earlier in the chapter we saw that the work done was

Axt

Note. EP.E. is never negative whether due to extension or to compression.
SUMMARY

Energy is the ability to do work.

Energy and work are mutually convertible.

The unit of energy is the Joule.

Kinetic energy (K.E.) is given by }mv? and is never negative,

Gravitational Potential Energy (P.E.) is given by mgh. Itis positive for objects
above a specified level but negative for objects below this level.

Elastic Potential Energy (E.P.E.) is given by JAx?/2a and is never negative.
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EXAMPLES 7¢.

1) Abody of mass 2kg isheld 3m above the floor of a room. Find the
potential energy of the body relative to:

(a) the floor,

(b) a table of height 0.8m.

22m
im
—PE 0
08m
v o f
&) )
@ PE. = mgh, and hy = 3m (relative to floor)
= PE. = (2)9.8)(3)] = 5881
®) PE. = mgh; and hy = 2.2m (relative to table)
- PE. = (2)98)22)] = 43.120.

2) A force acts on a body of mass 3 kilogram causing its speed to increase
from 4 metre per second to 5 metre per second. How much work has the
force done?

Initial KE. = §mo? = JG)4PT = 24J
Final KE. = §mo? = L3)(5)*) = 37.5]
Work done = Change in energy

Hence work done by force = (37.5—24)J = 13.5J.

3) Astone of mass 3kg is thrown so that it just clears the top of a wall 2m
high when its speed is 4ms~!. What is its total mechanical energy as it passes
over the wall?
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KE.ofstone = yme? = §3)4)?) = 24)
2m PE.of stone = mgh = (3)(9.8)2)] = 588)
Total mechanical energy = K.E.+PE. = 828]

PE 20

4) Water is being raised by a pump from a storage tank 4 metre below ground
and delivered at 8 metre per second through a pipe at ground level. If the
cross-sectional area of the pipe is 0.12square metre find the work done per
second by the pump (1 cubic metre of water has a mass of 1000kilogram).

Area = 0,12

_-_— -

Volume of water delivered per second = (8)(0.12)m* = 0.96m®
Mass of water delivered per second = (0.96)(10%) kg = 960 kg

P.E. gained by water per second (mgh) = (960)(9.8)(4)J = 37632J
K.E. gained by water per second (§mv?) = §(960)(8?)J = 30720
Total mechanical energy gained per second = P.E.+K.E. = 68352J

Work done = Change in energy
So the work done by the pump = 68 352 joule per second.
Note. This is also the power of the pump because

change in energy per second = work done per second = power.
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EXERCISE 7¢
1) Complete the following table by calculating the missing items.

Mass Velocity Kinetic Energy

ke 6ms™

8kg 1003
4ms™ 8J

2) How much energy is stored in a spring if its natural length is 1 m and its
modulus 2N when it is:

(a) stretched toa length of 1.4m,

(b) compressed to half its length?

3) Anathlete of mass 80 kilogram starts from rest and sprints until his speed
is 10metre per second. He then takes off for a high jump and clears the bar
when his body centre has risen 2.2 metre. How much work has he done up to
the moment when he clears the bar?

4) An elastic string whose modulus is 4N is stretched from 3m to 4m in
length, What s its increase in energy if its natural length was 2m?

5) A machine picks up a stationary block of mass m, lifts it through a height i
and projects it with velocity . This operation is carried out 20 times every
minute. How much work does the machine do each minute?

CONSERVATION OF MECHANICAL ENERGY

Kinetic and Potential Energy are both forms of Mechanical Energy. The total
‘mechanical energy of a body or system of bodies will be changed in value if:

(a) an external force other than weight causes work to be done (work done by
weight is potential energy and is therefore already included in the total
mechanical energy),

(b) some mechanical energy is converted into another form of energy (e.g sound,
heat, light etc). Such a conversion of energy usually takes place when a
sudden change in the motion of the system occurs. For instance, when two
moving objects collide some mechanical energy is converted into sound
energy which is heard as a bang at impact. Another common example is
the conversion of mechanical energy into heat energy when two rough
objects rub against each other.
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If neither (a) nor (b) ocurs then the total mechanical energy of a system
remains constant. This is the Principle of Conservation of Mechanical Energy
and can be expressed in the form:

The total mechanical encrey of 3 system remaing constant provided (hat no
external work is done and no mechanical energy is converied into another form
of energy.

When this principle is used in solving problems, a careful appraisal must be made
of any external forces which are acting. Some external forces do work anid hence
cause a change in the total energy of the system. Others, however, can be present
without doing any work and these will not cause any change in energy.

For example, consider a mass m moving along a rough horizontal surface.
&

—

mg

‘The normal reaction R is perpendicular to the direction of motion and does
not do any work.

The frictional force R, actingin the line of motion, does cause the velocity
of the mass to change. The frictional force therefore does do work and the total
mechanical energy will change.

The conservation of mechanical energy principle s a very powerful weapon to
use in problem solving. It is applicable to any problem where the necessary
conditions are satisfied and which is concerned with position and velocity.

Problems involving acceleration, however, are usually better approached by
applying Newton's Law of Motion.

EXAMPLES 7d

1) Asmooth heavy bead is threaded on to a wire in the shape of a circle of
radius 0.6m and centre C. The circular wire is fixed in a vertical plane with
the bead at rest at the lowest point A. If the bead is projected from A witha
velocity of 4.2ms™" find its height above A when it first comes to rest.
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R

PE.zer0

Initial position Intermediate position First position of
instantaneous rest
Let the mass of the bead be m kg.

If the bead first comes to rest at B, let BC make an angle § with the upward
vertical, so that the height of B above A is 0.6+0.6 cos = 0.6(1 +cos0)

In the initial position PE. =0
KE. = }mt* = dm(a.2)
Total mechanical energy = {m(a.2?
In the first rest position ngh = mg(0.6)(1 + cosd)
m(9.8)(0.6)1+ cos)
0

Total mechanical energy =

m(9.8)(0.6)(1 +cosB)

During the intermediate motion no work is done by the normal reaction because
it is always perpendicular to the direction of motion so we can use conservation
of mechanical energy,

Initial energy = Final energy

m

Hence 1(4.2)’ = m(9.8)(0.6)(1+ cosb)
4.2)(42

- L+cos = DD
209.8)0.6)

- cosd = §.

So the height of Babove A = 0.6(1+ H)m

=09m

2) Two particles of equal mass 1 are connected by a light inelastic string. One
particle A rests on a smooth plane inclined at 30° to the horizontal. The
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string passes over a smooth pulley at the top of the plane and then han
vertically supporting the second particle. Initially particle A is held at a point
A, on the plane and is released from this position. Find the speed of either
particle when A has travelled a distance ! up the plane.

PE. o for B

Inital positions Intermediate positions. Fina! positions
Particles at A, and 8, Particles at A; and B;

Initial position ~ P.E. for A
PE. for B
KE. for A
KE. for B

Total mechanical energy

[
coococo

Final position ~ P.E. for A = mgl sin30° = }mgl

PE.for B = —mgl

KE.forA = {m?

KE.for B = {ms?
Total mechanical energy = mv? — ymgl

(No external work is done as R is always perpendicular to the direction of
motionand T is an internal force)

Using conservation of mechanical energy gives
0 = mv?~{mgl
- v = bg

Hence the velocity of either massis /(3&1)

3) Alight elastic string of natural length 24 has its ends fixed to two points A
and B ina horizontal line where AB=2a. A particle P of mass m is
fastened to the midpoint of the string and is held midway between A and B.
When released, the particle first comes to instantaneous rest when both portions
of string are at 60° to AB. Find the modulus of elasticity of the string.

(In this problem, the mechanical energy includes elastic potential energy.)
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Qg
I
atan60°
|
|
: PE. zer0
Imua.l position First rest position
PE. = mga tan 60°= mga~/3 PE. =0
KE =0 KE. =
A
E.P.E. (string unstretched) = 0 EPE. = ;(Za sec60°—2)? = M

Total mechanical energy = mgay/3  Total mechanical energy = Az
Using conservation of mechanical energy gives

mgay/3 =
Therefore the modulus of elasticity of the stringis /3mg.

4) An elastic string has one end fixed to a point A. The otherend B, which is
attached 1o a particle of mass 2kg is pulled vertically down from A until AB
is 3m and then released. If the modulus of elasticity of the stringis 21.6N
and its natural length is 1m find:

(a) the velocity of the particle when the string first becomes slack,

(b) the distance from A of the particle when it first comes to rest.

HERES 2
s

-

4

[0 i) i)



Hooke's Law. Energy

(i) Initial position =0
=0
A 216)28
er, < Ao - 1007,
Total mechanical energy = 43.2J
(ii) String first slack PE. = mgh = 2(98)(2))
KE. = jmo® = 0?3
EPE. =0
Total mechanical energy = (392 +v*)J
(iii) Particle first at rest PE. = mgh = 29.8)hJ
=0
EPE. =0

Total mechanical energy = 19.6h J
Using conservation of mechanical energy throughout gives
432 = 39240 = 19.6h
- v? = 43239 4

432

and h = 22

19.6

So the velocity of the particle when the string becomes slack is 2ms™, and the

depth of the particle below A when first at rest is 0.8m.

EXERCISE 7d

1) A particle falls freely from rest untilits speed is 7 metre per second. How

far has it fallen?

2) A truck of mass M is pulled up a smooth track inclined at 30° to the

horizontal. Its speed increases from « to 3u ina distance d. Find the work

done by the engine.

3) One end of an elastic string s fixed to a point A on a smooth horizontal
table. The other end is attached to a heavy particle P. The particle is pulled
away from A until AP is of length 3//2 and is then released. If the natural

length of the string is / and its modulus of elasticity s mg find the velocity of
the particle when the string reaches its natural length, if the mass of the particle

is m.
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4) Two identical particles of mass m_are connected by a light inelastic string of
length 2/. One particle A rests on a smooth horizontal table and the other
particle B hangs freely over the edge. Initially A is held at a distance / from
the edge of the table and the string attached to A is perpendicular to the edge.
If A is released find its velocity when it reaches the table edge.

5) A particle of mass 0.5 kilogram is attached to a light elastic string of natural
length 2metre and modulus of elasticity 1N. The other end of the string s
fixed at point P on a smooth horizontal plane. The particle is projected from P
along the plane with a velocity of 4 metre per second. Find its greatest distance
from P during the following motion.

6) Theend A of a light elastic string AB is fixed. A particle of mass m is
attached to the end B. The particle is held as close as possible to A andis
teleased from that position. Find the length of AB when the particle is in its
lowest position if the natural length of the stringis / and its modulus of
elasticity is 2mg.

7) A particle of mass m is suspended from a fixed point A by a light elastic
string of natural length 7 and modulus of elasticity 4mg. The particle is pulled
down from its equilibrium position a distance d and then released. If the
particle just reaches the height of A, find d.

8) Two equal scale pans each of mass M are connected by a light inelastic
string which passes over a smooth pulley. The two pans are at the same level. If
aload of mass 2M is gently placed on one pan and the system is released, find
through what distance each pan has moved when their velocity is 2.1 ms™".

MULTIPLE CHOICE EXERCISE 7
(The instructions for answering these questions are given on page x.)

TveEL
1) A force of 4N is applied to an elastic string in order to stretch it. The
string has natural length 3m and modulus 12 N. The extension is:

@ 9m (®)3m () Im (d) 4m.

2) A springis compressed to half its natural length by a force of 6N. Its
‘modulus of elasticity is:

@ 12N () 3N () 6N (d) 45N.

3) The potential energy of a body of mass m is mgh where h is:

() the distance from a chosen level,

(b) the height above the ground,

(c) the height above a chosen level,

(d) the vertical distance moved.
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4) A particle of mass m slides a distance d down a plane inclined at § to the
horizontal. The work done by the normal reaction R is:

(a) Rd (b) mgdcosf (c) O (d) mgdsing.

5) A particle falls freely from rest through a distance d. Itsspeed is then:

@ Ved () -V%d (© ~Visd (4 Vi

TYPE 1

6) A particle of mass 2 is attached to one end of an elastic string of modulus
mg whose other end is fixed to a point P. The particle is dropped from P. It
will first come to rest:

(a) when the tension in the string is 2mg,

(b) when the kinetic energy is zero,

(c) below the equilibrium position,

(d) when the length of the string has doubled.

7) A particle travelling in a horizontal straight line has an acceleration of
+2ms

(2) Its total mechanical energy is constant.

(b) The particle is doing work.

(c) Its potential energy is constant.

(d) Work is being done on the particle.

8) The modulus of elasticity of an elastic string is:

(a) the ratio of the extension to the natural length,

(b) equal to the force stretching the string,

(c) measured in joules,

(d) equal to the tension when the string is twice its natural length.

TYPEM
9) (a) The tension in a string of length 1m is 2N.
(b) An elastic string of natural length 0.5m and modulus of elasticity 2N
is extended by 0,
10) (a) The energy stored in an elastic string of natural length @ and
modulus A is JAa.
(b) An elastic string of natural length @ and modulus X is stretched to a
length 2a
11) (a) Inasystem the total work done, other than by weight, is zero.
(b) The total mechanical energy of a system s constant.
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12) (a) A block is set moving across a horizontal surface and as it moves the
temperature of the block rises.
(b) The kinetic energy of a block moving on a horizontal surface is
constant.

TYPE IV

13) Calculate the extension in an elastic string:
(2) the natural length is 2m,

(b) the elastic potential energy is 31,

(c) the string is hanging vertically.

14) A particle is sliding down an inclined plane. Calculate its speed when it
reaches the foot of the plane:

(a) the length of the planc is 4m,

(b) contact is smooth,

(c) the inclination of the plane is 20°,

(d) the mass of the particle is 3kg.

15) A particle is hanging in equilibrium at one end of an elastic string whose
other end is fixed. Find the distance between the particle and the fixed end:
(a) the particle weighs 10N,

(b) the modulus of elasticity is 8N,

(c) the natural length of the string is 2m.

16) A particle is released from rest at the top of a tower. Find its speed at the
bottom:

(a) the tower is S0m high,

(b) the mass of the particle is 2kg,

(c) the particle moves vertically.

TYPEV
17) The energy stored in an elastic string s proportional to the extension.

18) As longas no external forces act on a system the kinetic energy must be
constant.

19) Some external forces which act on a moving body do not do any work.

20) A spring obeys Hooke’s Law when it is stretched but not when it is
compressed.

MISCELLANEOUS EXERCISE 7

1) Abody of mass m is released from rest and falls under gravity against air
resistance. The body reaches a speed  after falling through a height /. Find
the work done by the body against the air resistance. (UofL)
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2) An elastic string of natural length 1m  obeys Hookes Law. When it is
stretched to 1.2m the energy stored initis 16J. Find the energy stored in
the string when it is stretched to 1.5m. (Uof L)

3) A force, acting vertically upwards on a body of mass 10kg, moves the body
vertically from rest to a height 5m above its starting point and gives it a speed
of 6m/s. Find the work done by the force.

[Take g as 10m/s*] (Uof L)

4) Find the effective power, in watts, of a pump which raises Skg of water
every second through a height of 10m and ejects it at a speed of 20m/s.
[Take g as 10m/s?] (UofL)

5) Two particles A and B are connected by a light inelastic string which
passes over a smooth pulley. A is of mass m and B is of mass 2m. Initially
both particles are at rest at a depth 2/ below the pulley. If they are released
from rest find their velocity when each has moved a distance /.

6) Two springs AB and BC are fastened together at B. The ends A and C
are fastened to two fixed points on a smooth horizontal table where AC is 2m.
AB and BC have natural lengths of 0.6 and 0.8m and moduli of elasticity

2 and 4N respectively. Find the stretched lengths of AB and BC.

7) Abody of mass 2.5 kilogram is attached to the end B of a light elastic

string AB of natural length 2 metre and modulus Sgnewton. The mass is

suspended vertically in equilibrium by the string whose other end A is

attached to a fixed point.

(a) Find the depth below A of B when the body is in equilibrium.

(b) Find the distance through which the body must be pulled down vertically
from its equilibrium position so that it will just reach A after release.

8) An engine is pumping water from a large tank and delivering it through a pipe
of diameter 0.04 metre at a rate of 100litre per second. Find the work done
by the engine in one second.

[The mass of 1litre of water is taken as 1 kilogram}

9) Atingis threaded on 10 a smooth wire in the form of a circle fixed ina
vertical plane. The ring is projected from the lowest point on the wire with a
velocity of 4.2ms™. If the radius of the circular wire is 0.6m, find the height
above the centre at which the particle first comes to instantaneous rest. If,
instead, the ring had been projected with a velocity of 5.6m ™, describe its
motion.
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10) A light elastic string, of unstretched length a and modulus of elasticity W,
s fixed at one end to a point on the ceiling of a room. To the other end of the
string is attached a particle of weight W. A horizontal force P is applied to the
particle and in equilibrium it is found that the string is stretched to three times
its natural length. Calculate:

(a) the angle the string makes with the horizontal,

(b) the value of P in terms of .

1If, instead, P is not applied horizontally find the least value of P which in
equilibrium will make the string have the same inclination to the horizontal as
before. Deduce that the stretched length of the string is 3a in this case and

find the inclination of P to the vertical. (UofL)

11) Prove that the work done in stretching a light elastic string from its natural
length a toalength (a-+x) is proportional to x*.

One end of this string is fastened to a fixed point A, and at the other end a
particle of mass m is attached. The particle is released from rest at A, and first
comes 1o rest when it has fallen a distance 3a. Show that at the lowest point of
its path the acceleration of the particle is 2¢ upwards.

Find in terms of g and a the speed of the particle at the instants when the
magnitude of its acceleration is }g. (UofL)

12) In the diagram AC, BC and CD are three elastic strings with the same
modulus of elasticity. The ends A and B are attached to a horizontal support
and the end D of the string CD carries a particle of mass 2kg hanging freely
under gravity. The natural lengths of the strings AC and CD are 0.24 and
0.18m respectively, and in the equilibrium position AC is extended by 0.03m
and the angles ACD and BCD are 120° and 150° respectively. Calculate:
(a) the modulus of elasticity of the strings,

(b) the natural length of BC,

(c) the depth of D below AB.
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13) Two identical elastic strings of length 1 metre and modulus 4.9 N are
each fastened to a particle of mass 0.5 kilogram. Their other ends are fixed to
two points 4 metres apart in a vertical line. Find the height of the particle
above the lower fixed point A in the equilibrium position. The particle is now
pulled down to A and released from rest. Find the greatest height above A to
which the particle rises.

14) A water pump raises S0kg of water a second through a height of 20m.
The water emerges as a jet with speed SOmys. Find the kinetic energy and the
potential energy given to the water each second and hence the effective power
developed by the pump.

Given that the jet is directed vertically upwards, find the further height
attained by the water.

15) Prove that the elastic energy of a light spring of natural length @ and
modulus of elasticity A, stretched by an amount x,is Ax?/(2a).

Atrolley of mass m runs down a smooth track of constant inclination /6 to
the horizontal, carrying at its front a light spring of natural length a and
modulus mga/c, where ¢ is constant. When the spring is fully compressed it is
of length a/4, and it obeys Hookes Law up to this point. After the trolley has
travelled a distance b from rest the spring meets a fixed stop. Show that, when
the spring has been compressed a distance x, where x<3a/4, the speed v
of the trolley is given by

g = c(b+x)—x*

Giventhat ¢ =a/10 and b=2a, find the total distance covered by the
trolley before it momentarily comes to rest for the first time. (UofL)

16) Arring of mass m can slide freely on a smooth wire in the shape of a circle
of diameter 2a, which is fixed in a vertical plane. The ring is fastened to one
end of a light elastic string of natural length a and modulus of elasticity mg.
The other end of the string is attached to the lowest point of the wire. The ring
is held at the highest point of the wire and is slightly disturbed from rest. Find
the velocity of the ring:

(a) when it is level with the centre of the circular wire,

(b) when the string first becomes slack,

(c) when the string makes an acute angle 8 with the upward vertical.
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17) A particle of weight W is attached by two light inextensible strings each of

length a to two fixed points distant a apart in a horizontal line. Write down

the tension in either string.

One of the strings is now replaced by an elastic string of the same natural length,

and it is found that in the new position of equilibrium this string has stretched

toalength Sa/4. Prove that the modulus of elasticity of this string is

7W/3/39, and show that the tension in the other string has been increased in

the ratio $:V/13. (Uof Ly

18) One end O of an elastic string OP is fixed to a point on a smooth plane

inclined at 30° to the horizontal. A particle of mass m is attached to the end

P and is held at O. If the natural length of the stringis & and its modulus is

2mg, find:

(a) the distance down the plane from O at which the particle first comes to
instantaneous rest after being released from rest at 0.

(b) the velocity of the particle as it passes through its equilibrium position.

19) In the diagram, BAC is a rigid fixed rough wire and angle BAC is 60°.

P and Q are two identical rings of mass m connected by a light elastic string

of natural length 22 and modulus of elasticity mg. If P and Q arein

equilibrium when  PA=AQ=3a find the least coefficient of friction between

the rings and the wire.
. u

2 <
20) Water is pumped at the rate of 1.2 cubic metre per minute from a large
tank on the ground, up to a point 8 metre above the level of the water in the
tank. It emerges as a horizontal jet from a pipe with a cross-section of

5% 10-square metre. If the efficiency of the apparatus is 60%, find the
energy supplied to the pump per second.

21) A particle of weight W is attached to a point C of an unstretched elastic
string AB, where AC =4a/3, CB=4a/7. Theends A and B are then
attached to the extremities of a horizontal diameter of a fixed hemispherical
bowl of radius a and the particle rests on the smooth inner surface, the angle
BAC being 30°. Show that the modulus of elasticity of the stringis W and
determine the reaction of the bowl on the particle. WofL)
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22) Prove that the potential energy of a light elastic string of natural length /
and modulus X when stretched to alength of (I+x) is AL

Two points A and B are in a horizontal line at a distance 3/ apart. A particle
P of mass m isjoined to A by a light inextensible string of length 4/ and is
joined to B by a light elastic string of natural length / and modulus X.
Initially P is held ata point C in AB produced such that BC=/, both
strings being just taut, and is then released from rest. If A =}mg show that
when AP is vertical the speed of the particleis 2v/g/ and find the
instantaneous value of the tension in the elastic string in this position. (JMB)

23) Two fixed points A and B on the same horizontal level are 20cm apart.
A light elastic string, which obeys Hooke’s Law, is just taut when its ends are
fixedat A and B. A block of mass 5kg is attached to the string at a point P
where AP = 15cm. The system is then allowed to take up its position of
equilibrium with P below AB and it is found that in this position the angle
APB isaright angle. If LBAP=6, show that the ratio of the extensions of
AP and BP is

Hence show that 6 satisfies the equation

cosd (4 cosf—3) = 3sinf (4sin0—1). (UofL)
24) Aring A of mass m is threaded on to a smooth fixed horizontal straight
wire. The ringis attached to one end of a light elastic string whose other end is
fixed toa point B ata height & above the wire. Initially the ring is vertically
below B. In this position it is given velocity v along the wire. The string has a
natural length k and modulus of elasticity mg. Show that the angle 6 between
AB and  the wire when the ring first comes to instantaneous rest, is given by

sinf (\/h+l) 1
25) A mass of 3 kilogram is connected by an elastic string of natural length
I metre and modulus of elasticity 14.7N to a fixed point. A horizontal force
equal to the weight of 1 kilogram acts on the mass maintaining it in equilibrium.
Find the inclination of the string to the vertical. If the horizontal force is
removed, what is the least force which must act on the particle to ensure that
the string shall be inclined at the same angle as before.
Calculate in each case the extension of the string.



CHAPTER 8

MOMENTUM. DIRECT IMPACT

‘The momentum of a body is the product of its mass and its velocity.
Momentum = mv

Because velocity s a vector quantity, momentu also is a vector whose direction
is the direction of the velocity.

If a body is moving with constant velocity, its momentum is constant. In order
to cause a change in velocity a force must act on the body. It follows, then, that
a force must act in order to change momentum.

Properties of motion already established can be used to determine the
relationship between a force applied to an object and the change in momentum
which it produces. Consider a constant force F which acts for a time ¢ ona
body of mass m, thus changing its velocity from u to . Because the force

is constant the body will travel with constant acceleration a where:

F = ma
and
hence
or Ft = mv—mu

The product of a constant force F and the time ¢ for which it acts is called
the impulse of the force and the relationship above can be written:

The impiilse of 4 force s équal to the change in momentum which it prodiices.

Unit. The unit of impulse is the newton second, N's.

Momentum can be measured in kilogram metre per second (kgms™) units but
the impulse unit, N's, can be used as the unit for momentum also.

232
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INSTANTANEOUS IMPULSE

There are many occasions when a force acts for so short a time that the effect
s instantaneous, e.g. a bat striking a ball. In such cases, although the magnitude of
the force and the time for which it acts may each be unknown, there is, neverthe-
less, an instantaneous impulse whose value is equal to the change in momentum
produced.

EXAMPLES 82

1) A truck of mass 10°kg travelling at 3ms™ is brought to rest in 2 seconds
when it strikes a buffer. What force (assumed constant) is exerted by the buffer?

If the impulse exerted by the buffer is +J newton second then the initial velocity
of the truck is —3ms™ and its final velocity is zero.

Then 7= mv—mu
- 7= 0-10(-3) = 3x10°
But J=Ft=2F
Hence F= % = 1500

The force exerted by the buffer is 1500 N.

2) What constant force acting in the direction of motion of a particle of mass
2kg will increase its speed from 4ms™ to 20ms™ in 4 seconds?

The constant force F,u and v are all in the same sense i.c. all are positive.
Since Ft = mo—mu

Fx4 = 2x20—2x4 =8
The required force is 8N.
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3) Aball of mass m, travelling with velocity 2i+3j, receives an impulse —3nmi.
What is the velocity of the ball immediately afterwards?

=243

Using m(v—u)

gives m(v—{2i+3j))

> v = —3i+ (2043}
= —i+3j

Note that the velocity component in the direction of j is unchanged. This is
because there is no impulse component in this direction.

4) A ball of mass 0.5kg is thrown towards a wall so that it strikes the wall
normally with a speed of 10ms~. If the ball bounces at right angles away from
the wall with a speed of 8ms™, what impulse does the wall exert on the ball?

@  Avproschingwall u= 10
i
s
3
O P Lewingwall v=s8

Taking the direction of the impulse J as positive and using
J = mo—mu
we have J = 4x8-4(=10)
=9
Therefore the wall exerts an impulse of 9N's on the ball.
5) Anozzle is discharging water at a rate of 200litre per second, with a speed of
10 metre per second. If the water strikes a wall at right angles and does not

bounce off the wall, find the force Fnewton exerted by the wall on the water.
(The mass of 1 litre of water is 1 kilogram.)
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Mass of water discharged per second = 200 kg

Momentum destroyed per second 200x10kgms™.

Impulse exerted by wall in one second = Fx1Ns

But Impulse = Change in momentum
Hence Fx1 = 2000

- F = 2x10°

Therefore the wall exerts a force of 2x10°N or 2kN on the water.

6) Abullet of mass m strikes an obstruction and ricochets off at 60° tots
original direction. If its speed is also changed from u to , find the magnitude
of the impulse acting on the bullet.

This time the velocities before and after the impulse are not in line and it is
necessary to consider components of impulse and velocities in two perpendicular
directions. (Paralle] and perpendicular to the initial velocity are convenient
directions.)

4 R
) oc0s60°
A osin60°
General diagram Before collsion Components of After collision
impulse

Consider components parallel to J, taking the sense of J, as positive
Jy = m(—veos 60°) — m(—u)
Similarly, parallel to J; we have

Jy = m(vsin 60°) —

Hence Jy = m(u—4o)

and 7y = dmoy/3

The magnitude of the resultant impulse is given by /J7,? + /2
= mVlu=Jor + Govay
= mViE—u+
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EXERCISE 8a

1) A constant force of 12N acts on a particle of mass 4 kg whose initial
speed is 8ms™, the direction of the force being in the direction of motion.
Find its speed at the end of 3 seconds.

2) In what time will a force of 8N reduce the speed of a particle of mass
kg from 21ms™ to 6ms™

3) A hammer of mass 1.2kg travellingat 1Sms™ is brought to rest when
it strikes a nail. What impulse acts on the hammer?

4) A dart of mass 0.12kg flying at a speed of 20ms™ hits the dartboard
and comes to rest in 0.1 seconds. What s the average force exerted by the
dartboard on the dart?

5) A batsman strikes a cricket ball at right angles to the bat so that its
direction is reversed. If the ball approaches the bat with a speed of 30ms™
and leaves it at SOms™, what is the magnitude of the impulse exerted by

the bat on the ball if the mass of the ball s 0.13kg?

6) Aball of mass m receives a blow which changes its velocity instantancously
from Si—2j to i+7j. Whatis the impulse of the blow?

7) A sphere of unit mass is travelling with a speed of 10ms™ ina direction
—3i+4j when it collides with a pole which changes the velocity of the

sphere to —2i+j. What impulse is given to the sphere by the pole?

8) Animpulse 4i—7j given to a moving particle of mass 2kg changes its
velocity o Si+j. What was the velocity just beforchand?

9) Sand falls steadily through a hole on to a conveyor belt moving horizontally.
4kg of sand falls every second, striking the belt at 10ms™. Find the vertical
force exerted by the belt on the sand (assuming that the sand does not bounce
on impact).

10) An object of mass 2kg is diverted from its path through 90° by collision
with a solid obstruction. Find the magnitude and direction of the Impnlse
incurred at impact if the speed is changed from 20ms™ to 10m

11) A football of mass 0.4kg travels horizontally at 12ms™ towards a player
who diverts its path through 60° horizontally and passes it at 18 ms™ toa
team mate. Find the impulse given to the ball:

(a) ifit is passed horizontally,

(b) if it is kicked at an angle of 30° to the ground (consider three mutually
perpendicular directions).

12) A jet of water travelling with a speed of 12ms™ impinges on a plane at
right angles to the jet. If the force (assumed constant) exerted by the water on
the plane is 400N, calculate the volume of water being discharged per minute.
(The water does not bounce off the plane and its mass per litre is 1kg.)
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CONSTANT MOMENTUM

When a force affects the velocity of an object, momentum changes in the
direction of that force.
It follows that, if in a certain direction 710 force affects the motion, there is
no change in momentum in that direction.
Consider, for example, a football which is travelling along the ground at
16ms~. A player kicks the ball at right angles to its dircction of motion. The
impulse of the kick changes the momentum in the direction of the kick but the
ball continues with an unchanged velocity component of 16 ms™ in the
original direction since no impulse has acted in this direction.

16ms

&P ins

THE PRINCIPLE OF CONSERVATION OF LINEAR MOMENTUM

Internal Impact

Whenever two solid objects are in contact they exert equal and opposite
Jforces on each other (Newton’s Law).
It is clear that, regardless of the length of time for which they are in contact,
cach is in contact with the other for the same time.
Consequently they exert equal and opposite impulses on each other.
Since change in momentum is equal to the impulse which produces the change,
it follows that equal and opposite impulses produce equal and opposite changes
in momentum, The resultant change in momentum of two objects which are
free 1o move is therefore zero and their zoral momentum remains constant
although internal forces have affected the individual motion of each-object.
This property can be combined with our carlier obscrvations to form the
following principle.
16 in o spécified direction, no external force affects the motion of 4 systent,
the total mofmeritun in‘that diréction remains constant:
‘This very important relationship is known as the principle of conservation of
linear momentum. It plays a vital part in the solution of problems where there
are internal impulses, such as those involving a collision.
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EXAMPLES 8

1) A truck of mass 1200 kg is moving with a speed of 7ms™ when it collides
with a second truck of mass 1600 kg which s stationary. If the two trucks

are automatically coupled together at impact, with what speed do they move
on together?

10ig 1ookg
e I e

2800k

After impoct v

Let the velocity of the coupled trucks (total mass 2800kg) be V.
In the direction of motion,
momentum before impact = 1200 x 7+ 1600 x0

momentum after impact = 2800 V'
A pair of equal and opposite internal impulses act at impact, therefore, using
conservation of linear momentum we have

1200x7 = 2800 V'

- V=3

Therefore the speed of the coupled trucks is 3ms™.

2) A bullet of mass 0.04 kg travelling horizontally at 100ms™ hitsa
stationary block of wood of mass 8 kg, passes through it and emerges
horizontally with a speed of 40ms™. If the block is free to move on a smooth
horizontal plane find the speed with which it is moving after the bullet has
passed through it.

0.04kg
Before impact

100ms™

004kg
Attor impact skg
v 40ms
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I the speed of the block is ¥ then, using conservation of linear momentum
(in the direction of motion) we have
0.04x100 = (8¥) +(0.04x40)

24
- V=
8

=03

Therefore the block has 2 speed of 0.3ms™.

3) Two particles, each of mass m, collide head on when their speeds are 2u
and u. IF they stick together on impact, find their combined speed in terms
of u.

Before impact - e
At impact
Using ion of linear (in the direction of the velocity 2u)
we have
on)2u) —mu = 2mxV
- V= tu

The combined mass will travel at speed ju.

(Note that the momentum of the second particle before impact is negative
because its sense is opposite to that specified as positive.)

4) Agunof mass M fires a shell of mass m and recoils horizontally. If the
shell travels along the barrel with speed v find the speed with which the barrel
begins to recol if:

(a) the barrel is horizontal,

(b) the barrel is inclined at an angle 30° to the horizontal.

State in each case the constant force required to bring the gun to rest in

2 seconds.

@ v

[ =

The speed of the shellis v— ¥ as it leaves the barrel, because the barrel is
recoiling with speed V.
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Before firing the shell, the gun is at rest and the total momentum is zero.
Using conservation of linear momentum (in the direction of the shell’s motion)
= m@-V)-MV

- M+m)V = mv

o

Therefore the initial velocity of recoil is

If a constant force F; brings the gun to rest it must exert, in 2 seconds, an
impulse equal to the initial momentum of the gun

mo
ie. 24, = M|
M+m

Mmv

So the force required is —
2M+m)

()

This time the shell leaves the barrel with a velocity which is the resultant of two
components inclined at 150,
Using conservation of linear momentum in the direction of recoil gives

0 = MV +m(V—vcos30°)

- 1mo3 = (M+my
m/3
m3
Therefore the initial velocity of recoil is —————
2M+m)

and the force, F;, required to stop the gun in two seconds is given by
( 3
2= M _i)
2(M +m),
Mmn/3

So the required force is ————
o the required for T
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Note that momentum is nof conserved in the vertical direction because the
impulse exerted by the ground on the gun s an external impulse which does
change the total momentum.

Note that the speed of the shell as it leaves the gun is sometimes called the
muzzle speed. It is not equal to the speed of the shell relative to the barrel.

EXERCISE 85
1) Two particles A and B of equal mass are travelling along the same line
with constant speeds 4ms™" and 3ms™ respectively. If they collide and
coalesce find their common speed just after impact:

(a) if they collide head-on,

(b) if they were originally travelling in the same sense.

2) A truck of mass 400 kg runs at a speed of 2ms™" into a stationary truck.
‘They become coupled together and move on with speed 0.8ms™. What is the
mass of the second truck.

3) Agun of mass 2000kg fires horizontally a shell of mass 25 kg. The gun’s
horizontal recol is controlled by a constant force of 8000N which brings the
gun torestin 1.5 seconds. Find the initial velocity of the shell:

(a) relative to the gun,

(b) in the air.

4) Aboy of mass 40kg is on a sledge of mass 10kg travellingat Sms™
when another boy comes from behind moving three times as fast as the sledge
and jumps on to the sledge. What is the second boy’s mass if the speed of the
sledge is doubled?

5) Agun of mass km fires a shell of mass m. The barrel of the gun is elevated

atanangle a and the gun recoils horizontally. Show that the shell leaves the
k+1

barrel atan angle § to the horizontal where tan§ = ~— — tane.

6) Abullet of mass m is fired with a horizontal speed 2« into a stationary
block of wood of mass 50m which is free to move horizontally. Find the
velocity of the block if:

(a) the bullet goes right through it and emerges with speed u,

(b) the bullet becomes embedded in the block.
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7) A vertical post of mass M is to be driven into the ground. A pile-driver of
mass m strikes the post vertically with a velocity . Assuming that the
pile-driver does not bounce off the post, find the velocity with which the post
enters the ground. If the combined mass comes to rest when the post has been
driven into the ground to a depth # find the constant force with which the
ground resists penetration.

8) A particle travelling horizontally with speed u collides and coalesces with a
particle of equal mass hanging at rest at the end of a light inextensible string of
length 21, If the string rotates through an angle of 60° before first coming to

rest, show that  u? = 8gl.

IMPULSIVE TENSIONS

When a string jerks, equal and opposite tensions act suddenly at each end.
Consequently equal and opposite impulses act on the objects to which the two
ends of the string are attached. There are two cases to consider.

(a) One end of the string is fixed.

The impulse which acts at the fixed end of the string cannot affect the-
‘momentum of the fixed object there. A moveable object attached to the free
end however will undergo a change in momentum equal to the impulsive tension.
In such cases the momentum of the system does change in the direction of the
string but is unchanged in the perpendicular direction where no impulse acts.

(b) Both ends of the string attached to moveable objects.

In this case equal and opposite impulses act on the two objects, producing equal
and opposite changes in momentum.

‘The total momentum of the system therefore remains constant, although the
momentum of ach individual object is changed in the direction of the string.
Perpendicular to the string however, no impulse acts and the momentum of
each particle in this direction is unchanged.

The velocities of two objects moving at the ends of a taut string are not
independent. The important relationship between them can be illustrated

as follows:
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AB is 1 taut string. Particles A and B are moving with velocities as shown
in the diagram.
Resolving the velocities along and perpendicular to AB we have

sind,

uycost, uzcost,

uzsind;

The noteworthy components are those along AB since:
if uycos0,>uzcosf; the string is not taut,
i wzc080; >uycos0;  the string has snapped.

Hence for the string to remain taut and unbroken, 1y cosf; = u3 cos Oy,

So the two ends of a tai'string have equal velocity components in the
direction of the string

EXAMPLES 8¢
1) Astring AB of length 2/ is fixed at A to a point on a smooth horizontal
table. A particle of mass m attached to B is initially at a point C distant /
from A. The particle is projected horizontally with speed u at right angles
to AC. Find the impulsive tension in the string when it becomes taut and the
velocity of the particle immediately afterwards.

When the string becomes taut  AB =2/
and cosCAB=}
Hence CAB = 60° when the instantaneous impulses act.

Just before the string jerks taut, the particle has velocity components parallel
and perpendicular to AB of usin60° and ucos60°  respectively.
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ucos60®

usin60®

When the string becomes taut the length of AB is fixed and B can no longer
=

travel in the direction AB. After the jerk the velocity of the particle is

therefore perpendicular to AB

Using Impulse = Change in momentum
(2) along BA J = 0—(—musin60%)
- J = dmuv/3
(b) perpendicular to BA (no impulse component)
0 = mv—mucos 60°
= v=}u (showing that the velocity in this direction does not change.)

Therefore, the velocity of the particle just after the string jerks taut is u
perpendicular to the string.

2) A particle of mass m is attached to each end of a string AB of length 2I.
The whole system lies on a smooth horizontal table with B initially at a point
C distant 1 from A. The particle at the end B is projected across the table
with speed u perpendicular to AC. Find the velocity with which each particle
begins to move after the jerk and the magnitude of the impulsive tension.

i u

Inital position Position when string is
just about to jerk
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~ usin30®
usin30°

ueos 30° »

Velosities just before jerk Velocities justafter jerk.

When the string jerks tight, both particles begin to move with equal velocity
components, 2, in the direction AB.

Perpendicular to AB. there is no impulse on either particle; velocity components
in this direction are therefore unchanged.

Using Conservation of Momentum in the direction AB:
0+ mucos30° = mv +mv
giving v = juv3
Just after the jerk therefore
the velocity of the massat A = uv/3 along AB
the velocity of the mass at B = +/(Ju)? + Quv/3)?
= juv7

ection incli sin 30°
in a direction inclined to AB at arctan ("T)

2
ie. at  arctan ——
V3

The magnitude of J can be calculated by considering the change in momentum
of one of the particles.
For the mass at A, in the direction AB,

7= mv—0
Therefore 7= dmuy3

1t is important to appreciate that, in analysing the effect of an instantaneous
impulse, the velocities involved are those immediately before and immediately
after the impact or jerk. The subsequent motion depends, not on the impulse,
but upon whatever forces act afrer the impulse has taken place.
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SUMMARY

1) Momentum = mass x velocity

2) Impulse = change in momentum

3) Momentum increases in the direction of the impulse.

4) Ina direction where no external force acts, the momentum of a system
temains constant.

5) Particles moving at the ends of a taut string have equal velocity components
in the diection of the string.

EXAMPLES 8¢ (continued)

3) Three equal particles A, B and C lie on a smooth horizontal table. Light
inextensible strings which are just taut connect AB and BC and LABC is 135°.
Animpulse J is applied to the particle C in the direction BC. Find the initial
speed of each particle.

The external impulse applied to C
causes both strings to jerk exerting
internal impulses J, and J;,

Disgram showing inital
locity components of each
partict

Using ~ impulse = change in momentum in the directions parallel and
perpendicular to AB we have:

For particle A Jy = muy [0}
For particle B JycosdS®—Jy = muy 2

Jysin45° = my; 3]
For particle C along BC J=Jy = mu “

Also the velocities of B and C along BC are equal, ie.
0y cos45° +uy cos45° = u 51
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Equations (1] and [2] give muy = mey

= J; = 2N2mu,

1
uation [3] gives moy = 2/2muy —=
Eq (3] g 1= 2/2muy 7

1
Equation [5] gives LI

v2ov2
i Lo !
ie. - = u
V2Rt
3
- u=-u
v
Equation [4] gives J=23/2muy = 7;77111.
2
(ain\/z)mu.
2
e - J= =y
2
U A2
Hence the initial speed of A = ==
Wam  Im
the intial speed of € =(-) (22 ) 4
e ini e el A
initial speed o (\/2 ~em) T Im

W5 W10
and the initial speed of B = v, + vf = ——— Vs Hio
WN2m m

4) Amass 2m rests on a horizontal table. It is attached to a light inextensible
string which passes over a smooth pulley and carries a mass mat the other end.
If the mass 1 is raised vertically through a distance & and is then dropped,
find the speed with which the mass 2m begins to rise.
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b yooe I

Mass m about 10 Just before string Impuises when string Just ater string
be dropped erks ferks jerks

When mass m falls vertically under gravity we have u=0, a=g, s=h

Using vi-u? = 2as

gives v = Vgh

Using impulse = change in momentum for each mass gives,
for mass 2m J = 20m,—0

for mass m J = mo—mo,

From these equations u=4v

Hence the particle of mass 2m begins to rise with speed  §v/2gh.

EXERCISE 8¢
1) Two particles, each of mass m, are connected by a light inextensible string of
length 21. Initially they lie on a smooth horizontal table at points A and B
distant ! apart. The particle at A is projected across the table with velocity u.
Find the speed with which the second particle begins to move if the direction of
u is,

(a) along BA,

(b) at an angle of 120° with AB,

(c) perpendicular to AB.

In each case calculate (in terms of m and u) the impulsive tension in the string.

2) Aparticle A of mass 2kg lies on the edge of a table of height 1m. Itis
connected by a light inelastic string of length 0.65m to a second particle B of
mass 3kg which s lying on the table 0.25m from the edge (AB is
perpendicular to the edge). If A is pushed gently over the edge find the velocity
with which B begins to move. Find also the impulsive tension in the string.
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3) Three particles A, B and C all of mass m rest on a smooth horizontal
plane so that angle ABC is 120°. B is connected to both A and C by light
inextensible strings which are initially just taut. An impulse J is then applied to
particle B in a direction making an angle of 150° with BC and 90° with BA.
Find the impulsive tension in each string and the initial velocity of each particle.

4) Two particles, A of mass 2m and B of mass m, are connected by a light
inextensible string which passes over a smooth fixed pulley. Initially the particles
are held so that they are both at a height 0.81m above a fixed horizontal plane,
and the string is just taut. The system is then released from rest, Find:

(a) the impulse exerted by the plane when A strikes it (without bouncing),

(b) the velocity with which A next leaves the plane.

5) Three identical particles A, B and C lie close together on a smooth plane.
A is connected to B and to C by light inextensible strings. If B is set moving
with velocity v across the plane find:

(a) the first impulsive tension in the string AB,

(b) the initial velocity of A,

(¢) the initial velocity of C.

6) The illustration shows two particles
connected by a light inextensible
string passing over a pulley fixed at a
height of 1.05m above a horizontal
plane. A is of mass 2kg and is
initially at rest on the plane. B is of
mass 1kg and hangs at a depth of
0.9m below the pulley. B is then
raised to the height of the pulley and
relcased from rest from that position.

Caleulate:
(a) the speed of B when the string is about to tighten,

(b) the impulsive tension in the string,

() the speed with which A leaves the plane,

(d) the speed of either particle when B reaches the plane,

() the impulse which B exerts when it strikes the plane (without bouncing).
Is there an impulsive tension in the string when B hits the plane?
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DIRECT ELASTIC IMPACT

When two objects collide and bounce, the impact between them is elastic.
1f, instead, they coalesce upon collision, the impact is inelastic.

(A reader who s studying Physics may find that these terms are defined
differently in that subject.)

A pair of equal and opposite impulses act at the moment of impact. If, just
before impact, the objects were moving along the line of action of these
impulses, the impact is direct, ¢.g.

Before impact *~——»p +——e
Atimpact IGF—e0——DJ
After impact <4“—0 *—>»

After impact the particles again begin to move along the line of action of the
impulses since, at impact, no impulse acted in the perpendicular direction.

NEWTON'S LAW OF RESTITUTION

When two objects are in direct elastic impact the speed with which they
separate after impact is usually less than their speed of approach before impact.
Experimental evidence suggests that the ratio of these relative speeds is constant.
This property, formulated by Newton, is known as the law of restitution and
can be written in the form

separation speed : approach speed ="¢
“The ratio & is Called the coafficient df restiriion 4 1§ ConsianT 167 1Wa
particular objects.

Impact between objects which do not bounce is inlastic and in this case e = 0.

A collision between two objects whose relative speed is unchanged by the impact
is said to be perfectly elastic. For two such objects ¢ =

In general 0<e<I.

Direct impact can occur between two moveable objects or between one fixed
and one moveable object. In both cases the law of restitution is valid.

‘The principle of conservation of lincar momentum applics to impact between
two moveable objects (equal and opposite internal impulses) but not when one
of the objects in collision is fixed (external impulse).
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EXAMPLES 8d

1) A smooth sphere of mass 0.5 kg moving with horizontal speed 3ms™*
strikes at right angles a vertical wall and bounces off the wall with horizontal
speed 2ms. Find the coefficient of restitution between the sphere and the
wall and the impulse exerted on the wall at impact.

Just before impact *———Ppms
Atimpact 7 s
Sustafter impact @

e = separation speed : approach speed = 2:3
Therefore the coefficient of restitution is §.
Using impulse = change in momentum for the sphere we have:

J=05x2-05(-3) = 25

‘The equal and opposite impulse acting on the wall is therefore 2.5 Ns.
2) A smooth sphere of mass 2kg is moving with speed 3ms~ on a horizontal
plane when it collides with a stationary smooth sphere of equal size but mass
4kg. If the coefficient of restitution between the spheres is § find the velocities
of both spheres after impact.

Sust before impact 2k @———— P Ims” @k
Approach speed = 3m s~
Atimpact I<t—ee—D
21 sig
Justafter impact ———puns *——pomi

Seprtion speed = (v ~ ) ms
Using the law of restitution in the form
exapproach speed = separation speed
and the principle of conservation of linear momentum we have:
§x3=v-u n
and 2x3 = u+4v &3]
Hence » =3 and u =0

After impact the 2 kg mass is at rest and the 4 kg mass has aspeed of 1.5ms™.
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3) Two identical smooth spheres of mass m_collide directly head-on with
speeds of 6ms™ and 2ms™. If the coefficient of restitution is § find the
speed of both spheres after impact.

Just before impsct ne péms” 2ms ”
Approach speed = 8ms™!

Atimpsct < Py >

Just after impact ne >

Separation speed = v —u

Law of restitution gives x8=0v—u
Conservation of linear momentum gives ~ 6m—2m = mu+mv
These equations become 2=0v-u

ivi v=3 and u=1
and 4 =utv Eving

Therefore the speeds after collision are 3ms™ and 1ms™,

4) Two identical smooth spheres A and B are free to move on a horizontal
plane. B isat restand A is projected with velocity u tostrke B directly.
B then collides with a vertical wall which is perpendicular to the direction of
motion of the spheres. After rebounding from the wall B again collides with
A and s brought to rest by this impact. If the coefficient of restitution has the
same value at all impacts prove that e = 1.

First Impact: between A and B.

A 5
ustbatore impoct 1 @———Pp @ Gares)

Atimpact IF—e—D

Sustafter impact P "@— P
Law of restitution gives eu = v—uy
Conservation of linear momentum gives mu = muy+mu,

eu = v-uy

ntiy
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hence (+e)u = 2, 0]
and (—eu = 2 8]

Second Impact: between Band the wall.

5
Just betore impact P

At impact 7 J
Just after impact nd—O@

(This time, since the impact is external, momentum is not conserved.)

Law of restitution gives vy = v 131

Third Impact: between A and B.

Just before impact " @1 @

Just after impact

Law of restitution gives e+ ) = ity

Conservation of linear momentum gives mu;—mv; = —mus

or H—uy =

Eliminating u; gives n—uy = e(u+0)

ie. nl—¢) = ue+1) 0]
But from [3] and [1] v = evy = e(1+€)(ju)

and from [2] uy = (1= 0w

So [4] becomes e(l+e)jull—e) = (1—e)(ju)e+1)

- e=1

Note: Example 4, which involved several impacts, introduced a form of notation
which helps to clarify the solution.

At every impact the symbol « was used for A’s speedand v for that of B.
The suffix used indicated which impact was being analysed e.g. uy represented
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the speed of A after the third impact; u; was never used because A was not
involved in the second impact.

A problem involving three particles and multiple impacts can be similarly treated
using u, v, w for speed symbols.

Loss in Mechanical Energy

In practice the total mechanical energy of a system is reduced by a collision

or a jerk. The explanation for this loss can usually be /ieard, i.e. some mechanical
energy is converted into the sound energy of the bang at impact.

Mechanical energy may also be transformed into heat or light energy.

Perfectly elastic impact however, in which there is no change in relative speed,

is not accompanied by any mechanical energy loss.

EXAMPLES 8d (continued)

5) A and B are smooth spheres of equal size. A is stationary on a horizontal
plane and B is moving on that plane with speed 2u when it collides directly
with A. If the coefficient of restitution is §, A is of mass m and B of mass
2m, find the loss in kinetic energy at impact.

Just before impact @t P "t
Justatter impact @GP, [ —
Law of restitution: Ix2u = v—uy
Conservation of linear momentum: 2mx2u = 2muy+mo,
hence u = o
and 4u = v+ 2y

giving 3u = 3u, and 6u = 3v

Original K.E. 1em)Qu? = 4l
Final K.E. = J@mus? + Jmo?

= J@myd + §m(u) = 3ma
Therefore loss in K.E. = 4mu*—3mu® = mu?

6) Repeat Example 5 with a coefficient of restitution of 1 instead of %
Law of restitution: 1x2u = vy—uy

Conservation of linear momentum: 2nx2u = 2muy+moy
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hence = vy
and du = v+,
gving 2u = 3u, and Su = 3p
Original KE. = 4mu?
Final K.E. = 3@mGu? + Jom)(§u)?

= dm(uP)(8+64) = 4mu®
Therefore loss in K.E. = 4mu*—dmi* = 0

(This confirms that perfectly elastic impacts involve no loss in mechanical

energy.)

Note. In problems on elastic impact, a particle A may catch up with, and
collide with, another particle B moving less quickly in the same direction.
In this situation A is said to overtake B.

EXERCISE 8d
In all questions involving spheres, these will be smooth and of equal size.

1) A sphere of mass 10kg moving at 16ms™ impinges directly on anolhcr
sphere of mass 5kg moving in the opposite direction at 4ms~, |

find the speeds of both spheres after impact and the magnitude of the
instantaneous impulses.

2) A ball of mass 2kg movingat 6ms™ collides directly with another ball of
mass 3kg moving in the same direction at 4ms~'. Find the speed of each ball
after impact and the loss in kinetic energy if ¢ =3.

3) When two spheres of equal mass colide directly at speeds of 4ms-! and
8ms™ in opposite senses, half the original kinetic energy is lost upon impact.
Prove that  e=3.

4) Asphere A of mass 0.1kg is moving with speed Sms™' when it collides
directly with a stationary sphere B. If A is brought to rest by the impact and
e=14, find the mass of B, its speed just after impact and the magnitude of the
instantancous impulses.

5) Three perfectly elastic spheres A, B and C have masses 3m, 2m, m
respectively. They are lying in a straight line on a horizontal plane and A is
projected with speed u to collide directly with B which goes on to collide
directly with C. Find the speed of each sphere after the second impact. Explain
why there will be no further impacts.
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6) Find, in terms of M, m, ¢, ¥ and o, the instantaneous impulses which act
when two spheres of masses M and m collide directly with speeds ¥ and v
respectively:

(a) if they collide head-on,

(b) if they are travelling in the same sense (V> 1).

The coefficient of restitution between the spheres is e.

7) Asphere of mass 2kg falls from rest at a height 10m above an elastic
horizontal plane. Find the height to which the sphere will rise again after its
first bounce, if the coefficient of restitution is §.

8) A small sphere which s dropped from a height of 1.2m on to a horizontal
plane rebounds to a height of 1.0m. Find the value of ¢ and the loss in
mechanical energy caused by the impact, if the mass of the sphere is 2kg.

9) A light inextensible string AB has the end A fixed to a vertical wall. The
end B is attached to a small elastic object which is drawn aside, from the wall,
until the string makes an angle of 60° with the wall. The particle is then released
from rest. Find the angle which the string makes with the wall when the particle
next comes to instantaneous rest if the value of ¢ is 3.

10) A small sphere is dropped on to a horizontal plane from a height h. If the
coefficient of restitution between the sphere and the plane is e find, in terms of
It and e, the height to which the particle rises after each of the first, second
and third impacts, showing that these heights are in geometric progression.
Deduce the total distance travelled by the sphere before it comes to rest.

MULTIPLE CHOICE EXERCISE 8

(The instructions for answering these questions are given on page x.

TYPEL

1) A ball of mass 0.4kg hits a wall at right angles with a speed of 12ms™
and bounces off, again at right angles to the wall, with a speed of 8ms™!, The
impulse exerted by the wall on the ball is:

(a) 16Ns (b) 20Ns (c) 4Ns (d) 8Ns.

2) Two masses collide and coalesce as shown in the diagram, What is the speed
V of the combined mass just after impact?

m ” 3

o—>px &b o>
@3 GF ©v @
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3) A gun which s free to recoil horizontally
fires a bullet when the barrel is inclined
at 30° to the horizontal. When the
bullet leaves the barrel it will be
travelling at an angle to the horizontal
of:

(@) 30°

(b) alittle less than 30°

(c) alittle more than 30°

(d) zero.

4) Two smooth objects, with a coefficient of restitution e, collide directly and
bounce as shown

Just before impoct *——»u [ e
Just ater impact *—h- e

Newton's law of restitution gives:

@) exdu = n+o

() ex2u = v,—2;

© ex2u = m—v

(d) it cannot be applied as the masses are not known.

5) A particleof mass 2kg moving with speed 4ms™" is given a blow which
changes the speed to 1 ms™ without deflecting the particle from a straight
line. The impulse of the blow is:

(a) 10N

(b) 6Ns

(c) we do not know whether itis 10Ns or 6Ns.

TYPEN

6) Abody of mass m is moving with speed v when a constant force F' is
applied o it in the direction of motion for a time r:

(2) The impulse of the force is Fr.

(b) Fr=mo.

(<) The body loses an amount of kinetic energy equal to Fr.

Fr
(d) The final speed of the body is v+~
m

7) When a particle P of mass 2m collides with a particle Q of mass m:

(a) P exerts an impulse on Q,

(b) the mechanical energy of the system is unchanged,

(¢) the impulse which P exerts on Q is twice the impulse which Q exerts
on P.

(d) Q exerts an impulse on P.
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8) Two moving particles are attached, one to each end of a string AB. If the
string jerks tight, then immediately afterwards:

(a) both particles have the same speed,

(b) the particles have the same speed if they are of equal mass.

() the particles have equal velocity components in the direction AB.

9) Asphere A of mass /m, travelling with speed o, collides directly with a
stationary sphere B. If A is brought to rest by the collision and B is given a

speed V, then:
@ e=- () the mass of B is
@ e=2, e mass of B is T,
=t massof B is 2
v
© e=—, (d) the particles are of equal mass.
v

10) A particle of mass 1kg is dropped from a height of 3m on to a horizontal
plane where it bounces and rises to a height of 2m above the plane.

(a) the coefficient of restitution is §, R

(b) just before striking the plane the speed is V6g ms™,

(c) the coefficient of restitution is V3,

8
(d) just after striking the plane, the speed of the particle is \/E ms™,

TYPE I
11) (2) Inaspecified direction a body has a constant speed.
(b) No resultant force acts on a body.
12) (a) The coefficient of restitution between two colliding objects is < 1.
(b) Mechanical energy is lost when two objects collide.

13) (2) Two spheres collide directly. .
(b) Two spheres are travelling towards each other in the same straight line.
14) (a) Two spheres collide directly without loss of momentum.
(b) Two perfectly elastic spheres collide directly.
15) (a) When two spheres collide directly half the original Kinetic energy is lost.
(b) Two spheres have a coefficient of restitution of }.

TYPE IV

16) Two particles A and B collide directly head-on and bounce. Find their
speeds immediately after impact.

(a) The mass of A is twice the mass of B.

(b) Just before impact the speed of A is 4ms™ and that of B is 3ms™.
(c) No kinetic energy is lost by the impact.
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17) A ball moving on a horizontal floor hits a smooth vertical wall normally.
Calculate the speed with which it leaves the wall if:

(a) the speed when approaching the wall is 3 ms™,

(b) the coefficient of restitution is §,

(c) the mass of the ball is 0.4 kg.

18) A ball falls vertically on to 2 horizontal plane and bounces. Find the impulse
the ball exerts on the plane if:

() the ball is initially 2m above the plane,

(b) it rises after bouncing to a height 1.2m,

(c) the coefficient of restitution is V3,

(@) the mass of the ball is 0.5kg.

19) Two particles A and B are travelling on the same straight line when they
collide. Find the loss in kinetic energy due to impact if:

(a) A and B have equal mass,

(b) just before impact the speed of A is three times the speed of B,

(c) the coefficient of restitution is 3.

20) An inelastic string has a particle A attached to one end and a particle B
attached to the other end. If A is projected in the direction BA find the
initial speed of B if:

(a) initially the string is slack,

(b) the speed of projection of A is 4ms™,

() the particles are of equal mass.

(d) the stringis 2m long.

TYPEV

21) The law of restitution applies to an elastic impact between a moving object
and a fixed surface.

22) The coefficient of restitution is given by: relative speed before impact
divided by relative speed after impact.

23) A perfectly elastic impact does not cause a loss in mechanical energy.

24) The momentum of a system remains constant in any direction in which no
external force acts.

25) Impulse means an impact between moving bodies.
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MISCELLANEOUS EXERCISE 8

1) A force of 10N acts on a mass of 2kg for three seconds. If the initial
velocity was SOms™" what is the final velocity?

2) A stone weighing 5N is thrown vertically upwards, with velocity 80ms™,
What s its velocity after two seconds and after twenty seconds?
[Take g=10ms2]

3) Water issues from a pipe, whose cross section is ¢m?,in a horizontal jet with
velocity vms™. What force must be exerted by a shield placed perpendicular to
the jet to bring the water to a horizontal stop?

[The mass of 1m® of water is 10°kg.]

4) Two masses of 20 and 10units, moving in the same direction at speeds of
16 and 12 units respectively collide and stick together, Find the velocity of the
combined mass immediately afterwards.

5) A gun of mass 1000kg can launch a shell of mass 1kg with a horizontal
velocity of 1200 ms™. What is the horizontal velocity of recoil of the gun?

6) A sphere of mass m falls from rest at a height / above a horizontal plane
and rebounds to a height 4. Find the coefficient of restitution, the impulse
exerted by the plane and the loss in K.E. due to impact.

7) A particle of mass m moving with speed ¥ strikes a particle of mass 2m
at rest and coalesces with it. Express the final kinetic energy as a fraction of the
original kinetic energy.

8) An inelastic pile driver of mass 4000 kg falls freely from a height of Sm on
toa pile of mass 1000kg driving the pile 20cm into the ground. Find the
speed with which the pile starts to move into the ground and also the average
resistance to penetration of the ground in newtons.

[Take g as 10m/s*] (Uof L)p

9) Two particles 7 and Q, of mass 2m and 3m respectively, are connected
by a light inelastic string which passes over a smooth fixed pulley. The system is

released from rest with the string taut and the hanging parts vertical. After

time 1, the particle P picks up a stationary particle of mass m. Show that the

loss of kinetic energy of the system due to the impulse is mg*%/60. (U of L)

10) Assphere A, of mass 2m and velocity 2u, overtakes and collides with
sphere B, of mass m and velocity u_travelling in the same line which is
perpendicular to a vertical smooth wall, After being struck by A, sphere B
goes on to strike the wall. If the coefficient of restitution between A and B

is § and that between B and the wallis 3 show that there is a second
collision between A and B and describe what happens after the second impact.



Momentum. Direct Impact 261

11) Asphere A, of mass my, and velocity , collides with a stationary sphere
B of mass m,. If sphere A is brought to rest by the collision, find the velocity
of B after impact, and the coefficient of restitution. If sphere B now collides
with a stationary sphere C and is brought to rest find the mass of sphere C
assuming the same coefficient of restitution between A and B, and between

B and C.

12) A smooth sphere A of mass 2m, moving on a horizontal plane with
speed u collides directly with another smooth sphere B of equal radius and of
mass m, which is at rest. If the coefficient of restitution between the spheres

s e, find their speeds after impact.

The sphere B later rebounds from a perfectly elastic vertical wall, and then
collides directly with A. Prove that after this collision the speed of B is
3(1+efu and find the speed of A. (UofL)

13) State the law of conservation of linear momentum for two interacting
particles. Show how the law of conservation of linar momentum applied to two
particles which collide directly follows from Newton's laws of motion.

Three smooth spheres A, B, C, equal in all respects, lie at rest and separated
from one another on a smooth horizontal table in the ordey A, B, C with their
centres in a straight line. Sphere A is projected with speed ¥/ directly towards
sphere B. If the coefficient of restitution at each collsion is ¢, where
0<e<1, find the velocity of each of the spheres just after C is set in motion.
Show that A strikes B a second time. (IMB)

14) A pump raises water from a depth of 10m and discharges it horizontally
through a pipe of 0.1m diameter at a velocity of 8 ms™". Calculate the work
done by the pump in one second. If the water impinges directly with the same
velocity on a vertical wall, find the force exerted by the water on the wall if it is
assumed that none of the water bounces back. [Take g as 9.81ms™, n as
3.142 and the mass of Im® of wateras 1000kg.) (UofL)

15) Two equal spheres B and C, each of mass 4m, lic at rest on a smooth
horizontal table. A third sphere A, of the same radiusas B and C but of
mass m, moves with velocity ¥ along the line of centres of B and C. The
sphere A collides with B which then collides with C. If A is brought to rest
by the first collision show that the coefficient of restitution between A and B
is 4. If the coefficient of restitution between B and C is § find the velocities
of B and C after the second collision. Show that the total loss of kinetic

2
energy due to the two collisions is %Va (IMB)

16) Three smooth spheres A, B, C, of equal radii and masses 1, M, Nm

respectively, where A s a constant, are free to move along a straight horizontal
groove with B between 4 and C. When any two spheres collide the impact is
direct and the coefficient of restitution is e. Spheres B and C are initially at
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rest and sphere A is projected towards sphere B with speed u. Show that the
velocities of A and B after the first impact are

1-2e
1+2

Find the velocities of B and C after the second impact.
Giventhat Ae<<1, show that there is a third impactif e<X.  (UofL)

17) (a) A sphere of mass m moving along a smooth horizontal table with
speed ¥ collides directly with a stationary sphere of the same radius and of
mass 2m. Obtain expressions for the speeds of the two spheres after impact,
in terms of ¥ and the coefficient of restitution e.

Half of the kinetic energy is lost in the impact. Find the value of e.

(b) A particle of mass m moving in a straight line with speed u receives an
impulse of magnitude / in the direction of its motion. Show that the increase
in kinetic energy is given by

d 1+e el
u and ——u respectively.
1+x P ¥

11+ 2mu)/(2m). (UofL)

18) A particle of mass m is projected vertically upward with speed u and
when it reaches its greatest height a second particle, of mass 2m, is projected
vertically upward with speed 2u from the same point as the first. Prove that
the time that elapses between the projection of the second particle and its

u
collision with the firsts - and find the height above the point of projection
g

at which the collision occurs.
I, on collision, the particles coalesce, prove that the combined particle will
19
reach a greatest height of =~ above the point of projection. (IMB)
3

19)

Two particles, each of mass m, are connected by a light inextensible string
‘which passes over a smooth pulley at the top of a fixed plane inclined at an
angle arctan f to the horizontal. The particle A is on the plane and the
particle B hangs freely (see figure). The system is released from rest with the
string in a vertical plane through a line of greatest slope of the plane. The
coefficient of friction between A and the plane is §. When B has fallen a
distance / the string breaks. A comes to rest after travelling a further distance
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s up the plane. B falls a further dlsiance i to steke a horizontal plane and

rises to a height /i above that plane. F;

(2) the speed of the particles when he string breaks,

(b) the value of s,

() the coefficient of restitution between B and the horizontal plane and the
impulse of the blow when the particle B strikes this plane. (AEB)

20) Three particles A, B, C of masses m, 2m, 3m respectively lie at rest in
that order in a straight line on a smooth horizontal table. The distance between
consecutive particles is a. A slack light inelastic string of length 2a connects

A and B. An exactly similar slack string connects B and C. If A is projected
in the direction CBA with speed ¥, find the time which elapses before C
begins to move. Find also the speed with which C begins to move. Show that
the ratio of the impulsive tensions in BC and AB when C is jerked into
motion is 3:1. Find the total loss of kinetic energy when C has started to
move. (IMB)

21) A smooth plane is fixed at an inclination 30° with its lower edge at a
height a above a horizontal table. Two particles P and Q, each of mass m,
are connected by a light inextensible string of length 24, and P is held at the
lower edge of the inclined plane while Q rests on the table vertically below P
The particle P is then projected with velocity u (u>/za) upwards alonga
line of greatest slope of the plane. Find the impulsive tension in the string when
Q is jerked into motion. Determine the magnitude of u if Q just reaches the
lower edge of the plane, and the tension in the string while Q is moving. (JMB)

22) A hammer of mass Sm, moving horizontally with velocity ¥, strikes a
stationary horizontal nail of mass m. If the coefficient of restitution between
the hammer and the nail is 3 find the velocity of the nail just after the blow.
Immediately after the blow the nail begins to penetrate a block of mass nm
which is free to move on a smooth horizontal table. Penetration is resisted by a
constant force R. Find the common velocity of the block and the nail when
the nail ceases to penetrate the block. Show that penetration ceases at a time
4mnV
3@+ DR
between the hammer and the nail). (IMB)

after the blow (it may be assumed that there is only one blow

23) Two particles of masses 71 and 3m are connected by a light inelastic
string of length 2/ which passes over a small smooth fixed peg. The particles

are held in contact with the peg and then allowed, at the same instant, to fall
from rest under gravity, one on either side of the peg. Prove that:

(a) the speed of each particle just after the string tightens is V/(gI/2),

(b) the sudden tightening of the string causes a loss of energy equal to 3mgl,
(c) the lighter particle reaches the peg again after a total time /6l/g. (JMB)



264 Mathematics — Mechanics and Probability

24) A sphere A of mass m is moving with speed ¥ on a smooth horizontal
floor when it collides directly with a stationary sphere B of the same radius but
of mass \m. The coefficient of restitution between the spheres is §. Find
expressions for the speeds of A4 and B after impact.

Sphere B then strikes normally a vertical wall and rebounds. The coefficient of
restitution between B and the wallis also 3. If A4 and B do not collide
again, show that A >>19/6. Show that, when A =6, the kinetic energy
lost when A strikes B is SmV?/21. (UofL)

25) A small smooth sphere moves on a horizontal table and strikes an identical
sphere lying at rest on the table at a distance d from a vertical wall, the impact
being along the line of centres and perpendicular to the wall. Prove that the
next impact between the spheres will take place at a distance

(1 +e%)

from the wall, where e is the coefficient of restitution for all impacts involved.
(Uof Ly

26) Two particles A and B, of mass 2m and m respectively, are attached to
the ends of a light inextensible string of length 4a which passes over a small
smooth peg fixed at a height 3a above an inelastic table. The system is released
from rest with each particle at a height a above the table.

Write down the equation of motion for each of the particles and hence determine
the common magnitude of their accelerations. Show that, at the instant when A
is first brought to rest by hitting the table, B has a speed ¥ given by

()

Determine, in terms of ¥ and g,

(a) the time that elapses before A first hits the table,

(b) the time that A is resting on the table after the first collision before it is
first jerked off.

(c) the speed with which A is first jerked off the table,

(d) the time that elapses between A being first jerked off the table and
A hitting the table again. (AEB)

27) Two small spheres of masses m and 2m are connected by a light
inextensible string of length 22. When the string is taut and horizontal, its
‘mid-point is fixed and the spheres are released from rest. The coefficient of
restitution between the spheres is §. Show that the first impact brings the
heavier sphere to rest, and that the second impact brings the lighter sphere to
rest,

Find the velocity of each sphere immediately after the third impact. (U of L)
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28) Two particles 4 and B of masses 2m and 3m respectively are placed on
a smooth horizontal plane. The coefficient of restitution between A and B is }.
The particle A is made to move with speed u directly towards B which is at
rest. Calculate the speeds of 4 and B after their collision, the impulse of the
force transmitted from A to B and the loss in kinetic energy due to the
collision.

The particles A4 and B are now connected by a light inextensible string and are
placed side by side on the smooth horizontal plane. The particle 4 is given a
horizontal velocity v directly away from B. Calculate the impulse of the
tension in the string at the instant when the string tightens. Calculate also the
resulting common velocity of the two particles and show that the loss in kinetic
energy due to the tightening of the string is 0.6m7*. (AEB)

29) Two scale pans, each of mass m, are connected by a light inelastic string
which passes over a small smooth fixed light pulley. On one scale pan there is an
inelastic particle A of mass 2m. The system is released from rest with the
hanging parts of the string vertical. Find the tension in the string and the
acceleration of either scale pan.

At the instant when motion begins, a particle of mass 3m is allowed to fall
from rest and after rseconds it strikes, and adheres to, A. Find the impulsive
tension in the string and the velocity of either scale pan immediately after the
impact. (JMB)

30) Two particles each of mass m are connected by a light inextensible string
and a particle of mass M is attached to the midpoint of the string. The system

s at rest on a smooth horizontal table with the string just taut and in a straight
line. The particle M s given a velocity ¥ along the table perpendicular to the
string. Prove that, when the two end particles are about to collide:

(2) the velocity of M is VM/(M+2m), .

(b) the speed of each of the other particles is  VI2M(M+m)}}/(M+2m). (0)

31) Three particles A, B and C, each of mass m, lie at rest on a smooth
horizontal table. Light inextensible strings connect. A to B and B to C. The
strings are just taut with LABC = 135°, when a blow of impulse J is
applied to C ina direction parallel to AB. Prove that A begins to move with
speed (J/7yn  and find the impulsive tension in the string BC. (Uof L)

32) Abullet of mass m is fired with speed u into a fixed block of wood and
emerges with speed  2u/3.  When the experiment is repeated with a block

free to move the bullet emerges with speed u/2  relative to the block.
Assuming the same constant resistance to penetration in both cases, find the
mass and the final speed of the block in the second case. (Neglect the effect of
gravity throughout.) UofL)
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33) The masses of three perfectly elastic spheres A, B and C are M, M and
m respectively (M>>m). The spheres are initially at rest with their centres in
astraight line, C lying between A and B. If C is given a velocity towards A
along the line of centres, show that after colliding first with A and then with B
it will not collide a second time with A if M<(v5+2)m. Find the ratios
of the kinetic energies of the three spheres after the second collision and verify
that no energy has been lost. (Uof Ly



CHAPTER 9

PROJECTILES

A pm]ecu.lz is a particle which is given an initial velocity and then moves
under the action of its weight alone. In this chapter we,analyse the motion of
projectiles hile they are in flight. For example, a ball which is thrown is a
projectile and we are concerned with its flight from the moment it leaves the
thrower’s hand until its flight s interrupted.

If the initial velocity of a projectile is vertical it moves in a straight line (see
Chapter 4).

If the initial velocity is not vertical the particle moves in a curve and its flight
can be analysed by considering the vertical and horizontal components of its
acceleration, velocity and displacement.

Consider a ball which is thrown with an initial velocity ¥ atanangle a to the
horizontal.

We will take horizontal and vertical axes Ox and Oy through O, the point of
projection. With this frame of reference, the horizontal components of
displacement, velocity and acceleration at any time during the flight are

x, % ¥ and the vertical componentsare y, ¥, J.

*.y) >

o

Throughout the flight the only force acting on the ball is its own weight, s its
acceleration is g vertically downwards

ie. ¥

0 and

267
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Hence the horizontal velocity component is constant and vertically there is
‘motion with constant acceleration.
Initially the horizontal and vertical velocity components are ¥ cosa and ¥ sina.
Hence, at any time ¢ during the flight,

{527 cos
Viina gt (using o=utar)

i
Further, since the ball starts from O, using s=ur and s=ut+}ar*
gives

xi= W cosa

5= Pesina- e

These ions for di and velocity can be used to
determine all the information that might be required about the flight of a
projectile.

EXAMPLES 9a

1) A ball is thrown with an initial velocity of 20ms™ at an angle of 30°
above the horizontal. Find:

(a) the speed of the ball 2seconds after projection,

(b) the distance of the ball from its point of projection 1second after being
thrown.

[Take g=10ms™2)

@ » B
20mst

o 4 o

In this problem V=20, a=30°, g=10, r=2

So X = Veose
= X = 20c0s30° = 10V/3

and J = Vsina—gr

= ¥ = 20sin30°-(10)2) = —10

Note that when J is negative the ball has passed its highest point and is falling.
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Now the speed of the particle is given by
VEER
= V300+100 = 20

So the speed after 2seconds is 20 ms™

v

(b) When x = Vreosa = (20X1)/3/2)
10V/3
and Vesina—ygr* = 20)(1)}) — $10)(1)
=5
Then OP = Vai+ )2

=V300+25 = 5VI3
Soafter 1second the ballis 5vI3m from O.

2) Astone is thrown from the top of a tower whichis 11m high and stands
on horizontal ground. The speed of projectionis 12ms™" and the initial
direction of motion isat 60° to the downward vertical. Find the time taken for
the stone to reach the ground. Find also the direction of motion just before it
hits the ground.

[Take g as 10ms™]

If we wish to use the same expressions in this problem, the origin, O, is at the
top of the tower and the angle of projection is below the ¥ axis.
So @=—30° and,at the foot of the tower, y=-—11

Then ¥y = Visina—}gr®
- —11 = (120(=p-s2
= Stt+6r—11 = 0

- 1oor —22
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Taking the positive value, the stone reaches the ground after 1 second.

The negative value represents the time before projection when the stone could
have been at ground level.

Just before the stone hits the ground,
= 12cos(~30%) = 6v3
and ¥ = 12sin(=30°) — (10)(1) =—16 (ie. downwards)

So,at A, the velocity components of
the stone are as shown in the diagram.

If the direction of motion is at an angle A w3
¢ below the horizontal then

16
mn¢=@ = ¢ =57

16

EXERCISE 9a

[Take g as 10ms™2]

In Questions 1-5, ¥ is the speed of projection, a is the angle of projection,
1 s the time after projection and d is the distance of the projectile P from
the point of projection at time ¢ when the coordinates of P are (x, ).

D) r=12, a=60°, r=2; findd.

2) ¥=20, a=45°, t=1; find x and y.

3) ¥=10, a=30°, x

0y/3; find 7 and y.
4) @=60°, x=30, t=3; find ¥ and y.
5) V=12, x=24, r=4; find @ and d.

6) A particle is projected with a velocity of 40ms™ at an angle of 60° to the
horizontal. Find its velocity 1} seconds later.

7) A particle is projected with a velocity of 10ms™ at an angle of 30° to the
horizontal, Find its distance from the point of projection § second later.
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8) A particle is projected from a point on level ground with a velocity of

20ms™ and hits the ground 3 of a second later. Find the angle of projection.

9) A particle is projected from a point O at an angle of —30°. (30° below
the horizontal). If the particle hits the ground, whichis S50m below the level
of 0, 2 seconds later find the initial speed of the particle.

THE EQUATION OF THE PATH
The path of a projectile (sometimes referred to as the trajectory) is a curve
which is the locus of the set of points whose coordinates are given by
x = Vicosa
y = Visina—ler?

‘These are the parametric equations of the curve ( is the parameter) and the
Cartesian equation can be obtained by eliminating ¢ to give

gx3(1+tan*a)

Xtana —

PG

Note that y is a quadratic function of x so

the path of a projectile s a parabola.

4y
From the equation of the path we can find the value of &’ for any particular
value of x.

We saw in Chapter 4 that the direction of motion is along the tangent to the

&
curve, Using ‘1—1 therefore provides an alternative method for calculating the

direction of motion at a particular point on the path rather than at a particular

time.
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PROBLEM SOLVING

‘The formulae that can be used to solve projectile problems are

= Veosa m
§ = Vsina~—gr 21

x = Vicosa 3]
» = Visina — g 4]
gxisecia s

¥ = xtana Y] 5]

(6}

Note that equation [6] need not be memorised as it can easily be obtained from
equation [5].

Problems involving velocity require the use of equations [1] and [2].

Problems involving position can be dealt with in two ways:
() by using equations [3] and [4] if the coordinates are required
separately at a given time,

(b) by using equation [S] to relate the coordinates and to avoid introducing
the time 1.

Problems involving direction of motion can also be dealt with in two ways:
i
(@) byusing < togive the direction of motion at a particular time,

4
(b) by using d—’; to give the direction of motion at a particular point.

1t is much better to select the most appropriate formulae for solving a particular
problem, than to risk using all of them at some stage. This is fatal, as
equation 3] is equivalent to the pair of equations [3] and [4]; the use of all
three of these equations leads to an infuriating result such as 0 = 0!
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EXAMPLES 9b
1) A particle is projected with a speed of 20ms™ and reaches its greatest
‘height above the point of projection § of a second later. Find the angle of

projection.

20sina

o 20cosa X

If A is the highest point on the path then, when the particle isat A it is
travelling horizontally, L.

y=0
‘This ocours when r=1}
At any time 7, y = 20sina—gr
So,at A, 0 = 20sina—(98)})
9.8
Hence sina = —— = 0.1633
60
= 9.4°

Therefore the angle of projection is 9.4°.

2) A particle is projected from a point which is 2 m above ground level with a
velocity of 40ms™ at an angle of 45° to the horizontal. Find its horizontal
distance from the point of projection when it hits the ground.

gx’sac’ax
21

Using the equation of the path ~ y = x tana —

gives y=x
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We require the value of x when y = —2
B
x
So 2=
1600
= 49x?—8000x—16000 = 0
- x =165

Therefore the horizontal distance of the particle from O when it hits the
ground is 165 m.

3) Astone is thrown from the top of a cliff 70m high at an angle of 30°
below the horizontal and hits the sea 20m from the bottom of the cliff. Find
the initial speed of the stone and the direction in which it is moving when it hits
the sea.

¥

Let the initial speed by ¥ ms™

2
¥
Using the equation of the path ~ » = x tan (—30°) — z—ﬂw’(—m’)

‘The stone hits the sea when y=—70 and x = 20
—20 400x938 4

Therefore -70 = —— x=
V3 272 3

- v = 447

- V=67

Therefore the initial speed of the stone is 6.7ms™.
To find the direction of motion of the stone we can use

dy o xgsec(—30%)
o0 - =
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When the stone hits the sea, x =
dy 20x9.8x4
So at that point o = 7 T aadns
= —642

Therefore the stone hits the sea at 81° to the horizontal.

275

4) A particle P is projected from a point O with an initial velocity of 60ms™
atan angle 30° to the horizontal. At the same instant a second particle Q is

projected in the opposite direction with initial speed SOms™ from a point
level with O and 100m from O. If the particles collide find the angle of
projection of Q and find when the collision occurs.

»

If the particles collide they must be at the same point at the same time 0, as
time is an important consideration, we do not use the equation of the path.

Let 1 be the time interval from projection to collision.
For P weuse O as origin and the xaxis along OA giving
xp = (60 cos30°)
yp = (605in30°) — Jgr*
For Q weuse A asorigin and its xaxis along AO giving
xq = (50cosa)r
yq = (50sin o) — Jgr*

But xp+xq = 100
- 1(30v/3+50c0sa) = 100
Also »o =g
= 30 = S0sina

= sina = §

ol

21
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Hence, from equation [2], cosa = § = a = 369°
Therefore Q is projected at 36.9° to the horizontal.
Then equation [1] gives
230y/3+40) = 100
bd t =109
Therefore the particles collide 1.09seconds after projection.

5) A particle is projected from a point O with initial velocity  3i+4j.
=ind vector expressions for the velocity and position of the projectile at time 7.

2

‘The magnitudes of the initial horizontal and vertical velocity components are
3 and 4 respectively,ie. Vcosa=3 and Vsina=4.

Attime ¢, %= Veosa =3
and ¥ = Vsina—gt = 4-gt
So v = 3i+@—gn)
e G
o %

Similarly at time ¢, x = Vrcosa = 3t
and y = Vesina—igr? = 4t —jgr
So the displacement vector, , is given by

v =36+ (4 — bgt)j
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o i x
In general if a particle is projected with initial velocity i+ bj, then its velocity
atany time  can be expressed in the form
i+ (b—gnj
and its position at any time  can be expressed in the form
i+ (b1 — g
Any problem on projectiles may be solved using vector methods but in general
it is unwise to do so unless the problem is phrased in vector terms.

r=

EXERCISE 8b
In this exercise take g as 10ms™%.

1) A particle is projected with a velocity of 30ms™ atan angle arctan to
the horizontal. It hits the ground at a point which s level with its point of
projection. Find the time for which it is in the air.

2) A particle is projected with a velocity of 10ms™ at an angle of 45° to the
horizontal. It hits the ground at a point which is 3 m below its point of
projection. Find the time for which it is in the air and the horizontal distance
covered by the particle in this time.

3) Aballis thrown from ground level with a velocity of 15ms™ at an angle of
60° to the horizontal. Find when the ball hits the ground and the time at which
it reaches its greatest height above the point of projection.

4) A particle is projected with a velocity of 70ms™' at an angle of 20° to the
horizontal, Find the greatest height reached by the particle above its point of
projection.

5) A ball s thrown with a velocity of 15ms™ atan angle of 30° to the
horizontal from a point which is 1.5m above ground level. Find when the ball
hits the ground and the direction in which it is moving just before it hits the
ground.

6) A ball is thrown from ground level so that it just clears a wall 3m high when
it is moving horizontally. If the initial speed of the ball is 20m s, find the
angle of projection.
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7) A particle is projected at an angle of 30° to the horizontal and 2seconds
later is moving in the direction arctan § to the horizontal. Find its initial speed.

8) In Question 7,if the direction of motion is arctan (—$), 2 seconds after
projection, what is the initial speed?
Also what is the significance of arctan (—)?

9) A particle is projected from ground level with an initial velocity of 35ms™
atan angle of arctan § to the horizontal. Find the time for which the particle
is more than 20m above the ground.

10) A particle is projected from a point O whichis 100m above ground
level. The initial velocity is 40ms™ horizontally. Find the time at which the
particle hits the ground and the horizontal distance of this point from the point
of projection.

11) A particle is projected from a point O with initial velocity vector i+2j.
Find the velocity vector and position vector of the particle (a) after seconds,
(b) after 1} seconds.

12) A particle is projected from a point O and 1§ seconds later it passes
through the point whose position vectoris 4i+j. Find the initial velocity of
the particle,

13) Two seconds after projection from a point O a projectile P passes through
a point with position vector  8i—12j. Find the initial velocity vector of P.
Find also the position vector of P after 3seconds.

14) A particle is projected from a point O with initial velocity vector 3i
Find the ditection in which it is moving 2 seconds later. Find also the Cartesian
equation of its path.

15) A particle is projected from a point O with velocity vector 20i+30j.
2seconds later a second particle is projected from O with velocity vector
60i+50j. Prove that the particles collide 1second after the projection of the
second particle.

16) Two particles are projected simultaneously from a point O in the same
vertical plane with angles of projection 30° and 60° and with the same initial
speed of 2y/3ms™. Find the positions of the particles ¢ seconds after
projection and hence find the distance between them when 1= 2.

17) A and B are two points on level ground, 60m apart. A particle is
projected from A towards B with initial velocity 30ms™ at 45° to the
horizontal. At the same instant a particle is projected from B towards A with
the same initial velocity. Find when the particles collide and the height above
the level of AB at which they collide.
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18) A particle is projected from a point O with an initial velocity of 20ms™
and at arctan § to the horizontal. 2 seconds later a second particle is projected
from O and it collides with the first particle 1 second after leaving O. Find
the initial velocity of the second particle.

19) A particle is projected from a point O with an initial velocity of 21 ms™
atanangle of arctan$ to the horizontal and 1 second later another particle is
projected from a point 0.3 m below O with an initial velocity of 315 ms™ at an
angle arctan § to the horizontal. Prove that the particles collide and find when
this occurs. Find also the direction in which each particle is moving when they
collide.

PARTICULAR PROPERTIES OF PARABOLIC FLIGHT

Certain information about projectiles is required frequently enough to justify
obtaining this in general terms.
Consldu a particle which s projected from a point O on level ground with a
ocity ¥ atan angle « to the horizontal, reaching ground level again at a
pomt A.

O Horional range = ¥

The Time of Flight

This is the time taken for the particle to travel along its path from O to A.

Atany time ¢, y = (Vsina)y —jgr*
When the particle is at A, y=0
Therefore (Vsina)t — g =
2V sina
= 1=0 o 1= —v—

3 2V sina
ie. the time of flight is . ————
z
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The Greatest Height
Thisis / in the diagram and is the height at the midpoint of the path.

Atany time 7, ¥ = Vsina—gt

When the particle is at B, it is moving horizontally, ie. )

0

Vsina
So Vsina—gr =0 = ===

(Note that this is half the total time of flight.)

_ Pisinla Visinla
g %
V3

2

Then y = Vsinar—ygr*  gives

1 the geatest height is given by =

The Horizontal Range
‘This is the distance from the initial position to the final position on a
horizontal plane through the point of projection, i.c. OA.

) 2Wsina
Atanytime , x = Vrcose but,at A, [ = v
2 g
So. for OA, - Wisinacosa  Vsin2a

14 14

V2 s

6.4 range s

The Maximum Horizontal Range
For a given value of ¥, the horizontal range is maximum when the value of

V2 sin 2o o
== isgreatest. This occurs when sin2a=1 ie.when a=45°.

-—

G
The maxiroum horizontal ranse s given by~ and it oceurs when the angle

of projection/is 45°.



Projectiles 281
Determination of the Angle of Projection

If the projectile has to pass through a particular point with coordinates (a, b)
then we use the equation of the path in the form

&x*(1+ tan’a)

= xuna- S
7 w7

, ga*(1+tan’a)

giving b= atna~ S

‘This is a quadratic equation in tana so, provided it has two different positive
roots, there are two angles of projection for which the path of the projectile
will pass through a given point, with a given speed of projection.

EXAMPLES 5c
[Take g as 10ms™ unless otherwise specified.]

1) A gun has a muzzle velocity of 200ms™ (i.¢. a shell leaves the gun with an
initial speed of 200ms™). Find the horizontal range of the gun when the
angle of projection is 30°. Find also the maximum horizontal range of the gun.

B
200
Yo%
SN
o
Vsin2a
‘The horizontal range is  ————
14
o (200)?sin 60°
When a=30°, therangeis ————— = 3460
g

‘The maximum horizontal range occurs when & = 45°
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v (2008
Therefore the maximum rangels — = =
14

Therefore the horizontal range of the gun is 3460m when the angle of
projection is 30° and the maximum horizontal range is 4000m.

= 4000

2) A particle is projected from a point O with an initial speed of 30ms™ to
pass through a point which is 40m from O horizontally and 10m above O.
Show that there are two angles of projection for which this is possible. If these
anglesare @ and § show that tan (a+p) = —4.

2
30,

/o A\

o X
—-—

Let the angle of projection of the particle be 0.
The path of the particle has to pass through the point where  x =40, y = 10.

Using the equation of the path of the projectile in the form
2

X
= xtana— ~—(1+tan’q)
¥ 2VZ( )

PR
e = xtanf — —(1+tan’
gives ¥ 180( )
‘The point (40, 10) lies on this path so
80
10 = 40 tanf — ;(l+mn’9)

- 8 tan?0—36 tanf +17 = 0 ]

‘This is a quadratic equation in tan with two positive roots. Therefore there
are two values of § less than 90°, so there are two possible angles of projection.

. tana+ tan
Now we are asked to calculate tan (a+§) which is equal to ——————
I—tana tanf
where tana and tang are the roots of equation [1].
Hence tana+tang = ¥ = 3 (sum of roots)

and tanatanf = ¥ (product of roots)
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:
7
¥

Therefore tan(a+f) =

3) An arrow which has an initial speed of 40ms™" is aimed at a target which is
level with it at a distance of 100m from the point of projection. Find the
least time of flight for the arrow to hit the target.

/"

O 100M -

_ Visina
‘The horizontal range of a projectile is ————
As the horizontal range is to be 100m,

100 = 160 sin2er

= sin2a = §

- a=193" o a= 707

Therefore there are two possible angles of projection for which the arrow hits the
target.

2Vsina
The time of flight is ———— = 8sina
g
‘This is least when sina has the smaller of its two values,i.c. when a=19.3°
When a=193° the time of flightis 8 sin 19.3°
Therefore the least time of flight is 2.65.

4) In example 3, if the target is a strip which is 3.75m high, find the possible
values of the angle of projection if the arrow is to hit the target.
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e

+
375m
«

[ D — *
. a2 10°(1 + tan’a)
The equation of the path of the arrow sy = 10% tana—————=

For the arrow to hit the target, 0<y<3.75 when x=100

1000
ie. 0 < 100una———=(1 +un'a) < 375
= 0 < 800tana — 250(1 + tan*a) < 30
If 800 tana—250(1 + tan*a) < 30 weget 25 tan’a—80tana+28 > 0

(25 tana—14)5 tana—2) > 0 = wna <} or tana> ¥

[

= a<218 o a>703°

If 800 tan*a—250sec’a > 0 weget Stan*a—16tana+S < O

= 193° < a< 707

Therefore to hit the target 19.3° < a < 21.8° or 703° < a < 70.7°

EXERCISE 9¢
(Take g as 10ms™]

1) A gun has a maximum range of 200m on the horizontal. Find the velocity
of a shell as it leaves the muzzle of the gun.

2) The maximum range of a gun is 150m. What is the muzzle velocity and what
s the greatest height reached by the shot?

3) A particle is projected from a point O to pass through a point level with O
and 50m from O. Find the minimum velocity of projection for this to be
possible and the greatest height reached with this velocity.

wall which

4) A particle is projected at 20° to the horizontal and just cleas
al speed of

is 10m highand 30m from the point of prejection. Find the
the particle,

5) A ball is thrown with an initial velocity of 30ms™ at 30° to the horizontal.
it just clears a wall, the foot of which is 25m from the point of projection.
Find the height of the wall.
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6) A particle is projected from a point O with an initial speed of 30ms™ to
hit a target which is level with O and 60m from O. Show that there are two
possible angles of projection for which this is possible and find them.

7) A particle is projected from a point O with an initial speed of SOms™,
The particle just clears a wall which is SOm highand 100m horizontally from
0. Find the two possible angles of projection of the particle.

8) A particle is projected with an initial speed of 60m s~ towards a wall which
is 100m horizontally from the point of projection and 20m high. Find the
least angle of projection for which the particle will pass over the wall.

9) A particle is projected with an initial speed u to pass through a point which
is Su horizontally and u vertically from the point of projection. Show that if
there are two angles of projection for which this is possible  u?>20(u + 125).
Find the value of u for which there s only one angle of projection.

10) A gun with a muzzle velocity of 100ms™ is fired from the floor of a

tunnel which is 4m high. Find the maximum angle of projection possible if a
bullet is not to hit the roof, and the range of the gun with this angle of
projection.

11) A gun is fired to hit a target level with it but 1000m away. If the muzzle
velocity of the gun is 200ms~ and the shell it fires has to pass over a tree
15m highand SOm from the gun, find the angle of projection necessary.

12) Show that, with an initial speed «, the maximum horizontal distance that a
particle can travel from its point of projection is twice the maximum height it
can reach above the point of projection.

13) A particle is projected from a point O with an angle of projection a.
Find o if the horizontal range of the particle is five times the greatest height
reached by it.

14) A particle is projected inside a tunnel which is 2m high. If the initial

.
speed is u show that the maximum range inside the tunnelis 4 /(' “),
&

15) A particle is projected from a point O on level ground towards a smooth
vertical wall whichis 20m from O. The particle hits the wall when travelling
horizontally. If the speed of projection is 25ms™! find the two possible angles
of projection. If the coefficient of restitution between the particle and the wall
is §, find the distance from the foot of the wall of the point where the particle
hits the ground.

16) A particle is projected from a point O on level ground towards a smooth
vertical wall 30m from O. The particle hits the wall when travelling
horizontally with a speed of 15ms™. Find the al velocity of the particle,
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Show that the time taken by the particle to reach the ground again s
independent of the coefficient of restitution between the particle and the wall,

17) A bomb is to be dropped from an aeroplane which is flying steadily at
1000m with a speed of 200ms™. How far (horizontally) should the plane be
from the target before it releases the bomb and how long will it take the bomb
to hit the target which is on the ground.

18) Two particles P and Q are fired simultaneously from two points A and
B on level ground with speeds of projection u and 2u respectively. P is
projected so as to achieve its maximum range which is AB. If the particles
collide, find the angle of projection of Q. Find also, in terms of  and g, the
height at which the particles collide.

19) Two particles are projected simultaneously from two points A and B on
level ground and a distance of 150m apart. The first particle is projected
vertically upwards from A with an initial speed of ums™ and the second
particle is projected from B towards A with an angle of projection a. If the
particles collide when they are both at their greatest height above the level of
W
AB, prove that tana 1503.
20) Two particles are projected simultancously from a point O with the same
initial speed but with angles of elevation a and 90°—a. Prove that the range of
the two particles is the same and show that at any time during their flight the
line joining them is inclined at 45° to the horizontal.

MULTIPLE CHOICE EXERCISE 9
(Instructions for answering these questions are given on page x.)

TYPEI

1) Aball is thrown with a speed of 20ms™ at an angle arctan} to the
horizontal. Its horizontal component of velocity two seconds later is:

(2) 4ms™  (b) 32ms™ (c) O (d) 12ms™ (e) 16ms™.

2) A projectile is given an initial velocity of i~2j. Its horizontal component
of velocity three seconds later is:

(@ Vsms™? (b)) ~2ms™? () Ims? (d) —1ms? (e) —29ms.
3) A projectile is thrown from a point which is 1 m above ground level. Taking
Op vertically upward it hits the ground whes
@ %=0 ®y=-1 ©@©r=1 @y=0 (=
4) A projectile is thrown from ground level with an initial velocity i+ 3j.
It reaches its greatest height above ground level after:

(@) 0245 (b) 03s (¢) 085 (d) 3s (e) Ss.




Projectiles 287

5) A projectile is thrown with initial speed of 30ms™. Its maximum
horizontal range is:
(a) 900m (b) 30m (c) 300m (d) 90m (¢) Im.

6) A projectile is given an initial velocity of i+2j. The cartesian equation of
its path
@ y=2—5 (b) 4p=2—5"* (¢ 3y=6x—25x°
(@) y=2x+5x (¢) 4y =2x+5x?

7) A stone is thrown from a height of 10m sbove the ground with an initial
velocity of 10ms™ at 30° below the horizontal. Taking Oy vertically
downward, it hits the ground when:

@ =5 (b) F==5 () F=15 (@F=—15 () ¥=0.

TYPE N

8) A particle is projected from ground level. Oy is taken vertically upward.
When the particle reaches its greatest height above ground level:

@ y=—g (©)y=0 () *=

9) A projectile is fired with initial speed u 50 as to achieve the maximum
horizontal range.

102

W
(b) The horizontal component of its velocity is }u.
(c) The angle of projection is 45°.

(a) The equation of its pathis y =

10) A particle is projected from a point A with initial speed u at an angle &
to the horizontal. lts horizontal range is R.
(a) The particle would have the same horizontal range if the angle of projection
was 90°—a.
(b) The time of flight is ——.
cosa
w?sin®a

(c) The particle reaches a maximum height of above A.

11) A projectile is projected from a point O on level ground with initial
velocity u at 45° to the horizontal. When it hits the ground:
(@ y=0,

uy/2
(b) It has been in the air for a time  ——,

10
() x=0.
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TYPE IV

12) A particle is projected from a point O on level ground towards a wall
which it hits normally. Find how far from O the particle hits the ground again.
(a) The coefficient of restitution between the particle and the wall is §.

(b) The horizontal component of initial velocity is 10ms™.

(¢) The distance of the wall from O is 30m.

13) A particle is projected from a point O to hit a target which s level with 0.
Find the two possible angles of projection.

(a) The targetis 100m from O.

(b) The mass of the projectile is 0.005 kg.

(c) The initial speed of the projectile is 35ms™".

14) A particle is projected towards a wall which it hits normally. Find the time
taken by the particle to reach ground level again.

(a) The wallis 20m from the point of projection.

(b) The initial speed of the projectile is 30ms™.

(c) The coefficient of restitution between particle and wall is .

15) A particle is projected so that it just clears a wall. Find the

of the projectile.

(2) Thewallis Sm_ high.

(b) The foot of the wall is 30m horizontally from the point of projection.

(c) The particle is moving at an angle of arctan } to the downward vertical as it
passes over the wall.

I velocity

16) Two particles A and B are fired simultaneously towards each other from
two points on level ground. Determine whether the particles collide.

(8) The two points of projection are SOm apart.

(b) The initial speed of A is 15m
(c) The initial speed of B is 0msn

17) A stone is thrown into the sea from the top of a cliff. Find how far from
the base of the cliff the stone hits the sea.

(a) The stone is in the air for 1.5 seconds.

(b) The cliff is 20m high.

(c) The initial horizontal component of velocity is 10ms™.

MISCELLANEOUS EXERCISE 9

1) A tile slides down a roof inclined at 20° to the horizontal starting 3 m
from the edge of the roof. Assuming that the roof is smooth find the horizontal
distance from the edge of the roof that the tile hits the ground if the edge of the
100f is 8m above ground level.
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2) Two particles are projected simultaneously from the same point with angles

of projection a and § and initial speeds u and . Show that at any time

during their flight the line joining them is inclined to the horizontal at
usina—vsing

arctan —————————

ucosa—vcosp

3) At what point during its flight is the speed of a projectile minimum? A

particle is projected from a point O on a horizontal plane with an angle of

projection a. Show that the ratio of the greatest speed to the least speed during

the flight is 1:cosa.

4) A projectile is fired from a point 0. The speed of the projectile when at ts
greatest height & above O is v/(2/5) times its speed when at height /2
above 0. Show that the initial angle which the velocity of the projectile makes
with the horizontal is /3. Uof Lyp

5) A ball s projected with speed 20m/s at an angle of 60° to the horizontal.
Find the time taken for the ball to travel 10m horizontally. Find also the height
of the ball above the level of the point of projection when it has travelled a
horizontal distance of 10m.

[Take g as 10m/s.] (UofL)

6) A particle is projected from a point O with initial speed u to pass through
a point which is at a horizontal distance a from O and a distance b vertically
above the level of 0. Show that there are two possible angles of projection. If
these angles are &y and @y prove that tan (ay+ag) = —(a/b).

7) A particle is projected with speed ums™ atan angle a to the horizontal.
Find the direction in which it is moving after ¢ seconds. A particle is projected
from a point O and after ¢ seconds passes through a point P travellingin a
direction perpendicular to the direction of projection. Prove that  OP = 4gz?.
(AEB)
8) A stone thrown upwards from the top of a vertical cliff 56m high falls into
the sea 4 seconds later, 32m from the foot of the cliff. Find the speed and
direction of projection. (The stone moves in a vertical plane perpendicular to

the cliff.) A second stone is thrown at the same time, in the same vertical plane,
at the same speed and at the same angle to the horizontal, but downwards. Find
how long it will take to reach the sea and the distance between the points of
entry of the stones into the water.

[Take g tobe 10m/s*.] (UofL)

9) A particle is projected from a point on horizontal ground with velocity ¥’
and angle of elevation c. Prove that the greatest height reached above the

v
groundis — sin*a.
2

A bowler bowls a ball at the wicket which is 20 metres away from him
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‘measured horizontally. The ball leaves his hand 2 metres above the ground and
without hitting the ground, passes through a point which is vertically above the
wicket and §metre vertically above the ground. The highest point reached by
the ball is 3 metres above the ground. Find the angle of elevation at which the
ball is projected. Show that the angle made with the horizontal by the direction
of motion of the ball when it passes over the wicket is arctan .

Find the time between the instant when the ball leaves the bowler’s hand and
the instant when it passes over the wicket.

10) A particle is projected under gravity with speed ¥ from the point O, the
angle of projection being a above the horizontal. The particle rises to a vertical
height H above O and its range on the horizontal plane through O is R.
Prove that

v v
(2) H=~—sin*a (b) R=—sin2a

Deduce that  16H?—~8RoH+R*=0 where Ro is the maximum range for
the given speed of projection.

Giventhat Ro=200m and R=192m, find the two possible values of
H, and the corresponding values of a. (IMB)

11) A particle is projected with speed « at an elevation a to the horizontal.
Calculate the greatest height reached and the horizontal range.

The maximum horizontal range a particle can achieve with an initial speed «

is R. If a particle projected with speed u has a horizontal range 3R, calculate
the two possible angles of projection. Show that the difference in the maximum
heights attained with these angles of projection is 2R. (AEB)

12) A particle is projected from the origin O with velocity ¥ at an angle of
clevation 0 to the horizontal. Show that its height y above O when it has
g¥sec’d
travelled a distance x horizontaly is given by y =x tan —= "
Aball thrown from O with speed 1400 cm/s is caught at a point P, which s
1000 cm horizontally from O and 187.5cm above the level of O. Find the
two possible angles of projection. If the ball is thrown from O with the same
initial speed to pass through a point 562.5cm vertically above P, show that
there is only one possible angle of projection. (Uof L)

13) A particle is projected with speed ¥ at an angle a to the horizontal. Show
that its greatest height above the point of projection during its flight is
(V?sin*a)/(2g). A ball is projected from a point at a height a above
horizontal ground, with speed ¥ at an angle @ to the horizontal. At the highest
point of its flight it impinges normally on a vertical wall and rebounds.

Show that the horizontal distance from the point of projection to the wall is
(V¥sinacos)fg and that the time taken by the ball to reach the ground after
the impact is  V/(V?sin? a+ 2ga)/g. (Uof L)
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14) 1f a particle s projected with speed u at an angle of elevation & show that
the horizontal range is (4*sin 2a)/g and the maximum height attained is

(@ sin® @)/ 2g.

A golf ball is struck so that it leaves a point A on the ground with speed 49 m/s
at an angle of elevation a. If it lands on the green which is the same level as A,
the nearest and furthest points of whichare 196m and 245m respectively
from A, find the set of possible values of a. Find also the maximum height
the ball can reach and still land on the green.

‘There is a tree at a horizontal distance 24.5m from A and to reach the green
the ball must pass over this tree. Find the maximum height of the tree if this ball
can reach any point on the green.

(Assume the point A, the green and the base of the tree to be in the same
horizontal plane.) (AEB)

15) The height of a vertical mast OP is 4 high and it stands with O on the

horizontal ground.

(a) Two particles are projected simultaneously from P in the same vertical
plane with the same speed, but with different angles of projection. Show
that the distance between the particles increases uniformly with time.

(b) If a particle is projected vertically upwards from O with velocity ¥ and a
second particle is projected at the same instant from P with velocity ¥’
and angle of projection 6 show that they are at their shortest distance
apart after time  4/(2V), and find this shortest distance. ©

16) A boy throws a ball with initial speed 2+/(ag) at an angle 6 to the
horizontal. It strikes a smooth vertical wall and returns to his hand. By
considering the vertical motion show that the time of flight is 4(a/g)* sin6.
By considering the horizontal motion, show that if the boy is standing at a
distance @ from the wall the coefficient of restitution between the ball and the
wall equals

1/(4sin20—1).
Deduce that the angle 8 cannot be less than 15°, (Uof L)

17) Two boys stand on horizontal ground at a distance a apart. One throws a

ball from a height 2/ with velocity ¥ and the other catches it at height 4. 1f

6 is the inclination above the horizontal at which the first boy throws the ball,

show that ga® tan*0 — 21z tan 0 +ga* —2V*h = 0.

When a=2v/2h and V?=2gh, calculate:

(a) the value of 0,

(b) the greatest height attained by the ball above the ground, in terms of /.
(AEB)
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18) Two particles are projected with the same speed from the same point. The
angles of projection are 2a and « and a time 7 elapses between the instants
of projection. If the particles collide in flight, find the speed of projection in
terms of T and a.

If the collision occurs when one of the particles is at its greatest height, show
that a isgivenby 4 cos'a —costa—1=0. (AEB)

19) Two equal particles are projected at the same instant from points A and B
at the same level, the first from A towards B with velocity u at 45° above
AB, and the second from B towards A with velocity v at 60° above BA.

If the particles collide directly when each reaches its greatest height, find the
ratio v*:u® and prove that u®=ga(3—+/3), where a is the distance AB.
After the collision the first particle falls vertically. Show that the coefficient of
restitution between the particlesis (V3 — 1)(v/3 +1). (JMB)

20) A particle is projected with speed I and angle of elevation a from a
point 0. Show that the equation of the path of the particle, referred to
horizontal and vertical axes Ox and Oy respectively in the plane of the path,
is

¥ = x tana—(g/2V ) secar,
A particle is projected at an elevation a, where tana=3, from a point A
on a horizontal plane distant 100m from the foot of a vertical tower of height
50m. The particle just clears the tower and lands at a point B on the horizontal
plane. Determine the initial speed of the particle and the distance AB. Find
also the greatest height reached by the particle above the plane.
[Take g as 10m/s®] (Uof L)

21) A particle is projected with speed u at an angle of elevation @, where

tana=3. Find,in terms of u and g, the height of the particle when its

speed is Ju. Find also the directions in which the particle is moving at this

height.

If the velocity of the particle makes an angle of 45° with the horizontal at

times 7, and 7, (where ;> ry) after projection, show that 1, = 2¢y.
(UofL)

22) An aircraft is flying with speed ¥ in a direction inclined at an angle &
above the horizontal. When the aircraft is at height /, a bomb is dropped.
Show that the horizontal distance R, measured from the point vertically below
the point at which the bomb is released to the point where the bomb hits the
ground, is given by

gR = }V?sin2a+ V(2gh+ Visintah cosa. (Uof L)



CHAPTER 10

MOTION IN A CIRCLE

TYPES OF ACCELERATION

A body has an acceleration whenever its velocity is not constant. Velocity is a
vector quantity however and may change either in magnitude (i.c. speed) or in
direction or both. In all cases a force must act on the body to produce an
acceleration, the direction of the force determining the particular type of
acceleration.

(a) A change in speed occurs when a force acts in the direction of motion of
the body to which it is applied. Such a force cannot cause any change in the
direction of the velocity.

(b) A change in direction at constant speed is caused by a force perpendicular
to the direction of motion of the body. Such a force will push or pull the
body off its previous course but will not affect the speed since there is no
force component in the direction of motion..

(c) If both speed and direction of motion are to be changed 2 force with
components both parallel and perpendicular to the direction of motion is

required
| AN
—D> e——> ~—> >

@ (o) ]

Type (a) Acceleration of this type has already been studied in Chapter 4 and
needs no further analysis here.

Types (b) and (c) A body whose direction of motion is not constant traces out
a curved path of some sort. The curve described depends upon the forces which
are acting on the body.

In this chapter our analysis is concentrated on motion in one particular curve,
the circle.
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MOTION IN A CIRCLE WITH CONSTANT SPEED

Consider a particle P describing a circle, centre O and radius r, at constant
speed 7.

As there is no change in speed, no force component acts in the direction of
‘motion, which is tangential at any instant.

A force must be acting on the particle however as the direction of motion is

not constant.

This force must therefore act along the radius, producing a radial acceleration.

The Magnitude of the Radial Acceleration

Suppose that the particle travels from a point Py to an adjacent point P, in
time 8¢ and that the angle P,OP, is 80.

AN

In the direction of P,0, the acceleration is given approximately by

increase in velocity along P,0 from Py to Py

time taken to travel from Py to Py

vsind0
5t

860
Nowas 80 - 0, sind6 - 50 and ;‘

de
So the acceleration at Py towards 0 is 7
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i the angular velocity of the particle, which we will denote by

2
and we know from Chapter 4 that ©=res o w="-
o )
Hence v5-=vw=(ww or v[>|
dar r

. the radial acceleration of a particle travelling with constant speed v in
acircle of radius  is towards the centre and is of magnitude

e
— or  rw?
r

It therefore follows that a particle can describe a circle with constant speed only
when it is acted upon by a force of constant magnitude towards the centre

) : v
producing a radial acceleration whose constant magnitude is or rei
r

Note that it is only the magnitude of the acceleration that is constant. The
acceleration itself is not constant as its direction is continuously changing.
EXAMPLES 102

1) A particle of mass m is attached by a light inextensible string of length ! to
afixed point A onasmooth horizontal table. If it is travelling with constant
angular velocity « in a circle what is the tension in the string and the reaction
with the table?

G
e
v

Vertical section

Plan
In this problem the force acting on the particle towards the centre is 7, the
tension in the string. As the particle is travelling in a horizontal circle, its vertical
acceleration is zero.
Vertically  (zero acceleration) R=mg
Horizontally ~(Force = mass x acceleration) T = mlcw?

fon = mlc?
Therefore | Tension = mic

Reaction = mg
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2) Acar of mass M is turning a comner of radius r. The coefficient of friction
between the wheels and the horizontal road surface is 4. What is the maximum
speed at which the car can turn the corner without skidding?

v,
R,
R
N
g
Vertical section Plan

At maximum speed the central acceleration is also greatest and requires the
‘maximum frictional force. Hence, at maximum speed ¥, friction is limiting.

Vertically  (zero acceleration) R=Mg
. My
Horizontally ~(Force = mass x acceleration) R ="
r
2 o
Eliminating R gives PR L e
g g

Therefore at maximum speed ¥ = Vg

Note. The frictional forces associated with the motion of a vehicle are quite
complex. At this stage we are considering only the friction that acts
perpendicular to the direction of motion; this is called the lareral friction.

EXERCISE 10a

1) A particle of mass m kg is travelling at constant speed yms™ round a

circle of radius rm.

(@ 1If v=8 and r=2 find the magnitude of the central acceleration.

(b) I the force acting towards the centre of the circle is of constant magnitude
6N, m=4 and v=3, find the value of r.

2) A circular tray of radius 0.2m has a smooth vertical rim round the edge.
The tray is fixed on a horizontal table and a small ball of mass 0.1kg is set
moving round the inside of the rim of the tray with speed 4ms™". Calculate
the horizontal force exerted on the ball by the rim of the tray.
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3) A car of mass 400kg can turn a coner at 40kmh™" without skidding but
at SOkmh™ it does skid. If the corner is an arc of a circle of radius 20m,

find values between which g1, the coefficient of friction between the wheels
and the road surface, can lie.

4) A disc s free to rotate in a horizontal plane about an axis through its

centre O. A small object P is placed on the disc so that OP = 0.2m. Contact
between the particle and the disc is rough and the coefficient of friction is 0.5.
The disc then begins to rotate. Find the angular velocity of the disc when the
particle is about to slip.

5) A particle of mass 0.4 kg is attached to one end of a light inextensible

string of length 0.6 m. The other end is fixed to a point A on a smooth

horizontal table. The particle is set moving in a circular path.

(a) If the speed of the particle is 8ms™ calculate the tension in the string and
the reaction with the table,

(b) If the string snaps when the tension in it exceeds SON, find the greatest
angular velocity at which the particle can travel.

Conical Pendulum

Consider an inextensible string of length / which is fixed at one end, A.
At the other end is attached a particle P of mass m describing a circle with
constant angular velocity « in a horizontal plane.

Z

Vertical section

As P rotates, the string AP traces out the surface of a cone. Consequently the
system is known as a conical penduum.

Vertically Tcosd = mg n

Horizontally Tsing = mre? B3]
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In triangle AOP = Ising 0]
and = lcosh 0]
Several interesting facts can be deduced from these equations:
(@) Itis impossible for the string to be horizontal.
‘This is seen from equation [1] in which cosg = 7': which cannot be zero.
Hence 0 cannot be 90°.
(b) The tension is always greater than mig.
This also follows from equation [1] as cosd <1 (0 is acute but not zero).
Hence T>mg
(¢) The tension can be calculated without knowing the inclination of the string
since, from equations [2] and [3]
Tsind = mising o
- T=mo?

(d) The vertical depth /i of P below A is independent of the length of the
string since from equations [1] and [4]

h Img
f A L
1o "
But T = miw?
s
Therefore mi? = ’;’—g
i
& PP
- n=% whichisindependent of I
]

EXAMPLES 10b

1) An inextensible string of length 2m is fixed at one end A and carries at its
otherend B a particle of mass 3kg whichis rotatingin a horizontal circle whose
centreis 1 m vertically below A. Find the angular velocity of the particle and
the tension in the string.
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Vil 3
A

P— rw?
\
Vertical section - Plan
Vertically ~ (zero acceleration) ~ Tcosf = 3g m
Horizontally ~(Newton's Law) Tsind = 3re? 2]
cosd =} 3]

In triangle AOB ; b= 2dm0 W
(3] and [4] give 6 =4m r=v3
[2) + [1] gives tanf = rw?g
Hence V3=l = wt=g
In[1] Tx} =3 = T =6g

The angular velocity is v/gms™ and the tension in the stringis 6g N.

2) Two light inextensible strings AB and BC each of length / are attached to
a particle of mass m at B. The other ends A and C are fixed to two points in
avertical line such that A is distant / above C. The particle describes a
horizontal circle with constant angular velocity w.
Find () the tension in AB,

(b) the least value of @ so that both strings shall be taut.

A

(T, + Ty)sin60°
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Vertically Ty c0s60° = T;c0860°+mg 1}
Horizontally (Ty+ T sin60° = mres? 21
In triangle AOB r = Isin60° 31
Simplifying [1] gives Ty=T; = 2mg [d]
(2] and [3] give Ty+ Ty = mie? 51
[4] and (5] give 2Ty = g+ mie?

So the tension in AB is mg -+ jmlw?

The string AB can never be slack but the string BC could become slack.

In order that it shall remain taut, T must not become negative, ie. T3>0
[4] and [5) give 2T, = miw*—2mg

If 7,20, then miw®>2mg.

‘Therefore in order that both strings shall be taut, «?> ZTK

3) A light inextensible string of length 3/ is threaded through a smooth ring
and carries a particle at each end. One particle A of mass m isat rest ata
distance / below the ring. The other particle B of mass M is rotating in a
horizontal circle whose centre is A. Find the angular velocity of B and find
m in terms of M.

Since two separate particles are involved we must analyse the state of each.
As the ring is smooth, the tension is the same in both sections, BC and AC, of
the string.

Formass A (in equilibrium): T=mg m
For mass B:
Vertically Tcosf = Mg 2]

Horizontally Tsind = Mre? 31
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In triangle ABC cosd = U2 = § 141
= 2sin6 151

[4] and [5] give 0=60° and =3l

n 2] Td)=M = T=2g

But T=mg

‘Therefore m=2M

In 3]

But T=2Mg so Mgy/3=M3lw?
Therefore w = Vel

4) The base of a hollow right cone of semi vertical angle 30°, is fixed to a
horizontal plane. Two particles each of mass m1 are connected by a light
inextensible string which passes through a small smooth hole in the vertex V
of the cone. One particle, A, hangs at rest inside the cone. The other particle
B moves on the outer smooth surface of the cone at a distance / from V, ina
horizontal circle with centre A. Find the tension in the string, the angular
velocity of B and the normal reaction between B and the cone.

The tension is the same in both portions of string since the hole is smooth.

1
1€ the portion B i of length 1, the radius of B’ cireular path i /sin30° =—

For particle A (in equilibrium) T = mg U]
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For particle B

vertically T'cos30°+R sin30° = mg [El]
e ° !
horizontally Tsin30°—R c0s30° = m Ew’ 3]
Simplifying, we have: T=mg 8]
V3T+R = 2mg 2]
T—3R = mic? 3]
Eliminating R from [2] and [3) = 4T = 2/3mg+mic®
From [1] dmg = 2/3mg +miw?
- W = (4~z\/3)%
From [1] and [2] R = 2mg—+/3mg
- R = (2-3)mg

Therefore the tension in the string is  mg,
H
the angular velocity of B is [»2,5(277\/3)] f
and the normal reaction at B is  (2—/3)mg.

EXERCISE 106
1) One end of a light inextensible string of length 1 m is fixed. The other end is
attached to a particle of mass 0.6kg which is travelling in a horizontal circular
path of radius 0.8 m. What is the angular speed of the particle?

2) Alight inelastic string of length 1.2m, fixed at one end, carries a particle P
of mass 2kg at the other end. If the tension in the string is not to exceed
40N, what is the maximum angular speed at which the particle can travel in a
‘horizontal circle?

3) A particle of mass m is attached to one end of a light inelastic string of
length { the other end of which is fixed. If the particle is moving in a horizontal
circle with the string inclined at an angle @ to the vertical find an expression for
its angular velocity.

4) A ring of mass 0.6kg is attached toa point P onastring AB of length
14m, where AP is 0.8m. Theends A and B are attached to two points
1.0m apart in a vertical line, A being above B. The ringis made to travel ina
horizontal circle with speed vms™.

(2) What is the smallest possible value of o if neither portion of string s slack?
(b) If v=42ms™ calculate the tension in the portion AP of the string.
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5) A particle of mass m, attached to the end A of a light inextensible string
describes a horizontal circle on a smooth horizontal plane. The string is of
length 2/ and the other end B s fixed,

(a) toa point on the plane.

(b) toa point which is at a height 1 above the plane.

If the angular velocity of the particle is <, find, in each case, the tension in the
string and the reaction between the particle and the plane, giving your answers
interms of m, I and .

6) Two particles A and B of masses m and M respectively are connected by
a light inelastic string of length 3/ which passes through a smooth swivel at a
fixed height. If A can be made to perform horizontal circles about B as centre
while B is at rest at a depth / below the swivel, find the value of M:m and
find, in terms of / an expression for the angular velocity of A.

7) Two particles of equal mass are connected by a light inextensible string of
length 1m which passes through a small smooth-edged hole in a smooth
horizontal table. One particle hangs at rest at a depth 0.5m below the hole.
“The other particle describes a horizontal circle on the table. What i its angular
velocity?

8) A smooth ring of mass m is threaded on to a light inelastic string of
length 8/ whose ends are fixed to two points A and B distant 4/ apartin a
vertical line (A above B). Calculate the tension in the string when the ring
describes horizontal circles about B as centre.

Itis impossible for the ring to describe horizontal circles mid-way between the
levels of A and B. Explain why this is so.

9) Anelastic string AB of natural length a and modulus of elasticity 2mg,
has one end, A, fixed. A particle of mass m is attached to the end B and
performs horizontal circles with angular velocity /3g/4a. Find the extension
in the string and the cosine of the angle between the string and the vertical.

Banked Tracks

A vehicle which travels round a bend on horizontal ground relies entirely on
the frictional force at the wheel base to provide the necessary central force.
Because the magnitude of the frictional force is limited, the central acceleration,
2
., and hence the speed of the vehicle, are also limited (see Examples 10a).

r

1f, however, the road surface is not horizontal, this limitation can be overcome
to some extent.
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Consider a vehicle of mass 1 travelling at speed ¥ round a bend of radius r

on a road which is banked at an angle 9.
v
[ Y S — E-I
[

Vertical section Plan

A force of Rsin@ acts towards O, the centre of the circular path.

»
Therefore Rsing = "'r— m
Vertically (no acceleration) R cos8 = mg 21
By climinating R wesee that V7 = rg tand

So the vehicle can travel at a speed ' =+//gtan@ without any tendency to
side-slipand V' is called the design speed of the track.

The greater the value of 8, the faster the vehicle can round the bend without
tending to slip.

Ifaspeed v, greater than the design speed, is used then the force Rysin8 is
insufficient to provide the necessary central acceleration. The vehicle will tend
10 slip outwards from the circular path and a frictional force will oppose this
tendency, up to its maximum value of uR;.

W
PTG
Vet seton o
mv,?
Towards O (Newton'’s law) Rysind + R, cosd = "0 1w
v
Vertically (no acceleration) Rycosd —pRysind = mg 2
sin -+ cos 6
Dividing [1] by [2] gives vi=rg -—“—)
cos0—using)
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The vehicle can therefore travel without slipping round the bend at a speed vy,
greater than the design speed Vg tanf, when both friction and the banking
of the track contribute to the central force.

Ataspeed oy, less than Vg tan8, the component of reaction, R, sin0,
causes an acceleration greater than is required to keep the vehicle on a circular
path. In this case the vehicle tends to slip down the banked track; this tendency
is opposed by a frictional force acting outwards.

w<n
plan
Verticalsection
m
Towards O (Newton’s law) Rysind—pR; cosd = n
r
Vertically (no acceleration) Racosl+uRysind = mg 2]

(sin@ — p cos §'
Dividing [1] by [2] gives o7 = @(7“,)

(cos6 + asing)
This gives the speed v, which is the lowest possible speed at which the vehicle
can travel round the track without slipping downwards.

EXAMPLES 10¢

1) A car s travelling round a section of a race track which s banked at an angle
of 15° The radius of the track is 100m. What is the speed at which the car
can travel without tending to slip?

®

If there is no tendency to slip there will be no lateral frictional force.

mv?

Horizontally (Newton’s law) Rsin15° = 00

Vertically (no acceleration) Rcos15° = mg.
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Hence

ie.

Therefore the design speed is 16.2ms™.

2) A car travelling at 28ms™" has no tendency to slip on a track of radius

tan15° =

o

2

v’

100g
100x9.8x0.2679

200m banked at an angle 6. When the speed is increased to 35 ms™ the car
is just on the point of slipping up the track. Calculate the coefficient of friction
between the car and the track.

@82
200

When there is no tendency to slip, no lateral frictional force acts.

Horizontally
Vertically

Dividing (1] by [2] gives

At a speed higher than 28 ms™ the car tends to slip outwards and friction

acts down the slope.

Rsinf

R cosf

tanf

tand
[

(8)
200

m

mg
8)
200x9.8

04

n
2}



Horizontally
Vertically

Dividing [3] by [4] gives

Dividing by cosf gives

But tanf =04 hence
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2
Ssing+uScoss = m L Bl

200

Scos0—pSsing = mg 4]
sing+ucosd  (35)
cosO—psing  200x98
tanf+p  35x35x10
—utanf  200x98
04+y 5

1-04u 8

3248u=5-2u
100 =138
The coefficient of friction between car and track is 0.18.

3) A railway line is taken round a circular arc of radius 1000m, and is banked
by raising the outer rail hm above the inner rail. If the lateral pressure on the
inner rail when a train travels round the curve at 10m s~ is equal to the lateral
pressure on the outer rail when the train’s speed is 20m s~ calculate the value
of h. (The distance between the rails is 1.5m.)

200
10

Let m be the mass of the train and 6 the

banked.

(a) Horizontally Rsing—Pcosd
Vertically Rcos0+Psind
(1] gives Rsing
(2] gives R cost

®
angle at which the rail track is

10*
=mig 1]
= mg 2
= fym +Pcosf

= mg—Psing
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sing _ gy +Pcost

Dividing gives
e cos0  mg—Psing
Hence mg sing—Psin?0 = fym cosf +Pcos?0
- mg sing — Jym cosf' = P (cos?0 +sin*6 = 1)
20%
(b) Horizontally Ssin0+Pcosd = m5 &)}
Vertically Scosd—Psind = mg 0]
[3] gives Ssing = fm—Pcos
[4) gives Scosd = mg+Psing
sind  fym—Pcosf
Dividing gives e o aet
cosf  mg+Psing
Hence mgsing+Psin0 = fm cosd —P cos*0
- P = fym cosd —mgsind
Now from part (a) P = mgsing — f5m cos0
Therefore fhm cos@ —mgsind = mg sin0 — fym cos
giving dmcos8 = 2mgsing
1
hence tng = —— = 00255
4
But the distance between the rails is 1.5 m.
e _—
— !
7 i
Hence 7= 15sin0
= 1.5x0.0255 (sinf > tan0 because 6 is small)

So the outer rail is raised 0.0383 m above the inner rail.
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EXERCISE 10

1) A road banked at 10° goes round a bend of radius 70m. At what speed
can a car travel round the bend without tending to side-slip?

2) At what angle should an aircraft be banked when flying at 100ms™ ona
horizontal circle of radius 3000 m?

3) A motor car describes a curve of 120m radius on a road sloping downwards
towards the inside of the curve at arctan §. At what speed can the car travel
with no tendency to side-slip?

4) On a level race track a car can just go round a bend of radius 80m ata
speed of 20ms™" without skidding. At what angle must the track be banked so
that a speed of 30ms™ can just be reached without skidding, the coefficient of
friction being the same in both cases? [Take g as 10ms2.]

5) A circular race track is banked at 45° and has a radius of 200m. At what
speed does a car have no tendency to side-slip? If the coefficient of friction
between the wheels and the track is 4, find the maximum speed at which the
car can travel round the track without skidding.

6) An engine of mass 80000kg travels at 40kmh! round a bend of radius
1200m. If the track is level, calculate the lateral thrust on the outer rail. At
what height above the inner rail should the outer rail be raised to eliminate
lateral thrust at this speed if the distance between the rails s 1.4m?

7) A bend on a race track is designed with variable banking so that cars on the
inside of the track can corner at 80kmh™! and those on the outside at

160 kmh™ without lateral friction. If the inner radius is 150m and the outer
radius 165 m, find the difference between the angles of banking at the inside
and outside of the track.

8) The sleepers of a railway track which is turning round a bend of radius 60m
are banked so that a train travelling at 40 km h~!exerts no lateral force on the
rails. Find the lateral force exerted on the rails by an engine of mass 10°kg:

(a) travellingat 30kmh™,

(b) travellingat SOkmh-",

(c) atrest.

State in each case whether the force acts on the inner or outer rail.
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MOTION IN A CIRCLE WITH VARIABLE SPEED
‘The velocity of a particle P travelling on a circular path with varying speed,

is changing both in magnitude and direction. The particle therefore has rwo
acceleration components:

(2) towards the centre of the circle, a component which is the rate of change of
direction of the velocity.
Its magnitude at any instant is v (or rw? but it is not constant when

© varies.

(b) in the direction of motion, i.. along the tangent to the circle at P, a

do
component " which i the rate of increase of magnitude of the velocity.

Motion of this type will result when the forces acting on the particle have both
radial and tangential components. This situation arises when a paticle is
describing a circular path in a vertical plane.

MOTION IN A VERTICAL CIRCLE

A particle can be made to travel in a vertical circular path in a variety of ways.
Some of these involve driving mechanisms and can be fairly complex. Our study
however is limited to simple cases in which the speed of the particle, once it is
set moving, is not affected by any external force other than weight.

In problems of this type the total mechanical energy of the system remains
constant.
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Consider the motion of a small bead of mass m_threaded on to a smooth wire in
the shape of a circle of radius o and centre O. The circle is fixed in a vertical
plane and the bead passes the lowest point A on the wire with speed u. It
subsequently passes with speed v through another point B where angle BOA
is6.

PE 0

1] (i)
Diagram (i) shows the forces acting on the bead, and its acceleration components
at B.

‘The normal reaction R is always perpendicular to the wire and is therefore
perpendicular to the direction of motion and does no work. Consequently the
total mechanical energy remains constant.

Diagram (if) shows the velocities and positions of the bead.
Applying Newton’s law along radius and tangent at B (diagram (i)) we have:

o

Radially R—mgcosf = m > n
a
! do
Tangentially mgsing = —m o 2
Using conservation of mechanical energy (diagram (if)):
Total ME. at Ais Y —mga
Total ME. at B is ymv* —mga cosd
Therefore {mu—mga = ymv*~mga cosf £}

Equation [1] shows that R has its greatest value at A,

mv?
since R=mgcﬂsﬁ+ﬂ—. cos§<1 and v<u.
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Equation [3] gives, in terms of u, the speed  at any specified position.
Using this expression in equation [1] gives the value of R at that position,
Equation [2] gives the tangential acceleration at a specified position.

These three equations can be used to analyse the motion of a particle describing
avertical circle in slightly different circumstances:

1) A particle attached to one end of a
light rod which is free to rotate about
a smooth fixed axis through the other
end of the rod. In this case, the force,
7, in the rod acts in the same way as
the reaction, R, between the wire and
the bead.

2) A particle rotating on the inside

%
of a smooth circular surface. Again T
we have a normal reaction R between e
the surface and the particle. w_/

Vg

3) A particle rotating at the end of
a light string whose other end is
fixed. The tension, 7, in the string
helps to provide the force towards
the centre of the circle in this case.
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4) A particle moving on the outside of
a smooth circular surface, This case is

rather different from all the others, sqk
since the normal reaction, R, exerted

on the particle always acts outward ¢
from the centre. Hence only the weight

of the particle can provide any force v) &

towards the centre and clearly this can
happen only in the upper part of the
circle. So the particle can remain in
contact with the upper section only

of the surface. Equations similar to
those already derived can be found

to analyse this form of circular motion,
as shown below.

Tk
&
@
v
mv?
Newton’s Law: ¢ mgcosd—R = — W]
4
v
~ ind = m-— 2]
mgsind = m - 2]
Conservation of M.E. Y+ mga = §mv*+mga cos 6]

Although the general analysis of all these cases is similar, there are in fact two
different groups of problems which must now be considered separately:

(@) those in which the particle cannot move off the circular path, .g. the bead
threaded on the wire and the particle attached to the light rod;

(b) those in which the particle can leave the circular path and travel in some
other way, e.g. the particle at the end of a string or moving on a circular
surface. For these, circular motion is performed only while the stringis taut
o the particle is in contact with the surface.
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Motion Restricted to a Circular Path

Using the case of the bead threaded on the wire, we see that the bead may:
(a) pass through the highest point of the wire and go on to describe complete
circles,
(b) come momentarily to rest before reaching the highest point and
subsequently oscillate.

If the bead passes through the highest € >
point, then >0 at the top.
Using conservation of ME  gives

€

Yt = yme+ 2mga
= v =ul—dga
But 2>0
Hence  u? > 4ga PE.zero Y

=z

) If the bead comes momentarily to
rest at some point A, then
v=0 when f=e
Using conservation of M.E. gives
Jmut = mga(1—cos)
u

= cosa = 1—i

22

Note: Because the bead cannot leave the wire, the only condition necessary for
it to describe complete circles is that irs velocity is greater than zero at the
highest point. If the velocity were to become zero at the top, the particle would
remain there in unstable equilibrium.

EXAMPLES 10d

1) A particle of mass 2kg is attached to the end B of alight rod AB of
length 0.8m which is free to rotate in a vertical plane about the end A. If the
end B, when vertically below A, is given a horizontal velocity of 3ms™
show that the particle will not describe complete circles. Find the angle through
which it oscillates and the greatest stress in the rod during the motion.
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0]

Using conservation of mechanical energy (diagram (ii)) gives
4x2x32-2¢(0.8) = }x2x2*—2g(0.8)cosf
If v=0, 28(0.8)cosf = 2¢(0.8)—9
15689
15.68

- cosf = 0425

Therefore =0 when 0=648" and the particle comes to rest before it
reaches the top of the circular path. So the particle oscillates through 129.6°

Applying Newton'’s law towards the centre (diagram (i) gives

2x0?

08

T—2gcosh =
T isgreatestwhen 0=0 and v=3.

Therefore the maximum tension is (‘%*'Zg) N = 42N

2) A small bead of mass 2kg is threaded on to a smooth circular wire of radius
0.6m, which is fixed in a vertical plane. If the bead is slightly disturbed from
rest at the highest point of the wire, find its speed when it reaches the lowest
point. Find also the height above the centre, of the point at which the reaction
between the bead and the wire becomes zero.
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Using conservation of mechanical energy from A to C gives

0+2(0.6) = §(20,") — 2¢(0.6) 0
= v = 4g(0.6)
‘Therefore the speed at the lowest point is 4.84ms™.

Applying Newton's law radially at B gives

R+ 2gcos0 = 20 2
20080 = 22 2
Using conservation of mechanical energy from A to B gives

0+28(0.6) = $(20%) + 26(0.6 cos0) Bl

If B is the point where the reaction becomes zero, [2] gives
o = 0.6g cos6

Then (3] becomes

2¢(0.6) = 0.6g cosd + 1.2g cosf
= cosd =}
Hence OB = 3(06)m = 04m
‘The point where the reaction is zero is 0.4m above the centre.
Note. Below the level of B the reaction between the bead and the wire acts

towards the centre but above this level, where cos@ >3, R is negative
showing that the reaction acts outwards, away from the centre.



Motion in a Circle 317

3) Alight rod of length / is free to rotate in a vertical plane about one end. A
particle of mass m is attached to the other end.

When the rod is hanging at rest vertically downward, an impulse is applied to the
particle so that it travels in complete vertical circles. Find the range of possible
values of the impulse and the tangential acceleration when the rod is inclined at
60° to the downward vertical.

T d

First, using impulse = change in momentum we have
J=mu nl
Using conservation of mechanical energy gives
ymut—mgl = mv?—mglcosg 2l
Applying Newton's law tangentially gives
dv
—mgsing = m @ Bl
If the particle is to describe complete circles, ~ v>0 when 6 = 180°
When 0=180°, [2]gives ©* = u®—2gl+2gl cos180°
- v} = - dgl
But v>0 therefore ut > 4gl

= u> Vgl (u cannot be negative)
Hence, from (1] J > 2mvel

Therefore the value of the impulse must exceed  2mV/gl

When 0 =60°, equation (3) becomes n@% = m%

So the tangential acceleration is gv/3
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EXERCISE 104
1) Alight rod of length 1 m is smoothly pivoted about a horizontal axis
through one end A. A particle of mass 2kg attached to the other end B is
released from the position when B is vertically above A. Find the tension in
the rod and the velocity of the particle when AB makes an angle with the
upward vertical of:

@) 90° (b) 120° (o) 180",

2) Abead of mass 1.5 kg is threaded on to a smooth circular wire of radius
1.5m fixed in a vertical plane. The bead is projected from the lowest point on
the wire with speed (a) vVAgms™  (b)vBgms™  (c)vBgms.

In each case determine in what way the bead moves on the wire (giving particular
care to part () and calculate the greatest value of the reaction between the

bead and the wire.

3) A particle of mass m is attached to the end A of a light rod AB of
length 1/, free to rotate in a vertical plane about the end B. The rod is held with
A vertically above B and the particle is projected from this position with a
horizontal velocity u. When the particle at A is vertically below B it collides
with a stationary particle of mass 2m and coalesces with it. If the rod goes on
1o perform complete circles find the range of possible values of u.

4) A small bead of mass m is free to slide on a smooth circular wire of radius @
fixed in a vertical plane. If the bead is slightly disturbed from rest at the highest
point of the wire, find the reaction between the bead and the wire, the velocity
of the bead and the resultant acceleration of the bead, when the bead has
rotated throu

(@) 90° (b) 120° (c) 180°.

5) Alightrod AB of length 1m is free to rotate in a vertical plane about an
axis through A. A particle of mass 1kg is attached to B. If the particle is
projected from its lowest position with speed  3yZ9ms™, show that the
particle describes complete circles. Find the vertical height above A of the

end B when the stress in the rod is zero.

6) Twobeads A and B of masses 7 and 2m respectively are free to slide in
a vertical plane round a smooth circular wire of radius @ and centre O. The
bead A is at rest at the lowest point C of the wire while B is released from rest
at a point on the same level as O. If the coefficient of restitution between the
beads is §, find the height above C to which each particle rises after impact.

Motion not Restricted to a Circular Path

As an example of this case let us consider the motion of a particle rotating at
one end of a light string fixed at its other end.
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This time the particle can travel in one of three ways. It may:

(2) pass through D while the string is still taut and go on to describe complete
circles;

(b) oscillate below the level of O, the string always being taut within this lower
semicircle;

(c) cease to travel on the circle at some point between C and D when the
string becomes slack, subsequently moving as a projectile until the string
becomes taut again.

Using Newton’s law and conservation of mechanical energy in the diagrams
above we get

0
T—mg cosf = - n
a

and Ymut—mga = §mv*—mga cosd [5)]
mv?

Hence T = mgcos+ —
a
m o,

- T = mg cos0+ (" ~2ga°+ 2ga cos)

—2g+zgcosa>

() For complete circles, the string must be taut in the highest position
ie. T>0 when 6=180°.

)
Hence “ > %-3gcos 150°

= w? > Sga
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Note: It is not sufficient in this case that

>0 at the highest point, as the /

particle could be moving inside the I

circle with velocity » when 0 = 180°. \
~

The essential conditionis 7>0 when 6= 180"

(b) For oscillations the particle comes momentarily to rest at a point on, or
below, the level of the centre O, ie. v=0 when 0<90°.

L 0
L -
- when
But §<90° so cosd >0 hence u* < 2gu.

Inequation [2]  cos =

In both (a) and (b), the string is always taut.

If u is the velocity at the lowest point, the ranges of values for which the string
never goes slack, and the particle therefore never leaves a circular path, are:

u<vVka and u>Sg
(c) Circular motion ceases at the instant when the string becomes slack,
ie.when T=0. Theangle 6 at thisinstant is given by using
»
T = m|——2g+3gcos8| =0
B

2ga-u?
3

- cosf =

Once the string is slack, the only force acting on the particle is its own
weight and the motion continues as that of a projectile.

‘This situation arises only if - 90°< 6 <180° (i.e. above the level of the

centre).
In this case 0> cosf > ~1
giving 0> XS
3
Hence the range of values of u for which the string does go slack is
Viga <u < S

Note. It is most important, when tackling a problem on vertical circular
motion, to decide whether or not the particle can leave the circular path or
is restricted to it. The special conditions that can be applied are different in
these two cases.
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EXAMPLES 100

1) A particle of mass 2kg is moving on the inside surface of a smooth hollow
cylinder of radius 0.2m whose axis is horizontal. Find the least speed which
the particle must have at the lowest point of its path if it travels in complete
circles.

v

Applying Newton’s law along BO we have

R+2% = 2(%) [
Conservation of mechanical energy from A to B gives
Haw)-2(02) = (H)+2(02) 21
From [1] and [2] R+2¢ = 10(u*—0.8g)
or R = 10u*-10g
But, for complete circles, R>0 at B (i.e. contact is not lost at any point).
Therefore 10-10g > 0 = u?>g

Hence the least value of u is v = V938
So the least speed at A is 3.1ms™

2) A particle of mass }kg is suspended from a fixed point A by a light

inelastic string of length 1 m. When in its lowest position it is given a horizontal

speed of 8ms~.

() Prove that it performs complete circles.

(b) Find the ratio of the greatest to the least tension in the string.

(<) Calculate the tangential acceleration of the particle when the string is
horizontal.
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spreme | N
S

Vi
W R
&
(a) Applying Newton’s law radially at R we have
2
Tytie = l("{) w
Conservation of mechanical energy from P to R gives
GHDHE) - DEO) = HHEH+DEO) 2]
Hence Ty+lg = 32-2%
= T3 = 32— ($)98) > 0

Therefore the string is taut at the highest point on the circle and the particle
will describe complete circles.

(b) Maximum tension, Tyngr, occursat P (ie. Ty)
and minimum tension, Ty, occursat R (ie. T3)

Applying Newton's law radially at P gives

Therefore Tpee = (32+49) = 369
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We already know that Toin = (32-245) = 15

Therefore Tonae: Tt = 36

(c) Applying Newton’s law tangentially at Q gives

@

+ “le=ig
dv

Hence P

‘The tangential acceleration when the string is horizontal is of magnitude g.

3) A particle of mass m rests at the highest point of the outer surface of a
smooth cylinder of radius a whose axis is horizontal. If the particle is slightly
disturbed from rest so that it begins to travel in a vertical circle find the vertical
distance travelled by the particle before it leaves the surface of the cylinder.
After leaving the cylinder how far does the particle fall while travelling a distance
a horizontally?

Tk

>IN\ > N

Applying Newton's law radially at B we have
2
mgeosd—R = 7% m
7
Conservation of mechanical energy from A to B gives

0+mga = }mv*+mga cosd [&l]

From [1] and [2] R= mgcoss—?(m—lga cos6)
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4) Aparticle P of mass m is attached by a light inextensible string of

length 2a to a fixed point O, When vertically below O, P is given a horizontal
velocity u. When OP becomes horizontal the string hits a small smooth rail,

Q, distant @ from O and the particle continues to rotate about Q as centre.

If the particle just describes complete circles about the rail, find the value of u.

There is no loss in mechanical energy when the string hits the rail Q because
the sudden change in tension is perpendicular to the direction of motion of the
particle and therefore has no effect on its speed.

Conservation of mechanical energy from A to B gives
Yt —mg(2a) = {mV*+mga n

Applying Newton's law radially at B we have

i
T4mg = mo- 21
n
m
Hence T+mg = ~6ga)
- 7 =2 (42 ~Tga)
a

For complete circlesabout Q, T3> 0 at B
ie. u* > g

If the particle just describes complete circles

= Viga
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5) A smooth hollow cylinder of radius a and centre O, is fixed with its axis

horizontal. A particle P of mass m is projected from a point on the inside

surface of the cylinder, level with O, with speed V/1dga  vertically

downward. When P reaches the lowest point of the surface it collides with and

adheres to a stationary particle Q also of mass m. Find the height above the

centre of the cylinder at which the combined mass loses contact with the surface.
v

PE7e0 B
0 i)

Conservation of mechanical energy for P from A to B (diagram (i)) gives
Ym(14ga) + mga = ymu®

- u = 4/ga

Atimpact between P and Q, we use conservation of linear momentum
(diagram (ii))

- m@vga)+0 = 2mv

- v =2V

Now for the particle of mass 2m (diagram (iii)) conservation of mechanical
energy from B to C gives

1@m)(2Vga)* = §(2m)V?+ 2mga + 2mga cosd

Applying Newton’s Law radially at C we have
2mg cos0+R = 2mVa 2]

‘The particle leaves the surface when R =0
so that 2mg cosf = 2mV?a
Inequation [1]  4mga = m(ag cos6)+2mga+ 2mga cosf
- cosd = }
The particle leaves the cylinder at a height a cos@ above the centre,

ie. 3a above the centre.



Motion ina Circle 327

SUMMARY
1) A particle travelling in a vertical circle of radius r has two acceleration
components:

7 &

- towardsthe centreand " along the tangent.
2) A particle which is restricted to the circular path wil travel in complete
circles if the velocity u at the lowest point satisfies 12> dgr.

3) A particle which is free to leave the circular path must satisfy a condition
which will ensure that the particle is always at a distance r from the centre of
the circle, for example contact with the inside of a circular surface must not be
lost. In this case  u*> Sgr.

EXERCISE 100
1) A particle of mass 2kg is attached to the end A of a light inextensible
string AB fixed at B. Initially AB is horizontal and the particle is projected
vertically downward from this position with velocity v. If the particle describes
complete circles, find the possible values of o if the length of the string s 1 m.

2) A particle of mass m is projected horizontally from the highest point of a
smooth solid sphere. If the particle loses contact with the surface after descending
a vertical distance of one quarter of the radius @ of the sphere, find the speed of
projection.

3) Asmooth hollow cylinder of radius 0.5m is fixed with its axis horizontal. A
particle of mass 1.2kg is projected from the lowest point on the inner surface
withspeed (2) 3ms™ (b) 4ms™  (c) Sms~'. Determine in each case
whether the particle will oscillate, describe complete circles or lose contact with
the cylinder.

4) A particle of mass m is free to rotate at the end of a light inextensible
string fixed at s other end. If the length of the stringis / and the particle is
projected horizontally from its lowest position with speed  V/Ggl, find the
greatest and least tensions in the string during the ensuing motion, Find also the
resultant aceeleration of the particle when it is:

(a) atits lowest position,

(b) at its highest position,

(@) level with the fixed end of the string.

5) A particle of mass 1.5kg is lying at the lowest point of the inner surface of
a hollow sphere of radius 0.5 m when it is given a horizontal impulse. Find the
magnitude of the impulse:

() if the particle subsequently describes complete vertical circles,

(b) if the particle loses contact with the sphere after rotating through 120°.
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6) A light inextensible string AB of length / isfixed at A and is attached toa
particle of mass m at B. B is held a distance / vertically above A and is
projected horizontally from this position with speed /2. When AB is
horizontal, a point C on the string strikes a fixed smooth peg so that the radial
ion of the particle is i doubled. Express the length of
AC in terms of 1.
The particle continues to describe vertical circles about C as centre. Compare
the greatest and least tensions in the string during this motion.

MULTIPLE CHOICE EXERCISE 10
(The instructions for answering these questions are given on page x.)
Tvee
1) A particle of mass m is travelling at constant speed o round a circle of
radius 7. Its acceleration is:
a 2

v v

(@) ro* (b "‘T © % @ mrot.

2) A string of length / has one end fixed and a particle of mass m attached to
the other end travels in a horizontal circle of radius r. The tension in the string
is:

! 1
@me © s ©mer @ me

3) A bead is threaded on o a circular wire fixed in a vertical plane. The bead
travels round the wire. The acceleration of the bead is:

(a) towards the centre and constant,

(b) towards the centre and varies,

(c) made up of two components one radial and one tangential,

(d) away from the centre and varies.

4) A vehicle can travel round a curve at  higher speed when the road is banked
than when the road is level. This is because:

(a) banking increases the friction,

(b) banking increases the radius,

(¢) the normal reaction has a horizontal component,

(d) when the track is banked the weight of the car acts down the incline.

5) A particle hanging at the end of a string of length a s given a horizontal
velocity V' so that it begins to travel in a vertical circle. The particle will describe
complete circles if:

@ V>V © V<V (© V>V (@) V>V
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TYPE

6) Astring of length / has one end fixed and a particle of mass m is attached
to the other end. If the particle describes a horizontal circle at an angular
speed w:

(a) the tension in the string = m/w?,

(b) the speed of the particle is /e,

(c) the resultant force acting on the particle has no vertical component.

7) A particle of mass m travelling in a vertical circle at the end of an inelastic
string of length  will perform complete circles provided that:

(a) the kinetic energy at the lowest point is at least 2mgl,

(b) the speed is zero only at the highest point,

(c) the string never goes slack,

(d) the string does not break until its tension exceeds 6mg.

8) A bead is travelling on a smooth circular wire in a vertical plane and has a
speed V' at the lowest point.

(2) The mechanical energy of the bead is constant.

(b) No external forces act on the bead.

(c) The bead will oscillate if ¥ < 2v/ga.

(d) The bead will oscillate only if V< V/2ga.

9) A particle of mass m is on a smooth table travelling with angular speed
in a horizontal circle at the end of a string of length I whose other end is fixed.
T is the tension in the string.

(a) T is constant.

(d) 7 is the resultant force acting on the particle.

TYPE I

10) (a) A particle is travelling in a circle.
(b) A particle s travelling with constant velocity.

11) A particle is describing a vertical circle of radius a and the speed V' at the
lowest point is such that  V/dga < V' < V/3ga.

(a) The particle is not free to leave the circular path.

(b) Complete circles are described.

12) Alight rod of length / is rotating in a vertical plane about an axis through
one end. A particle is attached to the other end.

(a) The rod is at all times in tension.

(b) The greatest speed of the particle is between +/2¢g/ and V/Sgl.
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3) A particle, moving on the smooth inside surface of a fixed spherical bowl of
radius 2m, describes a horizontal circle at a distance 8/5m below the centre
of the bowl. Prove that the speed of the particle is 3ms™.

[Take g as 10ms™] (Uof Lp

4) A car moves with constant speed in a horizontal circle of radius » on a track
which is banked at an angle « to the horizontal, where tana=3. The
coefficient of friction between the tyres and the track is §. Find, in terms of r
and g, the range of speeds at which the car can negotiate this bend without the
tyres slipping on the road surface. Show that the greatest possible speed is

V11 times the least possible speed. (It may be assumed that the car will not
overturn at these speeds.) (UofL)

5) A particle is held at a point P on the surface of a smooth fixed sphere of
radius 2 and centre O, where PO makes an angle 30° with the upward
vertical. If the particle is released from rest at P find the height above O of the
point where the particle loses contact with the sphere. Find also the horizontal
distance of the particle from O when it is level with O.

6) Aparticle A of mass m is held on the surface of a fixed smooth solid
sphere centre O and radius a ata point P such that OP makes an acute
angle arcos 3 with the upward vertical, and is then released. Prove that, when
OA makes an angle 0 with the upward vertical, the velocity v of the particle
is given by

v? = Jga(3—4 cos6)

provided that the particle remains on the surface of the sphere, and find the
normal reaction on the particle at this time.

Deduce that the particle leaves the surface when OA makes an angle  with
the upward vertical.

7) Alight inextensible string AB has length 7a and breaking tension 4mg. A
particle of mass m is fastened to the string at a point P, where AP = da.
Theends A and B are secured to fixed points, A beingat a height Sa
vertically above B. If the particle is revolving in a horizontal circle with both
portions of the string taut, show that the time of one revolution lies between

3/7 d 8r /= (UofL
NN of L)

8) A light inextensible string of length / is threaded through a smooth bead of
mass m and has one end fixed at a point A on a smooth horizontal table and
the other ata point B ata height }/ vertically above A. The bead is projected
50 as to describe a circle in contact with the table with angular velocity .

Find the radius of the circle. Prove that the tension in the string is Fmiw?, and
that w must not exceed a certain value. Find this value. (IMB’
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9) A heavy particle is projected horizontally with speed u_from the lowest
point on the inside of a hollow smooth sphere of internal radius a. Show that
the least value of u for the particle to complete a vertical circle is V/3ga. The
particle projected with this velocity, hits a rubber peg after travelling a distance
na, the coefficient of restitution between the peg and the particle being §.
Calculate the vertical height of the particle above the point of projection at the
moment when it leaves the surface of the sphere. (AEB)

10) Aparticle A of mass m hangs by a light inextensible string of length a
from a fixed point O. The string is initially vertical and the particle is then
given a horizontal velocity V/(nga). Show that it will move round a complete
circle in a vertical plane provided 13> 5.

If when the string OA reaches the horizontal the particle A collides and
coalesces with a second particle at rest also of mass i, find the least value of 1
for the vertical circle to be completed. (Uof L)

11) A light inelastic string of length 4 has one end fixed at O and a particle of
mass m attached to the other end. The particle describes a circle in a horizontal
plane below O with constant angular velocity @ so that the string makes an
angle 0 with the vertical through O. Write down the equations of motion and
show that cosf = glaw?.

The string is now replaced with an elastic string of unstretched length a and
modulus Amg and the particle is set in motion so that it rotates in a horizontal
circle with the same angular velocity c as before. Prove that, if the string is
inclined at an angle o to the vertical, then

cosa = (Ag—aw?)Naw?

12) Two light inelastic strings AP and BP connect a particle P to fixed
points A and B. The point B is vertically above A and AB=AP=/ and
BP=1/y/3. The particle P moves in a horizontal circle with constant speed.
The least angular speed of P for both strings to be taut is w. At this speed
calculate the angle between the strings and the value of . When the angular
speed of Pis ; (>w) the tensions in the string are equal, Show that
w? = 2g/(IV3). (AEB)

13) The sleepers on a railway line which rounds a circular bend are banked so
that at speed ¥ an engine would exert no lateral thrust on the rails. The thrust
on the inner rail when the engine’s speed is v, is equal to the thrust on the
outer rail when the speedis v, (v;> V>v,). Show that 2V =12+,
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14) A particle moves in a vertical circle on the smooth inner surface of a fixed
hollow sphere of radius a and centre O, the plane of the circle passing through
0. The particle is projected from the lowest point of the sphere with initial
velocity w, and leaves the surface of the sphere at a point P, where OP makes
anangle 0 with the upward vertical through O. Show that

w'—2q
3ga

cosf =

If cosd =4, show that after leaving the sphere the particle will pass the vertical
line through O at a distance above O of f§§a. ©)

15) One end of a light inelastic string is attached to a point A vertically above

apoint O on asmooth horizontal plane and at a height /4 above it. The string

carries a particle P of mass m at its other end. When just taut the string is

inclined to the vertical at an angle .

(a) If P moves in a horizontal circle, centre O, with speed v, show that
v* < hg tana.

(b) One end of a light elastic string of natural length / and modulus of elasticity
}mg is now attached to a fixed point below the plane at a distance / from
0. The other end is passed through a small smooth hole at O and is
attached to P. If P describes a circle on the plane with both strings taut,
and if the reaction of P on the plane is }mg, find an expression for the
speed © of P intermsof h, g and a.

16) Two rigid, light rods AB, BC, each of length 2a, are smoothly jointed

at B, and the rod AB is smoothly jointed at A to a fixed smooth vertical rod.
The joint at B carries a particle of mass m. A small ring, also of mass m, is
smoothly jointed to BC at C and can slide on the vertical rod below A. The
ring rests on a smooth horizontal ledge fixed to the vertical rod at a distance 2
below A, as shown in the diagram.

A

-

The system rotates about the vertical rod with constant angular velocity .
Find the force exerted by the ledge on the ring, and deduce that if the ring.
remains on the ledge, then  ac? < 3g. (JMB)



334 Mathematics — Mechanics and Probability

17) A smooth hemispherical bowl with centre O and of radius a is fixed with
its rim upwards and horizontal. A particle P of mass 3m describes a horizontal
circle on the inner surface of the bowl with angular velocity co. This mass is
attached to one end of a light inextensible string of length 2a. The string passes
through a smooth hole at the lowest point of the bowl. At the other end of the
string is attached a particle of mass m which moves as a conical pendulum in a
horizontal circle with angular velocity c. By considering the motion of the
second particle show that the motion is possible only if w?>g/b, where b
is the length of string outside the bowl.
If the angle made by OP with the vertical is 60°, show that «® = 6g/a, and
find, as a multiple of mg, the reaction between the first particle and the bowl,
©)
18) A particle of mass m is attached to one end of a light inelastic string of
length I. The other end of the string is held at a height & (less than /) above a
smooth horizontal table, If the particle is held on the table with the string taut
and is projected along the table so that it moves in a horizontal circle with
uniform speed v, prove that the force that it exerts on the table is given by

vh
g — 2
o

Find an expression for 7, the tension in the string, in terms of m, v, I, h.

If h=03m and [=05m and m=2kg,

() find the force exerted on the table when the speed is 1 ms™

(b) find the maximum velocity for which the particle will remain on the table
and the corresponding tension of the string.

19) One end of a light inextensible string of length / is attached to a fixed
point A and the other end to a particle B of mass m which is hanging freely
at rest.

The particle is then projected horizontally with velocity +/7zI/2. Calculate
the height of B above A when the string goes slack.

The procedure is repeated but this time a small smooth peg C is placed at the
same level as A so that when the string s horizontal it comes into contact with
the peg. If the particle then describes a complete circle about C, find the least
value of AC. When AC has this least value find the tension in the string
immediately before and after the string strikes the peg. (Uof L)

20) A particle moves with constant speed  in a circle of radius 7. Show that
the acceleration of the particle is v%/r directed towards the centre of the circle.
A rough horizontal plate rotates with constant angular velocity w about a

fixed vertical axis. A particle of mass m lies on the plate at a distance Sa/4
from this axis. If the coefficient of friction between the plate and the particle is
4 and the particle remains at rest relative to the plate, show that w < V/dg/15a
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24) A particle moves with constant speed  in a circle of radius 7. Show that
the acceleration of the particle is v%/r directed towards the centre of the circle.
Avparticle P of mass 2m is attached by a light inextensible string of length a
toa fixed point O and is also attached by another light inextensible string

of length a toa small ring Q of mass 3m which can slide on a fixed smooth
vertical wire passing through O. The particle P describes a horizontal circle
with OP inclined at an angle 4 with the downward vertical.

(2) Find the tensions in the strings OP and PQ.

(b) Show that the speed of P is (6ga)}.

(<) Find the period of revolution of the system. (JMB)

25) A smooth, hollow circular cone of semi-angle a, is fixed with its axis
vertical and its vertex A downwards. A particle P, of mass m, moving with
constant speed V', describes a horizontal circle on the inner surface of the
cone in a plane which is at a distance b above A.
(a) Show that V2 =gb.
(b) If P is attached to one end of  light elastic string PQ of natural length a
and modulus of elasticity mg, find V2 if (i) Q is attached to A;
(i) Q is passed through a small hole at A and is attached to a particle of
mass m hanging freely in equilibrium.

26) A smooth wire bent into the form of a circle of radius a is fixed with its
plane vertical, A small ring of mass m which can slide freely on the wire is
attached to one end of a light elastic string of natural length @ and modulus
4mg, the other end of the string being tied to the highest point of the wire. The
ting is held at the lowest point of the wire with the string taut and is then
slightly displaced. Write down the equation of energy when the radius to the ring
makes an angle 6 with the downward vertical and deduce that the maximum
velocity occurs when  cosf = —1/9.

Find the velocity of the ring when the string first becomes slack. (UofL)

27) Prove that the potential energy of a light elastic string of natural length !
and modulus \ when stretched toalength  (I+x) is 3AxY/L.

Abead of mass m can slide without friction along a circular hoop of radius
which is fixed in a vertical plane. The bead is connected to the highest point of
the hoop by a light elastic string of natural length @ and modulus 3mg. Initially
the bead is moving with speed u_through the lowest point of the hoop. Given
that u?=ag, show that the bead just reaches the highest point of the hoop.
Show that the speed was u at the instant when the string first went slack and
find the reaction of the hoop on the bead at that instant. (IMB)



CHAPTER 11

GENERAL MOTION OF A PARTICLE

MOTION IN A STRAIGHT LINE

Consider a particle moving in  straight line such that, at time 1, its
displacement from a fixed point on that line is s, its velocity is v and its
acceleration is a.

Now acceleration is the rate of increase of velocity so we can say

-®
‘T

Also velocity is the rate of increase of displacement, so

Conversely
v= [ade  and s =J'mn

When a s constant these equations give rise to the formulae derived in
Chapter 4, which can be used to analyse the motion of the particle but it is
essential to appreciate that these formulae apply only to constant acceleration.
In all cases where the acceleration is variable, calculus must be used to solve the
appropriate differential equations.

The relationships defined above can be used directly to solve problems in which
acceleration, velocity and displacement vary with time.

338
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Consider, for instance, a particle moving along a straight line with an acceleration
of ams™ at time ¢seconds where a=3r2—2. Ifinitially the particle is

at 0, a fixed point on the line, with a velocity 2ms™ then

using. a=3%-2 and v= J‘adl

we have v =J’(3:’—z>m =
but v=2 when r=0, therefore ¢=2
- v=1-2u+2
Also 5= J'ud:
“
- s =J(:’—zr+:)dz= Forrate

s=0 when =0, therefore c,=0

- s = jet—r 42

An alternative way of expressing this solution is given below.

v
i =32 =

Using a=37-2 and o=
dv

we have — =32
dat

Separating the variables gives

jdv - 'f(sr’fzm

Nowstartingwith =2 and =0 and moving to a general time ¢ and
ageneral velocity v, a defiinite integral can be produced, i.e.

J’: = J: B2

= v=2 ==

= v

Then, using 0= 3-2+2

&l
gle

[
—

s .
&5 = J P2+ 2dr
o o

- s = jrt-rea
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EXAMPLES 112

1) A particle moving in a straight line has an acceleration of (3 —4)ms™
attime rseconds. The particle s initially 1m from O, u fixed point on the

line, with a velocity of 2ms™. Find the times when the velocity is zero. Find
also the displacement of the particle from O when r=3.

Using 2= gives

dr
dv
Fr
v .
= dv = | (Br—4)dr
Lol
3
- _a =3
v=2 3 4
2
= v = 3—;—~4:+2
3
“The veloclty is zerowhen - —d+2 = 0
ie. when @G22 =0
= t=3% or 2
ds

- s=2

‘Therefore the particle is 2§m from O when =3,
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2) A particle starts from rest and travels in a straight line with an acceleration
cosmt where ¢ is the time. Find the distance covered by the particle in the
interval of time from =2 to r=

.
[ cosmrar
ko

Hence

From the sketch of the velocity-time graph it can be seen that the velocity is
never negative for the interval of time from =2 to =
ie. the particle is moving in the same direction throughout this interval of time.
Therefore if s, is the displacement of the particle from its initial position when
r=2 and s, isits displacement when 7 =3, then s;—s; is the distance
travelled by the particle in the interval =2 to r=3.

& _15 -

@ =y |

So the particle travels a distance of

1
—sinmrdr
o

units between r=2 and r=3.

3) A particle moves in a straight line with an acceleration which is inversely
proportional to r> where ¢ is the time, measured in seconds. If the particle
has a velocity of 3ms™ when =1 and the velocity approaches a imiting
value of 5ms™, find an expression for the velocity at any time 1.

k
a =~ where k isa constant.
b

t k
Using
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k&
Hence D3 = o o
a2

s kK

- D=3
2 22

‘The limiting value of the velocity is the value approached as the time increases
indefinitely.

k k
AS 19, -0, therefore D=3+
e 2
- 34- =5
2
- k=4
- b=

EXERCISE 11a

1) A particle moving in a straight line starts from rest at a point O on the line
and seconds later has an acceleration  (r—6)ms™. Find expressions for the
velocity and displacement of the particle from O at time ¢ and 6 seconds
after leaving.

2) A particle moves in a straight line with an acceleration 2rms™ at time r.

If it starts from rest at a point O on the line, find its velocity and displacement
from O at time 7.

3) A particle moves in a straight line with an acceleration  (3r—1)ms
where ¢ is the time, If the particle has a velocity of 3ms™ when =2
find its velocity at time ¢ and when 1= 5.

4) A particle moves in a straight line with velocity vms™ at time ¢ seconds

where v=3r*—1. Find the increase in displacement of the particle for the
interval (=2 to r=3.

5) A particle moves in a straight line with an acceleration  (6r—2)ms™ at
time 7seconds. If the particle has an initial velocity of 3ms™ find the distance
travelled by the particle in the first second of its motion.

2

6) A particle moves in a straight line with acceleration — ms?  at time

"

£seconds. If the particle is at rest at 0, a fixed point on the line, when £
find expressions for its velocity and displacement from O at time ¢ and
when (=2.
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EXAMPLES 11b
1
1) A particle moves n a straightline with acceleration —=  where o isits
o

velocity at time 7. Initially the particle is at O, a fixed point on the line, with
velocity w. Find in terms of u the time at which the velocity is zero and the
displacement of the particle from O at this time.

First we need a relationship between v and 1

- L —3vdv

= w=v

The particle is at rest when ©=0 and this occurs when

Now we will find an expression for the displacement by using

do 1
.
T T T
0 -
- “wdv=| ds
i ko

- Jui—vY) =5
So the displacement from O when =0 is 3u’.
Note. A relationship between s and ¢ can usually be found from the

ds
relationship between v and s by using 2= and separating the variables.

Acceleration as a Function of Displacement

Consider a particle moving along a straight line with acceleration s* where s
is its displacement from a fixed point on the line, i.c.

A relationship between v and s can be found by writing a as v:?

Separating the variables gives  [vdv = [s*ds
g

- o2,
7737
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EXAMPLES 11b (continued)

2) A particle moves in a straight line with an acceleration which is proportional
to its distance from a fixed point, O, on the line, and is directed towards 0.
Initially the particle is at rest when its displacement from O is 7. Show that the
particle has a maximum velocity when passing lhmugh 0 and zero velocity
when its displacement from O is +I or

— positive dircction
]
o [

When the particle is at P, with a displacement s from O, it has an acceleration
of magnitude ks where & isa positive constant.

Now the velocity is maximum when a is zero,i.e. when 5= 0.

Therefore the velocity is maximum when the particle is at O.

Returning to the acceleration we see that it is in the negative direction 5o, using

- 0= kK
- v = k(=5
when =0, =0 = 5=zl

Therefore the particle is at rest when its displacement from O is +/ or =l

EXERCISE 11b

A pzxuclc moves along a straight line with an acceleration ams™? where

a ﬂ, oms™ being the velocity of the particle at time ¢ seconds. Initially

the particle is at rest at O, a fixed point on the line. Find expressions for the
velocity and displacement of the particle from O at time 7, and find the
velocity of the particle when its displacement from O is S m.

2) A particle moves in a straight line with acceleration @ms™ where
a=—3v°, vms™ being the velocity of the particle at time 7 seconds.
Initially the particle is at O, a fixed point on the line, with a velocity 2ms™
Find the velocity of the particle 3 seconds later and the displacement of the
particle from O at this time.
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If F isa function of velocity,ie. F=f(v), thenwe can use either

2 o a=0 g
& or a=v ging
/(17)=m-- = far=

or 1@ = mn— - J'd.r

If F isa function of displacement,ie. F=f(s), thenweuse a

so that

= mo§
- Jl(x)ds = [mvdu

Note. The expression for a is chosen so that not more than two variables are
present in the resulting differential equation.

EXAMPLES 11
1) A particle of mass m moves in a straight line under the action of a variable
force such that at time ¢ the displacement of the particle is cos2r from O, a
fixed point on the line. Show that the force varies as the displacement of the
particle from 0.

If 5 is the displacement from O at time 7 we have

s = cos2t
then v = —2sin2r
and a = —4cosu

If the force is F at time 7, applying Newton’s Law gives
F = —4mcos2t

- F=—dms

But —4m s constant, so the force varies as the displacement.

2) A particle of mass 1 falls from rest through a resisting medium where the
resistance to motion is &2, where v is the velocity of the particle at time 7,
and k is a positive constant. Find the velocity of the particle at time  and

show that the velocity approaches a limiting value of %.
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3) A particle of mass 1 moves in a straight line under the action of a resistive
foree of magnitude ke?/* where u and k are constants. When =0 the
speed of the particle is «. Find

(a) the time during which the speed decreases to Ju,

(b) the further time taken for the particle to come to rest,

() the distance travelled by the particle from speed u to rest.

4) A particle of unit mass moving in a straight line is subjected to a variable
tesistive force which is proportional to the cube of the speed of the particle at
any instant. The initial speed of the particle is 2ms™ and the initial retardation
is 1ms™. Show that the speed vms™ of the particle after ¢ seconds is

given by

=

1+1
Find, in joules, the change in kinetic energy between the instants when =0
and when 7 =10.
Find also the distance covered by the particle between the instants when £=0
and r=8.

5) A particle falls from rest in a medium in which the resistance is proportional
to the speed. If the velocity approaches a limiting value of g7, find the

velocity, v, at time ¢ and show that the distance, r, fallen in time ¢ is given by
oy

r=gT—gT*(1—e¢

Find the distance fallen when the acceleration is of value }g. Sketch graphs to
show how v and 7 vary with 7.

GRAPHICAL METHODS
Velocity-time Graph

wo N N
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do
I£a particle has an acceleration a, then 4 =
d )
But o7 is the gradient of the graph.
Thus the acceleration can be estimated at time 7 by drawing the tangent to the
velocity-time graph at that point and finding its gradient.
Note that the tangent is drawn by observation, so the curve must be well drawn.

Note also that, in calculating the gradient of the tangent, the lengths of the
sides of the triangle used must be taken from the scales on the two axes.

Alsosince s | vdr the increase in displacement in the interval of time
J o
from t=t; to r=r, is | wvdr. Thisis the area shaded in the diagram.
N
Therefore the increase in displacement over an interval of time  (f,—1,) can
be estimated by finding the area bounded by the velocity-time graph, the time
axis and the ordinates at 1, and 1.
Velocity-displacement Graphs
A set of corresponding values of displacement and velocity can be used in a
variety of ways to plot graphs from which can be found:

(a) the acceleration at a particular velocity or displacement,
(b) the time taken to achieve a given increase in displacement,

d
@) To find the acceleration we can wse @ = * = v 4
w_d 4
But vf =G0 e a= ol

d
Now z (32%) s the gradient of the graph given by plotting (§2%)
against s.

Therefore the acceleration at a given displacement can be estimated by drawing
the tangent to the curve of 0 plotted against s and finding its gradient.

e
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(b) To find the time taken for a given increase in displacement we can use

51
But J’ 5 d s the area shaded in the disgram.
o

Therefore the time taken for an increase in displacement from s, 1o s; can be
1

found by estimating the area bounded by the graph of — plotted against s, the
v

saxis and the ordinates at s; and 5.

EXAMPLES 11d

Corresponding values of velocity and displacement for a particle moving in a
straight line are given in the table

s(m) 0 46

v(m

Draw a suitable graph to find the time taken to cover a distance of 6m from
the initial position.

1
‘The time can be found by plotting — against s
v
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025

o 2 4 6 8 5
‘1
‘The time taken for the particle to travel 6m from its initial position is J L
3
which is the area shaded in the diagram.
From the graph this area is approximately 1.63 units.
Therefore the particle takes 163 seconds to travel 6m from its initial position.

Note. The answer above was obtained by using Simpson’s Rule with three
ordinates but any method for finding the approximate area under a curve can be
used (see The Core Course).

EXERCISE 11d

1) A particle moves in a straight line. Its velocity v (ms™) at given times
1 (seconds) is shown in the table.

JD[I'ZlJ'dlSIé
v s ios [was|wes [ 5] s [ o
Draw a velocity-time graph and find

(a) the acceleration when 7= 3,
(b) the distance moved by the particle between =2 and =5.

2) The diagram shows the velocity-time graph for a particle which is moving in
a straight line.

ams™,

o 10 12

The scale for one unit is the same on both axes and the curve is exactly one
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hence draw a velocity-time graph for these 10 seconds, Use the velocity-time
graph to find the distance travelled by the particle in the first 10 seconds of
its motion.

MOTION IN TWO DIMENSIONS

kL Ifaparticle P is free to move ina

S plane then at any time its displacement,
velocity and acceleration are likely to
have different directions as well as
different magnitudes. By taking the
components of each of these quantities
parallel to axes Ox and Oy we can
use the methods for motion ina
straight line in each of these directions.

g0, v

Pix.y),

@i

£0)

o o | *
If the components of displacement are both functions of time

x=fl6) and y = g()
thus r = f(Di+e()

d
Using f') to denote = [/(0)], - the velocity components of P are
"

%= £t and
so that v = f0i+g(0)

£

It can be now be seen that

Similarly by writing the acceleration components of P as

' and o= g"()
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weget a=f(0)i+g"(0j showing that

d &
g Lidn gl

EXAMPLES 11e

1) A particle moves in the xy plane such that its position vector at time ¢ is
gvenby r=(3r*— i+ @ +r—1). Find vector expresslons for the
velocity and acceleration of the particle at time ¢ and when

esi-ng

N Ge=ni *

= @i+ @ =1

At time ¢

Using v = 6+ (12024 1)

When =2 v

i+ 49
4

Using .=;: gives o = 6i+241]

When =2 a = 6i+dgj

2) y

2ms

[ 80
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A particle moves in a plane with a constant acceleration of 2ms™ in the
direction Oy. Initially it is at the origin with a velocity of 6ms™ in the
direction Ox. Show that the path of the particle is a parabola.
As the components of acceleration at time ¢ are =0 and §=2, the
acceleration can be written in the form

a=1
Using v= ]. dr gives

i+(2r+k)j where ¢ and k are constants of integration.

When i, giving ¢=6 and k=0

v

Hence v = 6i+2(j
Using J'vdz gives 1= (614 )i HK)
When (=0, r=0, giving ¢'=0 and k'=0
Hence = Gt

But r = xityj

So x=6 and y =1

Hence at time ¢ the coordinates of P are (6¢,¢2).
Eliminating ¢ gives 36y =x? which is the equation of a parabola.
Notethat x=6r and y=1> are the parametric equations of the path.

3) A particle moves in the xy plane and at time ¢ is at the point (12,13~ 2r).
Find the time at which the directions of the velocity and acceleration of the
particle are perpendicular.

At time 1,
the components of displacement are x=
‘Therefore the components of velocity are %=
and the components of acceleration are i=

so the direction of the velocity has gradient

and the direction of the acceleration has gradient

When these are perpendicular, the product of their gradientsis —1

; (ﬁ)m -
ie. x 1) =
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= 197 —4) =

EXERCISE 110
1) A partcle moves n the xy. plane such thatis isplacement from O at
time ¢ isgivenby r=3r%+(4r—6)j. Find vector expressions for the
velocity and acceleration of the particle at time ¢ and when 1 =4.

2) A particle moves in the xy plane such that it has an acceleration a at
time ¢ where a= Initially the particle is at rest at the point whose
position vector is  3i+j. Find the position vector of the particle at time f.

©

3) A particle moves in the xy plane such that its velocity at time  is given by
v=3r%+(t—1)j. Find the acceleration vector and position vector of the
particle when ¢ =3 if, initially, the particle is at the origin.

4) The position vector of a particle at time ¢ is given by 1 = cos cofi+sin wrj.
Show that the speed of the particle is constant.

5) A particle moves in a plane with a constant acceleration vector. The velocity
vector is zerowhen =0 andequalto 3i—2j when r=1.
expression for the velocity vector at any time 1.

6) A particle moves in the xy plane and at time ¢ has acceleration components
§=2, §=0. Initially the particle is at the origin with a velocity of 1ms™
in the direction Oy. Find the velocity of the particle when ¢=1 and show
that the path of the particle is a parabola.

7) A particle moves in the xy plane and at time ¢ is at the point

(coscot, sinwr).  Show that the path is a circle and find the velocity and
acceleration of the particle at time . Prove that the velocity and acceleration
are always perpendicular.

8) A particle moves in the xy plane and at time ¢ is at the point
(3t*+2,1—1%). Prove that the particle has a constant acceleration and find it.

9) Attime 7 the position vector r of the point P with respect to the origin O
isgivenby r=(Asinwr)i+\j, where X and w are constants. Show that
the vector a+cr s constant during the motion where a is the acceleration
vector.

10) A particle moves in the xy plane and at time 7 itis at the point (x »
with components of acceleration ¥ and § where ¥=x and J
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Initially the particle is at rest at the point (1,0).

a &

By witing ¥ a5 ¥ and § as ,vd—" find the components of velocity
attime ¢ in terms of x and y respectively. Hence show that the pasticle
d_ Wy

A Vx—-1)

11) A particle moves in the xy plane and at time ¢ its acceleration components
2

‘moves on a curve whose equation can be derived from

are ¥ and § where ¥=

and §=-;. Initially the particle is at rest at
* ¥V
the origin. Find the velocity components % and j as functions of ¢ and hence

show that the equation of the pathiis (3x)* = (§)°

FORCES PRODUCING MOTION IN A PLANE

Consider a pamclc of mass m whose acceleration under the action of a
force F is

If the components of F are Fyi and Fyj then

Fo=mé and Fy=mj

So we can write
Fi+ Fyj = mi+ )
ie. F=m

EXAMPLE 11¢

At time 1 the force acting on a particle P of unit massis 4i—rj. P is
initially at rest at the point with position vector ind the position
vectorof P when ¢

Using F=ma gives
4i—ij = (@)
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= a =4

q
Thenusing v=[adr gives

’ v = dri—§elj v
(where V isa constant of integration).
But v=0 when r=0 = V=0

So v = a4
The position vector of P is r where
v |Avdt
> r= 2% b +R

=0 = R=i-6
r= Q2+ D)i—- (3 +6)
2 the position vector of P is 9i+%j

When

EXERCISE 111

In questions 1-4 a force F acts on a particle of mass m, whose acceleration,
velocity and position vector at time  are a, v and r. When =0 the
particle is at a point with position vector ro with velocity Vo.

1) F=3i+4j, m=

2) F=3i
when 1=3.

3) F=(sinni+(cosrj, m=1, ro=—j, v

, =0, vo=0. Find a, v and r.

. m=2, r=i+j, vo=0. Find r attime 1

Find v and r.

4) r=ri—r%+3ri—1j+2—3j, m=4. Find ro, v, v, a and F.

5) A particle P of mass 1kg isat rest at the point A whose position relative
toafixed point O is i—4j. Ifaconstant force 3i—j actson the particle,
find its velocity and displacement from A after time ¢. What is the position
vector of P relative to O when £ =27

6) At time 1 the position vector of a particle of mass m is (cos )i+ £
Find the resultant force acting on the particle when ¢=n.

MOTION IN THREE DIMENSIONS

When the motion of a particle is not restricted to a plane, three axes are
needed for a frame of reference. The most convenient axes are a set of three
mutually perpendicular lines Ox, Oy and Oz.
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2) Aparticle A moves with velocity 2i—3j froma point (4,5). At the
same instant a particle B, moving in the same plane with velocity 4i+j,
passes through a point C. Find whether A and B collide given that

@ Cis 2,-1) (®) Cis (0,-3).

() The equation of motion of A is 1, =4i+ 5]+ 1(2i—3j).
‘The cquation of motion of B is £y =2i—j+r(di+j).

I 3 equating coefficients of i gives
4+2t = 2+4 = ¢
When r=1 r;=6i+2 and r=6i.

S0 1, and 1, cannot be equal for any value of ¢ and the particles do not
collide.

(b) Thistime r,= 73, + 1(4,+,) and equating coefficients of i gives
442 =4

When =2, r=8i—j and r,=8i—j.

So the particles do collide, when 2, at the point with position

EXERCISE 11h

In each of the following problems, r, and r, are the position vectors of two
particles at time 1. Determine whether the particles collide and, if they o,
give the value of ¢ when this occurs and the position vector of the point of
collision.
1) 6 = di+j+rQi+3)

n —3j+1(6i+11j)

2) 1y = 2i+j+ (cosmoi + (sinmn)j + tk
” 2j + k + (sin 2m1)i — (cos 2me)j

3I)n 3+i+ (T+0j+(1-0k
= (114+20)i+ 1j+ (11 —13k

4Hn
n

—Si+ 2§+ 9k + 1(Si -+ 2K)
+2j+ 3k + 1 Gi—j+ k)

Further problems on collision (interception) will be found in Chapter 13.
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2) Two particles A and B start simultaneously from points Ao and B and
move with constant velocities v, and vg. Find the time, and their distance
apart when they are closest together, if Ao is (—1,— 1), Bo is (4,4),
va=2i+j and vg=i—2j.

TA = jHeQi+j)
g = di+4j+1G—2j)
rp—r = Si+Sj+e(—i—3j)
If d is the distance between A and B, we have
&= (S +(5-3)
- d* = 100*—40r +50 4]
—4r+s
= (t—22+1
and then  fd’

So A and B are closest together when =2 and are then distant
V10 units apart.

But (¢—2)*+1 isleast when

Note. The least value of d can also be found from equation [1] by using
calculus. The algebraic method introduced above can be used only when d* is
a quadratic function.

EXERCISE 111
Find the shortest distance between A and B given ry and r, which are the
position vectors of A and B at time r.

1) rp = 2i—j+51)
rp = i+ rQi+4j)

2) £y = i+ (sint)
rg = (cost)i+]

3) 1y = 3(1+0i—(7-2)
g = 2@4+0i—(6-1)

[

G-+ (1+0)

4) ra
Q+0i—1

(]

Further problems involving shortest distance apart (closest approach) are given
in Chapter 13.
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The Impulse of a Force of Variable Magnitude
Consider a particle of mass 7 moving in a straight line under the action of a

variable force. If, at a time ¢, the particle has an acceleration a and the force

acting onitis F, then

F=ma
dv

F=m_ 1
@ m

If the particle has a velocity u when =0 anda velocity v at time ¢ then,
by separating the variables, equation [1] becomes

r 0
[ Fa=[maw
o a

= my—mu

Now  mv—mu

is the increase in momentum of the particle over the interval
of time 1.

The quantity | Fdr iscalled the impulse of the force over the interval of
1o
time 1.

Thus the impulse oF a force (¢onstant of variable) is equal to the increase in
momentum.
For a constant force: linpulse = Ff

ot
For a variable force:  Impulse = | £dr
o

Work Done by a Force of Variable Mags

ude

If we write equation [1] above in the form
dv
F=mos®
ds
then, by separating the variables, we get

L’Fds

where s is the increase in displacement of the particle in time .

[ moav
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-
Therefore Fds = bt~y
o

Now §mv?—}mu® is the increase in the kinetic energy of the particle.

.
The quantity | Fds iscalled the work done by the force causing an increase
lo

in displacement of s.

“Thus the work done bya force (onstant or variable) is &4l 16 Uhe Change in
kinetic energy.

For4constent force: . Work dane = F

P viiable force: Work done' < -/

The concepts of work and impulse sometimes lead to neat solutions although the
methods given earlier can also be used.

EXAMPLES 11k

1) A particle of mass m moves in a straight line under the action of a force £
where F=2r attime r. If the particle has a velocity u when =0,
find the velocity when = 3.

If v is the velocity when =3 then, by considering the impulse of £ from
t=0 to r=3, wehave

a
my—mu = | Fdi

2rde

Therefore V=

2) A particle of mass m slides from rest down a plane mclmcd at 30° to the
horizontal. The resistance to the motion of the particle is ms® where s is the

displacement of the particle from its initial position. Find the velocity of the
particle when s = 1.
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MULTIPLE CHOICE EXERCISE 11
(Instructions for answering these questions are given on page x.)

TYPE1

1) A particle moves along a straight line Ox such that ¥ = (61 —4)ms™?
at time ¢, Initially the particle isat O with a velocity of ~2ms™. The
displacement of the particle from O at time ¢ is:

@ £—202~2t (b) P—2* (¢) 6 (d) rP—2r*+2 (e) 0.

2) A particle moves along a straight line such that at time 1 its displacement
from a fixed point O on the lineis 3r?—2. The velocity of the particle
when =2 is:

@ 8ms™ () 4ms™ @) 2msT (@ 6 () £2-2r.

3) A particle of mass 3kg moves along a straight line Ox under the action of a
force F such thata time ¢, x=¢?+3r. The magnitude of F attime ¢ is
given by:

@ 0 (b) 2N () 3+3) (d) 6N () —6N.

4) A particle moves along a straight line with acceleration a sincor at time 1.
Initially the particle is at rest at O, a fixed point on the line. The displacement
of the particle from O at time  is given by:

~a a N
(b) —sinwt+—r (¢} aw'coswr
W w
a a
(d) —aw?sin wr (&) ——sinwr + — coswr.
W w

5
5) A particle moves along a straght line with an acceleration of - where @ s

the velocity at any instant. Initially the particle is at rest. The velocity of the
particle at time ¢ is:

(@ 2t (b) 4 () '2":' (@) 2vr (&) 2vi+2.

6) A particle moves in a straight line with an acceleration 2s where s isits
displacement from a fixed point on the line,and =0 when s=0. Its
velocity when its displacement s s is:

@s B © V2 (@)sV2 () VE

7) A particle moves in the xy plane such that at time ¢ it is at the point
(2%, 3t—1). Attime ¢ the acceleration components are given by:
3

5t () ¥=4, =3

(a) ¥=dr, §=3 (b) ¥=3r%
@ §=0,7=0 (&) ¥=




374 Mathematics ~ Mechanics and Probability

15) A particle moves along a straight line such that at time 1 its velocity is v
and its displacement from a fixed point on the line is s. Its acceleration at time
time 1 is:

) ::’ () v%::) © [oar.

16) The speed of a particle of mass i increases from u to v in time ¢ under
the action of a force F. In the same time the particle undergoes a displacement d.
(a) The work done by the force is  F.d.

(b) The impulse of the force is F.r.

(c) The work done by the force is ~ m (v —u?).

@) IFlt=m(—u).

TYPEm
" a tede S o 2
17) (a) Attime ¢ the acceleration of a particle is given by a = >

(b) The velocity of a particle at time ¢ isgivenby =27}

18) @) a=f6)  (b) _|'m1v I.f(s)d.:.
19) @) v= Q- Di+3  (b) a=2i+3).

20) (a) The impulse of a force F acting for a time  is Fr.
(b) F is a constant force.

21) (3) r=@rF+ i@+ Dj~rk  (b) v=6rimj—3rk.

TYPE IV

22) A particle moves in a straight line. Find the distance covered by the particle
in the third second of its motion.

(@) s=0 when r=0.

(b) a=3r—4 attime r.

(c) 2=0 when r=0.

23) A particle moves on the line Ox with an acceleration which is proportional
to —x. Find the maximum velocity of the particle.
(@) v=0 when r=0.

24) A particle moves under the action of a force F. Find F in terms of 7.
(a) ¥=30—

(b) 5=61+3.

(c) the mass of the particle is 2kg.
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5) A particle of mass 3 kg moves so that its position vector after ¢ seconds is
given by

= (r-2%i—xj.
Find the force acting on the particle at time = 2. (Uof L)
al

6) A particle moves in a straight line so that its speed is inversely proporti
to (r+1), where ¢ is the time in seconds for which it has been moving.
After 2seconds, the particle has a retardation of 10/9ms™2. Calculate the
distance moved in the first second of the motion. (Uof L)

7) A particle P moves along Ox with variable velocity 2 ms ™. When
OP=xm, the acceleration of P in the direction of x-increasingis —vms™,
Giventhat =10 when x=0, find v intermsof x. (UofL)

8) A particle moves along the x-axis. For all values of x its retardation is
1/20*)ms™* where vms™ isits speed. At time t =0 seconds the particle
is projected from the origin with speed ums™ in the direction x increasing.
Show that the speed is halved when = 74?12 seconds and find the value
of x interms of u at this instant. (UofL)
9) At time ¢, the position vector r of a particle P is given by

= urgrt,
where u and g are constant vectors. Find the velocity and the acceleration of
P attime ¢. Obtain also the change in the velocity of P between time ¢, and
time 1. (Uof L)
10) A particle of mass 4kg moves from rest at the origin under the action of
two forces each of magnitude 40N. One force acts parallel to the vector
4i—3j, and the other parallel to the vector —3i+4j. Find the acceleration
of the particle.
11) A particle of mass 7 moves in a straight line against a resistance of
(mv+k) where v is the velocity of the particle and k isa positive constant.
Initially the particle has a velocity of u. Find an expression for the velocity of
the particle at any time ¢ and show that the greatest displacement from the

initial position occurs when

ds (1 1
12) By wiiting a as —" show that [~ do=1. Hence show thatif -~

plolled agamss v, xhe area between the graph, the v axis and the ordmates
gives the time at which the velocity is V, if =0 when
v o. A particle moves in a straight line with acceleration which decreases
uniformly with the velocity. If the acceleration is 10ms~? when the velocity
is zero and 4ms~? when the velocity is 6ms™, find the times at which the
velocity is 2ms™, 8ms™, if =0 when




378 Mathematics — Mechanics and Probability

particle has travelled when £ =2, and draw the velocity-time graph for the
interval 0<7<2. (UofL)

17) A point P is travelling in the positive direction on the x-axis with
acceleration proportional to the square of its speed v. Attime =0 it
passes through the origin with speed T and with acceleration g. Show that

dofdx = v/ETY,
and hence obtain an expression for v in terms of x, g and T. Prove that,

at time 1,
T
= ¢Tn (=L
x = gT*hn (1—1)'
Sketch the graph of x against 1 for 0<r<T. (UofL)

18) A particle moving along astraght line startsat time =0 seconds with
avelocity 4ms™. At y subuquenl time ¢seconds the acceleration of the
particle s (6—8)m

Find

() the distance the particle moves before first coming to instantancous rest,
(b) the total time 7 seconds taken by the particle to return to the starting

point,
(¢) the greatest specd of the particle for 0<r<T. (UofL)

19) A particle starts from restat time ¢=0 and moves in a straight line with

variable acceleration f ms™%; where
t
r=3 (0<r<s)

7= 055
s

1 being measured in seconds. Show that the velocity is 2§ms™ when =35
and 11ms™ when =10,

Show also that the distance travelled by the particle in the first 10 seconds is
(@3} 10l2)m. (UofL)

20) A parachutist of mass m falls freely until his parachute opens. When it is
open, he experiences an upward resistance kv where v is his speed and & isa
positive constant. Prove that, after time ¢ from the opening of his parachute,
m(do/dr) = mg—kv. Prove also that, irrespective of his speed when he opens
his parachute, his speed approaches a limiting value mg/k, provided that he falls
for a sufficiently long time.
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The parachutist falls from rest freely under gravity for a time m/2k and then
opens his parachute. Prove that the total distance he has fallen when his velocity
2

is 3mg/dk is ';'—k;‘(xmz—l). ©)

21) A particle leaves a point A attime r=0 with speed u and moves
towards a point B with a retardation Av, where v is the speed of the particle
at time r. The particle is at a distance s from A at time . Show that:

@ v=u—xs,

(b) In(—As) = Inu—Ar.

At 1=0 asecond particle starts from rest at B and moves towards A with
acceleration 2+ 6r. The particles collide at the mid-point of AB when

r=1. Find the distance AB and the speeds of the particles on impact. (AEB)

22) A particle is projected horizontally with speed u across a smooth horizontal

plane from a point O in the plane. The particle is subjected to a retardation of

magnitude k times the speed of the particle. Find the distance of the particle

from O and also its speed at time  after projection.

Another particle is projected vertically upwards with speed u. In addition to

the retardation due to gravity this particle is also subjected to a retardation of

k times its speed. Find the time this particle takes to reach its greatest height.
(AEB)

23) A particle moves in the xy plane such that the acceleration of the particle
attime ¢ is 3i. At time 0 the particle is at the origin with velocity
vector —2j. Find the position vector of the particle at time ¢ and hence find
the cartesian equation of its path,

24) A particle is acted upon by two forces Fy and F; where Fy=2i—rk
and F=i+47j+3k attime r. The particle is initially at rest. Find the
momentum of the particle 5 seconds later.

25) A particle of mass 1 moves under the action of a force F where
F =m costi+m sintj. Initially the particle is at the point —i with velocity
vector —j. Prove that the path of the particle s a circle whose cartesian equation
is xPyt=1.

26) A particle of unit mass is acted upon by a force which at time t is
4i+126%. Attime =0 the particle is at rest at the point —i+j. Find
the position vector of the particle at time ¢ =T, and deduce that the path of
the particle is a parabola with vertex at the point —i+j. Attime =1

the force acting on the particle becomes 4i. Find the position vector of the
particle when =2, (Uof L)
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33) Acar of mass m is moving in a straight line on a rough horizontal plane.
At'time ¢ the car is moving with velocity o and the resistance to motion is ko
where k Is a constant. If the car works at a constant rate Jr, show that

vd"wm‘ h
mos2 =
dr

)
I the car starts from rest, show that o is always less than (;’) and find the

)
)}
time taken for the car to reach the speed ;(;') . ©)

34) Amass m hangs at the end of a light string and is raised vertically by an
engine working at a constant rate kmg. Derive the equation of motion of the
‘mass in the form

v‘% = (kg

where v is the upward velocity of the mass and x isits displacement measured
upwards.

Initially the mass is at rest and when it has risen to a height & its speed is u.
Show that

13 1
= k2 ——u?
&h —kln(k u) =

Without further integration find, in terms of m, k and u, the increase in the
total energy of the mass due to this motion and hence, by considering the work
done by the engine, deduce that the time taken is
o\
kin (A IMB)
(k —u) ": (omB)

1
£



CHAPTER 12

SIMPLE HARMONIC MOTION

DEFINITIONS

Simple Harmonic Motion (SHM) is a particular type of oscillatory motion. It
is defined in one of the following ways.

(a) A particle moving in a straight line with a linear acceleration proportional to
the linear displacement from a fixed point, always directed towards that
fixed point, is travelling with linear SHM.

(b) A particle which oscillates on a circular arc with angular acceleration which
is proportional to the angular displacement from a fixed line and always
directed towards that fixed line, is travelling with angular SHM.

BASIC EQUATIONS OF SHM
1. LINEAR SHM
Given a fixed point O and a particle P distant x from O at any time, the

x
linear aceeleration of P is . or ¥, in the direction OP.
I3
But, by definition, the acceleration of P is proportional to x and towards 0.
Using n? as a constant of proportion,
the acceleration is #%x in the direction PO

»
-—— =

O = — x — — =

Hence ¥ =-n'x
This differential equation is the basic equation of linear SHM.
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2. ANGULAR SHM

Given a fixed line OA and a particle P where OP is at an angular
displacement 6 from OA atany time , the angular acceleration of P
"y
6
is 7 or  away from OA.

But by definition the angular acceleration of P is proportional to 6 and
towards OA.

o, o,

A A

Hence & = —n?@ is the basic equation of angular SHM.

By integrating either basic equation it is possible to derive further relationships
involving velocity, displacement and time.

Linear SHM

(R
de ax
Ex 4 &

The acceleration of P can be taken as ;f. 5 or v (see Chapter 11),

where v is the velocity of P at any time r.

d
Because the acceleration is a function of x we can use the form == giving

—nix
- = - J‘xdx
- Jot = —di+K,

If P is momentarily at rest ata point A where OA=a, then K,=jn’a®

50 that 7 = n*(@®—x%
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But

Therefore

x
= arcsin> = ni+K;
a

If we choose to begin our analysis from point A so that

T
then Ky = 3.
x ™
Hence arsin > = nr+ 5
a 2
x
or = = sin (e +
a
- x = acosnr

Summarising our results so far we have

S U]
dr?
9 [2]
x = acosnt 3

Now equation [2] shows that v=0 when x=%a confirming that the
particle oscillates between two points A and A’ on opposite sides of O and
equidistant from O.

The distance OA is called the amplitude of the SHM.
The point O is the centre or mean position of the motion.
‘The time taken to travel from A to O is obtained by using x =0 in

or

equation (3] giving nt =~
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1t wil take four times as long to travel from A to A’ and back to A,
iie. to describe one complete oscillation.

‘This s the periodic time (or period of oscillation), 7, and

4

Several interesting properties of SHM can be observed from the four standard
formulae which have just been derived.
(2) The periodic time is independent of the amplitude of the motion
equation [4].
(b) The greatest speed is na, occuringwhen x =0 i..at the centre of the
path. The speed is zerowhen x =+a i..at the ends of the path.

© The greatest acceleration is of magnitude na, occuringwhen x =%a

ile, when x =0 at the centre of the path, the acceleration is zero.

Angular SHM

Using §=¢ when r=0 and theangular velocity =0, asimilar
set of relationships can be obtained for angular SHM. They are:

o

% = —n?0 (1)

w = nVgi—6r 2

0 = gcosnt 3]
2

= 4

Note. Unless their derivation is specifically asked for, the standard formulae
can be quoted when solving problems on SHM whether linear or angular.

EXAMPLES 122

1) A particle is describing linear SHM of amplitude 2m. [fits speedis 3ms™
when the particle is 1m from the centre of the path find.

() the periodic time,

(b) the maximum velocity,

(¢) the maximum acceleration.
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Sinceat A, p=0, A must be one end of the path. Let O be the centre of
the path where  AO =a. The velocitiesat B and C, being opposite in sign,
are in opposite directions. Therefore B and C are on opposite sides of 0.

Measuring x from O in the direction AQ we have
v=2 when x=—@-2)

1 when x = (8—a)

Using rA@*x?)
gives 4 = i*(@—[2-a)?) n
and 1 = n*@*—[8—d]?) 2]

Equation [2] + [1] gives
1 1—64_ 4a@—4)
4 w4 @1

Therefore a =42
From [1] 4 = (4.2 —(—22)}]
- 4 = n*(64x20)
Hence
2
The periodic time is given by T= f andis Rﬂ;/sseconds

and the amplitude is 4.2m.

Summary of Formulae and Terms Used in Linear SHM

X o A
PR N ——
5 * >

AA' is the path
O s the centre or mean position
a s the amplitude
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For a particle at a general point P

—nx  where n isa constant

®
x = acosnt

2 . . o
T==" where T is the period of an oscillation

The maximum acceleration has magnitude n”a and occursat A and A'.
The maximum speed is na and occurs at O.

EXERCISE 120

1) A particle moves in a straight line with SHM. Find the periodic time if:

(a) the acceleration is of magnitude 2ms~? when the particle is 1 m from the
centre of oscillation,

(b) the maximum velocity is 4ms! and the maximum acceleration is 6ms-2.

2) The amplitude of oscillation of a particle describing linear SHM is 1.5m.

‘The speed at a distance v/2m from the mean position is 2ms™. Find:

(a) the velocity of the particle at the mean position,

(b) the maximum acceleration,

(c) the period of one oscillation.

3) A particle describing angular SHM passes through its mean position with

angular velocity 4 radians per second. If the amplitude is /6 radians, find

the angular velocity when the angular displacement from the mean position

is m/12 radians.

4) A point is moving in a straight line with SHM about a fixed point A. The

point has speeds v, and v; when its displacements from A are x,"and x

respectively. Find, in terms of x,, Xy, 0y and v, the periodic time of one

oscillation.

5) A particle is describing angular SHM of period 7 seconds. Its maximum
angular acceleration is 4r/3 rad s~ Find the maximum angular displacement
of the particle from its mean position and the angular velocity of the particle
when its angular displacement is half the maximum value.

6) A piston performing SHM has a maximum speed of 0.5ms™ and describes
four oscillations in one minute. Find the amplitude of the motion and the
velocity and acceleration of the piston when itis 1m from the centre of
oscillation.

7) A particle performs two SHM oscillations each second. Its speed when it is
0.02m from its mean position is half the maximum speed. Find the amplitude
of the motion, the maximum acceleration and the speed at a distance 0.01m
from the mean position.
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ASSOCIATED CIRCULAR MOTION

A particle P is describing circular motion of radius a with constant angular
velocity w and Q is the foot of the perpendicular from P on to a diameter
AA’. The velocity of P is acw along the tangent and the acceleration of P is
aw?® towards the centre O of the circle.

The components, parallel to AA", of the velocity and acceleration of P give
the velocity and acceleration of Q.

Therefore, for Q, velocity = awsing  along QO
acceleration = aw? cos® along QO

If the distance 0Q is x, then cos6 =§

X
Therefore Q has an acceleration nw’(*) =wix towards O.
a
But w? is constant so the acceleration of Q is proportional to the distance
of Q from O and is always towards O.
Therefore Q describes SHM about O as centre and with amplitude a.

The equations of SHM can now be derived by considering the associated
circular motion of P (an alternative to the derivation in which calculus was
ed).

The velocity, v, of Q is awsing

But sin@

Therefore v= [21]
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(a) If r, seconds is the time from A to L at 2rads™ then

So the time from A to B is 4 seconds.

(b) Similarly, if r; seconds is the time from A to M, £,=132+2.
So the time from A to C is 066 seconds.

Alternatively, having evaluated o as above, the problem can then be solved by
using the formula x = a cos wr.

(a) AtB, x=2d and the time from A to B is given by
2 = 4dcos2r,

rcos} = w/3
- n o= /6

(b) At C, x=d and the time from A to C is given by

d = 4d cos2t,
ie. 2, = arcos} = 132
= = 066

2) A particle travelling with linear SHM of period 7 starts from the centre O
of its path which is of length 2z. The particle travels for a time  and is then
atapoint P. Find the distance OP if (2) r=37 (b) r=4T.

As P travels along AA’ with SHM its

o g
b projection P’ on the associated circle
dl travels with constant angular velocity.
> n
N a0, ro

w

Eud
T

Hence w

The time, , taken to travel from O to P with SHM is equal to the time taken
to traverse the arc O'P’ with constant angular velocity

ie. t== o 0=qr

But 0P=aﬁno=asinu1:usinL;'
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- ia-%
1

But this is the basic equation of angular SHM. Therefore a particle oscillating
through small angles at the end of a light string performs angular SHM (to a
go0d approximation).

The period, 7, of such oscillations is 7"1 where n’=%

Therefore T = 2aVifg

Note: T depends upon the length of the string and the value of gravitational
acceleration but not upon the mass of the particle (often called the pendulum

The Seconds Pendulum
A simple pendulum which swings from one end of its path to the other end

in exactly one second is called a seconds pendulum and is said to beat seconds.

Since each half oscillation takes 1second, the period of oscillation is 2 seconds,

ie. T=2

The length of string, /, required for a seconds pendulum can then be calculated
using

T=uVig = 2=V
- _ s
giving =3

EXAMPLES 12¢
1) A simple pendulum which is meant to beat seconds (i.¢. each half oscillation
takes 1second) gains 1 minute per day. By what percentage of its length
should it be lengthened to make it accurate?
The pendulum makes (24 x 6060+ 60) half oscillations in 24 hours.

24 x60% 6/

The time for half an oscillation is ——————-seconds
60(24 %60 + 1)

‘The time for one oscillationis 27v//g  where I is the length of the
pendulum.
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S
A B A :
[ -

Consider the motion of the particle as it passes through a general point P which
isdistant x from B where AB

x
The tension in the stringis 13-

Applying Newton’s Law in the direction BP gives

‘This is the basic equation of linear SHM where  n? —’—I

m
The particle therefore initially performs SHM with B as centre.
But as the particle passes through B the string becomes slack and no horizontal
force then acts on the particle. It will therefore uavel with constant speed until
the string becomes taut again at B' where =

Ax .
Once beyond B’ the string again has a tension T towards B’ where B'P'

A .
The particle again moves with SHM where  n? = prt but about centre B'.
m

P

‘The particle therefore performs half an oscillation with SHM at each end of its
journey and covers the section between B and B’ with constant speed.

3) Consider an elastic string of natural length a and modulus 2mg attached at
one end toa fixed point A and hanging vertically with a particle of mass m at
the other end, If the particle is pulled vertically downward a distance d below
its equilibrium position and then released, investigate the subsequent motion

if d<al2.
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” ”
f
U3
E; u3
1S S S
¢

0] )

In diagram (i) AB is the natural length of the string
E is the position of equilibrium of the particle
P s a general point through which the particle passes
C is the lowest position of the particle.

In diagram (ii) where the extension in the string is e,

e _ 2mge
the tension == T‘ (Hooke's Law)
But the particle is in equilibrium

a
therefore Te=mg = e=%

In diagram (iii) where the extensionis (e+x) and the acceleration of the
varticle is ¥ in the direction EP,

2
the tension Tp = Mety) = ?(Hx)
a

‘The maximum distance from E of the paricle is the initial displacement d
which s less than a/2. The particle therefore never rises above the level of B
and the string never goes slack. For all positions of P, then, applying Newton's
law vertically downward at P gives

2my .
mg—Tg(Hx) = mi

Therefore g — 218 Sx
. 2
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Above B, then, SHM ceases and the particle travels with vertical motion under

gravity.

In order to investigate this second type of motion in detail, the velocity at B, v,
is required and can be calculated using

» i ? = w—x)
4 i
2 - 2 (|2
o 2oL
= vp = §VI58a

“This s the initial velocity for the
motion under gravity above B.
c
The oscillations performed by the particle are compound and the periodic time

of one oscillation can be determined in two parts.

(a) Time, t,, taken from C to B with SHM.
1y is equal to the time taken to describe

L " the arc CB' with constant angular
W velocity n.
L
) 0
ie. no=-—
n

But 0 = n—BEB’
or 0 = m—arcos §
¢ s n= \/:g(rnmg)

(b) Time, 1y, taken to rise above B to instantaneous rest, moving under
gravity.

W% 0 = §Vi5ga g1, [o=u+ar]
= n=3Visdg
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Comparing with ntx, we see that this i the basic equation of SHM
about B as centre and for which 1 =2. Also the amplitude, a, of the
motionis BC ie. a=1.

Now C is the end of the path and B is the centre so BC is one quarter of a
complete oscillation.

Therefore the time taken to travel from C to B is ;(2—") ==
"

As the particle passes through B with velocity v, the string becomes slack.
‘The particle no longer has any horizontal force acting on it and its horizontal
velocity will therefore be constant.

Using 7 =rn*(@®—x?) at B where x=0, gives vg=na
Sothespeedat B is  2ms™
‘The time taken to travel from B to A at this speed is therefore } second.
The two types of motion are (a) SHM from C to B
(b) constant velocity from B to A.

The total time taken to travel from C to A is (7 +§)s.

2) A particle of mass 2kg is attached to one end of a light elastic string of
natural length | m whose modulus of elasticity is 4¢ N. The other end of the
string is fastened to a fixed point O. The particle is held at O and is then
released from that position. Find the depth below O of the level where the
particle first comes to instantancous rest. Find also the period of oscillation of
the subsequent motion.

|
! .
) Bt .
RS SRR

[ i) i
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- ywarcus#g
[ s v
H . 6
. The time taken from B to A is ;
I - arcmv'g
s i which is —
L / Also 932 =2 ((3v57~(3))
" = vy =VX
Above A the time, ¢, taken before next coming to rest is given by

= Vig—g (using v =u-+ar)

0

So the total time for one compound oscillation is

‘7% fr— arcos J5+2]

3) A particle of mass m is attached to one end of a light elastic slvmg whose
other end is fixed to a point A on a smooth plane inclined at 30°

horizontal. The length of the string is 7 and its modulus ol'elashclly is ng.
The particle is pulled down the line of greatest slope through A, to a point C
where it is released from rest. If the particle just reaches A, find the time taken
to travel from C to A.

PE 0

i) )

In diagram (i) AB is the natural length of the string
E is the equilibrium position of the particle
C is the lowest position of the particle
P is a general position of the particle
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Now, for the SHM between C and B (x

40 at B) we first find the
velocity, vg, at B using ©? =n?(@®—x?)

. . Zg(gr’ l")
ie. vt = —|——

16 16
= v = V&l

Using x=acosnr, the time ¢, taken to travel from C to B is given by

—41 = J1cost, Vgl

- 1y = Vi2g arcos(—})
- 1y = Vil2g (x —arcos §).

Above B there is a constant acceleration g sin30° down the slope so we have:
initial velocity at B = Vgl
final velocityat A = 0
acceleration =g

time from B to A = 13

Using o=u+ar gives

o

= Vel = 4erz
= = 2Vijg

The total time taken to travel from C to A is £,+1, where

;= Vifg (n—arcos § + 2v/2)
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4) Alight vertical spring is fixed at its lower end O. A platform of mass m is
attached to the upper end of the spring and a particle, also of mass m, rests on
the platform. The length of the spring is 4a and its modulus of elasticity is Sme.
If the platform together with the particle is gently depressed through a distance
2a below the equilibrium position and s then released from rest, show that the
particle performs partial SHM but also appears to bounce off the platform at
some stage. Find the height above O when this occurs.

T s

I R
M n ; : .
|, 4

[0 i

In diagram (i) OA is the natural length of the spring
E is the equilibrium position
B is the lowest position
P is a general position
In diagram (i) both the platform and the particle are in equilibrium and there
is a pair of normal reactions, R, between them.

#
The compression in the spring, T, is 410—':.
Because the platform s in equilibrium Ty, = Rg+mg
Because the particle s in equilibrium  mg = Ry

_ tmg
Therefore g = ke
- e=a
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8mg 2mg
= s

In diagram (iii) Tp = ™ e+x) = (a+x)

Applying Newton’s Law vertically downward we have:
for the platform mg+Rp—Tp = m¥
for the particle mg—Ry = ms
As long as the particle is in contact with the platform, these equations can be

combined to give

mg =2 g4x) = 2me

‘This basic equation of SHM about E as centre represents the motion of both
the particle and the platform so long as they are in contact.

‘The maximum downward acceleration of the particle is g, since the maximum
downward force acting on it is mg. The platform has acceleration g downward
when x=—a ie.ataposition D of height a above E.

But the amplitude of the motion of the platform is 2 (the initial displacement
from E). The platform will therefore rise above D where its downward
acceleration will exceed g.

Above D, then, the retardation of the platform is greater than that of the
particle. Contact between them will be lost and the particle, as it continues to
move under gravity, will appear to bounce off the platform (in fact it is the
platform which withdraws from underneath the particle).

This apparent bounce occurs at D whose height above O is 4a.

Note. Remember that some problems about particles moving on elastic strings or
springs can be solved without using the equations of SHM. When considering
only velocity and position, the principle of conservation of mechanical energy
provides the best solution. Examples of this type were given in Chapter 7.

EXERCISE 120
1) A particle of mass 1kg is attached to one end of a light elastic string whose
other end is fixed to a point O. The length of the stringis 1m and the particle
hangs in equilibrium 1.2m below O. If the particle is then pulled down a
further 0.4 m and released show that it performs partial SHM and find the time
which elapses before the particle next comes to instantancous rest.
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5) A particle of mass m_is oscillating vertically at the end of an elastic string of
length I and modulus 2mg. The motion of the particle will be entirely simple
harmonic if:

(2) the amplitude is less than 1,

(b) the particle never rises above its equilibrium position,

(c) the string never goes slack,

(d) the amplitude is less than 7.

6) When a particle performs small oscillations at the end of a spring, the period
depends upon:

(a) the mass of the particle,

(b) the modulus of elasticity of the spring,

(c) the natural length of the spring,

(d) the maximum extension of the spring.

TYPE IV

7) A particle P is moving with linear SHM about a point O. Find the period of
oscillation if:

(a) the acceleration is 6ms~! when OP =2m,

(b) the amplitude is 5m,

(c) the mass of the particle is 3 kg.

8) Find the amplitude of the SHM described by a particle if:

(a) its maximum velocity is § ms™

(b) its maximum acceleration occurs at O,

(c) the periodic time is

9) A particle is attached to a fixed point by an elastic string and is performing
small vertical oscillations. Find the period if:

(a) the natural length of the string is 1,

(b) the modulus of elasticity is 2mg,

(c) the particle is of mass m.

TYPEV
10) A particle whose is ional to its di froma
fixed point is moving with SHM.

11) A particle hanging at the end of an elastic string is pulled down and then
released. The motion of the particle must be entirely SHM.

12) A particle describing linear SHM on a path AB with midpoint O has its
greatest acceleration at either A or B.

13) A particle travelling in a circle with constant angular velocity c is moving
with SHM,

2
14) The period of oscillation of a particle travelling with angular SHM is ;—"
therefore e is the angular velocity at the centre of the path.
15) A particle which is oscillating is not necessarily performing SHM.
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MISCELLANEOUS EXERCISE 12

1) A particle P moves with an acceleration which is proportional to its distance
from rest at a point A distant d from C, where the magnitude of its
acceleration is Nd, find an expression for the velocity of P when it s distant
x from C.

After what time does P next come to instantaneous rest? In what time does P
travel from A toapoint Q where AQ = }d?

2) A particle of mass 1kg is attached to the midpoint of a light elastic string of
natural length 1m and modulus of elasticity 4g N. The ends of the string are
stretched between two points P and Q, 2m apartin a vertical line (P above
Q). Find the height above Q of the position of equilibrium of the particle.
Find also the period of small vertical oscillations when the particle is disturbed
from rest.

3) A particle is moving with linear simple harmonic motion. Its speed is
maximum at a point € and is zero at a point A. P and Q are two points on
CA such that 4CP=CA while the speed at P is twice the speed at Q.
Find the ratio of the accelerations at P and Q.

If the period of one oscillation is 10seconds find, correct to the first decimal
place, the least time taken to travel between P an

4) Prove that, if a particle moving with linear simple harmonic motion of
amplitude 4 has velocity v when distant x from the centre of its path, then
v=wVaT—x? where w isa constant.

A point travelling with linear SHM has speeds 3ms™ and 2ms™ when
distant 1m and 2m respectively from the centre of oscillations. Calculate the
amplitude, the periodic time and the maximum velocity.

5) A particle of mass 10kg is moving along a straight line with simple harmonic
motion. The particle has speeds of 9ms™ and 6ms™ at P and Q respectively,
whose distances from the centre of oscillation are 1m and 2m respectively.
Caleulate the greatest speed and the greatest acceleration of the particle.

If the points P and Q are on the same side of the centre of oscillation, calculate:
(a) the shortest time taken by the particle to move from P to Q,

(b) the work done during this displacement.

6) A particle P moves in a straight line so that its acceleration is always directed
towards a point O in s path and is of magnitude proportional to the distance
OP. When P isat the point A, where 04 =1m, itsspeedis 3v/3m/s and
when P isat the point B, where OB =+/3m, itsspeedis 3mjs. Calculate
the maximum speed attained by P and the maximum value of OP.
Show that P takes 7i/18 seconds to move directly from A to B. Find, in m/s
correct to 2 significant figures, the speed of 2 one second after it passes 0.
(UofLy
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7 The diagram shows an elastic string
OPQ of modulus A and natural length
4, one end of which s attached to a
fixed point O. The string passes through
asmall smooth fixed ring at P, where
OP=a. The other end of the string is
attached to a small ring Q of mass m
which can move on a smooth vertical
wire AB. The perpendicular from P
onto AB is PN. The ringisheld at C,
where NC=c, andis then released.
Prove that the ring performs simple
harmonic motion about a point on the
wite distant mag/\ below N.

Find also the period of the motion and the speed of the ring when it passes
through N. ©)

8) A small sphere of mass m is suspended from a fixed point A by a light
elastic string of modulus mg and natural length Z. The sphere is pulled down
toa point 7 vertically below its equilibrium position, and released from rest.
Asit passes through its equilibrium position it picks up a rider, also of mass m,
previously at rest, which adheres to the sphere. Find the depth below A at
which the sphere and rider next come to rest. (Uof L)

9) One end of a light elastic string, of natural length @ and modulus of elasticity
kmeg, is attached at a fixed point on a frictionless plane inclined at an angle 6

to the horizontal. A heavy particle is attached to the other end of the string.

The particle is at rest on the plane with the string along a line of greatest slope
and extended by a length b. The particle is then pulled down a distance d in
the line of the string and released. Show that the period of the simple harmonic
motion with which the particle starts to move is independent of 6.

If d=2b, find the time from release to the string going slack and find also
the speed of the particle at the instant when the string goes slack.

10) A particle of mass m is suspended from a ceiling by a light elastic string, of

natural length @ and modulus 12mg. When the particle hangs at rest find the

extension in the string. The particle is then pulled down vertically a distance x

and released. IF the particle just reaches the ceiling, find:

(a) the value of x,

(b) the maximum speed and the maximum acceleration during the motion.
(UofL)
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11) A particle of mass m moves in a straight line in simple harmonic motion of
period 4ms about a point O. It starts from rest at a point P, 4m from O,
and ws later a particle of mass 2m is released from rest at P and describes an
exactly similar simple harmonic motion. Show that the two particles will collide
3 safter the second particle is released, and find how far from O the collision
will occur,

Draw a rough graph of distance against time to illustrate your results.

If on colliding the two particles coalesce, find the magnitude and direction of
the velocity of the composite particle immediately after the impact. [¢

12) A light elastic spring, of modulus 8mg and natural length I, has one end
attached to a ceiling and carries a scale pan of mass m at the other end. The
scale pan is given a vertical displacement from its equilibrium position and
released to oscillate with period 7.

Prove that T=2 / (L)
8¢,

A weight of mass km is placed in the scale pan and from the new equilibrium
position the procedure is repeated. The period of oscillation is now 27, Find
the value of k.

Find also the maximum amplitude of the latter oscillations if the weight and

the scale pan do not separate during the motion. (AEB)

13) A particle P, of mass m, is suspended from a fixed point O by an elastic
string. When the particle s in cquilibrium the extension of the string is a.
Assuming that the string remains taut during the motion, prove that the period
of vertical oscillations of P is 2r /().

£
A second particle Q, of mass 2m, isattached to P. Find the extension of the
string in the new equilibrium position and prove that, if Q now drops off, the

string becomes slack after a time 37 (5. ©)
g,

14) Theend A of a light elastic string AB, obeying Hooke's Law and of
natural length 0.5m, is fixed. When a particle of mass 2kg is attached to the
string at B and hangs freely under gravity, the extension of the string in the
equilibrium position is 0.075 m. Calculate, in newtons, the modulus of
elasticity of the string.

‘The particle is now pulled down vertically a further 0.1 m and released. Show
that, until the string becomes slack, the motion of the particle is simple
harmonic. Show that the time that elapses before the particle first passes through
the equilibrium positionis (m/3)/40s and find the speed of the particle
when it is in this position.

[Take g as 10m/s*.] (UofL)
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18) One end of a light elastic string, of natural length / and modulus of
elasticity 4mg, is fixed to a point A and a particle of mass m is fastened to
the other end. The particle hangs in equilibrium vertically below A. Find the
extension of the string.
The particle is now held at the point B ata distance / vertically below A and
projected vertically downwards with speed /(6gl). If C is the lowest point
reached by the particle, prove that the motion from B to C is simple harmonic
of amplitude §/. Prove also that the time taken by the particle to move from B
e 1 +aresin HvTTe.
(You may quote a solution of the equation of simple harmonic motion.) (JMB)
19) A particle is attached to one end of a light elastic string, the other end of
which is fastened to a fixed point A on a smooth plane inclined at an angle
arcsin § to the horizontal. The particle rests in equilibrium at a point O on the
plane with the string stretched along a line of greatest slope and extended by
an amount c. If the particle is released from rest at a point P on AQ
produced, show that so long as the string remains taut the particle will oscillate
in simple harmonic motion about O as centre, and state the periodic time.
If OP=2c, find the velocity of the particle when it first reaches O after
leaving P. (UofL)
20) Two points A and B on a smooth horizontal table are at a distance 8/
apart. A particle of mass m between A and B is attached to A by means of
alight elastic string of modulus \ and natural length 2/, and to B by means
of a light elastic string of modulus 4X and natural length 32, If M is the
midpoint of AB, and O is the point between M and B at which the particle
would rest in equilibrium, prove that MO = &/.
If the particle is held at M and then released, show that it will move with simple
harmonic motion, and find the period of the motion.
Find the velocity ¥ of the particle when it is at a point C distant 7 from M,
and is moving towards B, ©
21) A light elastic spring, of natural length a, and modulus 8g, stands
vertically with its lower end fixed and carries a particle of mass m fastened to
its upper end. This particle is resting in equilibrium when a second particle, also
of mass m, is dropped on to it from rest at a height 3a/8 above it. The particles
coalesce on impact. Show that the composite particle oscillates about a point
which is at a height Ja above the lower end of the spring and that the equation
of motion is
dx dgx
dr? a
where x s the displacement, at time 7, of the composite particle from its centre
of oscillation. State the period and find the amplitude of the resulting motion.
(Standard formulae for simple harmonic motion may be quoted without proof.)
(IMB)



CHAPTER 13

RESULTANT MOTION. RELATIVE
MOTION

RESULTANT VELOCITY VECTORS

It frequently happens that the motion of an object is made up of a number
of components. For instance, a motor boat can be moving under the effect both
of its engine and of a current in the water; or an acroplane’s movement in the
sky can depend both on its engines and on the wind. The actual motion of such
an object is the resultant of the various components involved.

So, if a boat has an engine whose velocity vector is v, and it is being carried
along by a current whose velocity vector is e, the velocity of the boat, vy, is
given by

Vp = Vet v
Note that the velocity v, which the boat possesses regardless of the current, is
often referred to as ‘the velocity of the boat in still water'. Similarly the cngine
velocity of an aircraft can be called its velocity in still air’.

The resultant velocity of such moving objects can be found by any of the
methods that were demonstrated in Chapter 2, i.e.,

(a) drawing and measurement,

(b) trigonometry,

(c) the use of Cartesian vector components, i and j.

The reader is recommended to revise this work before attempting the next
revision exercise.

EXAMPLES 13
1) Aboat s drifting in the sea where the velocity of the current is ~ 2i+ 3j.

The wind blowing the boat has a velocity i—5j. What is the velocity of the
boat.
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Vélocity of boat = velocity of current + velocity of wind
= (2i+3)+(i—5)
=3i-3
2) A passenger walks directly across the deck of a ship from starboard to port at
aspeed of 6kmh™. The ship which is travelling through the water at 20kmh™
is steering due north in a current running south east at 4kmh™". In what
direction is the passenger actually moving? (Starboard is the right-hand side.)

Let the passenger’s velocity have components «kmh™* and vkmh™ in the
directions east and north respectively so that

Resolving in the east and north directions we have

20

45

- u = 4cosd5°—6 = —3.17
t © = 20—4sin45° = 17.17

Now a velocity of —3.17kmh™" eastward is really a velocity of 3.17kmh™!
westward, so the components of the passenger's velocity are as shown below.

317kmh

So the passenger moves in a direction 349.6° (N 10.4°W).

EXERCISE 13a
1) A plane whose velocity in still airis  10i—12j is flying in a wind with
velocity —2i+3j. With what velocity is the plane flying?
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2) Aship s travelling at 10ms™ ina direction 4i—3j ina wind with
velocity  7i—j. What s the speed of the ship in still water?

3) Rain is falling vertically at 8ms™. If a wind springs up, blowing
horizontally at 6ms™ at what angle to the vertical will the rain fall?

4) Amodel boat with a speed in still water of 3ms™ is steered due north
across a river flowing due cast at 4ms™'. Wind s blowing south-cast at 2ms™
In what direction and at what speed will the boat move?

5) A boat whose speed in still water is 12ms™ is being steered on a bearing
030° in a current flowing on a bearing 060° at Sms™. What is the speed of
the boat relative to the carth? A passenger walks with a speed of 2ms™ across
the deck in a direction such that, relative to the earth, he is moving north-east.
Find the bearings of the two possible directions in which he could have been
facing as he walked.

RESULTANT DIRECTION OF MOTION

When the motion of an object is made up of a number of velocities, the
direction in which it moves is the direction of the resultant velocity.

Consider an aireraft, whose speed in still air is v, flying in a wind of velocity
vy, from airport A to airport B, The required direction of flight is along AB.
The direction of motion of the plane is given by the direction of s resultant
velocity. Therefore  ve+v,, and AB have the same direction. This fact is of
fundamental importance in solving problems.

EXAMPLES 13b

1) An aircraft has to fly from an airport A to another airport B which is 240 km
from A on a bearing of 120° from A. A wind with a speed of 15kmh™!
blowing due north throughout the flight. If the speed of the plane in still air

is 300kmh~, find:

(a) the direction in which the plane should steer,

(b) the time for the flight.

—
‘The plane has to fly in the direction AB relative to the earth’s surface, so this
i the direction of the resultant velocity.

The information we have can be summarised as follows:

Velocity ‘Magnitude Direction
Engine component, v, | 300kmh~ | Unknown
Wind component, v, | 15kmh™! N

Resultant, ¥/ Unknown 120°
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A velocity vector triangle PQR can now be drawn and, from it, the magnitude
of the resultant velocity and the direction in which the plane must steer, PR,
can be measured (o scale or calculated.

(2) Using calculation,

sinPRQ =
= PRQ =
= QPR = 57.5°
Hence the plane must steer on a course 122.5°.
(b) V? = 15%+300*—2(15)(300) cos 57.5°
- v =292

The time of flight, 7, is given by
distance AB__ 240

speed along AB 2922

So the time of flight is 0.821 hours, or 49.3 minutes.

2) A girl can paddle her canoe at 4ms™" in still water. She wishes to cross a
straight river which is flowing at 6 ms™. At what angle to the river bank
should she steer to cross: (a) as quickly as possible, (b) by the shortest route?

(a) She will cross in the shortest time when the velocity component directly
across the river is greatest and this is when the canoe is steered at right angles to
the bank.

Resulaant velocity

If the width of the river is d, the time taken to cross is §d.
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(b) The river is crossed by the shortest route when a is as large as possible.

Now sina = (4sin0)/6 and isgreatest when 6 =90° i, the canoe
should be steered at right angles to the resultant direction.

Inthiscase @=41.8" so the canoe should be steered upstream at 58.2°
to the bank.

Note. Problems of this type should be studied carefully and individually as the
angle called @ is not always 90°. If, for instance, in the example above the
speeds were interchanged we would have
6sin0

4

sina =

But sina®1 sothistime § cannot
be 90° and the greatest value of sina
occurs when &= 90°

(ie.when sinf=3%)

Note, While studying this topic the reader will find that the word ‘course’ has
different meanings in different contexts. If this fact is appreciated, it should not
be too difficult to take the appropriate meaning in each case.
E.g., a ship steers on a course’ or sets a course” — this gives the direction of the
velocity of the ship in still water.
the ‘true course’ of an aircraft — this is the direction of the resultant
velocity.
three buoys, A, B and C, ‘mark a course’ for a race — this time ‘course’
simply means the path ABCA.

EXERCISE 13b

1) A boy can swim in still water at ¥ms™. He swims across a river flowing at
12ms™ whichis 368 m wide. Find the time he takes if he travels the shortest
possible distance if (2) v=1, (b) v=2.

2) A helicopter flies with constant airspeed 200kmh™ from position A to
position B, whichis 100km north east of A, and then flies back to A.
Throughout the whole flight the wind velocity is 60kmh™ from the west.
Find, by drawing or calculation, the course set for each of the two legs of the
flight. Find also the total time of flight from A to B and back.
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3) A river flows at a constant speed of 4ms™' between straight parallel banks
which are 225 m apart. A boat, which has a maximum speed of 2.6ms™ in
still water, leaves a point P on one bank and sails in a straight line to the
opposite bank. Find graphically or otherwise, the least time the boat can take to
reach a point Q on the opposite bank where  PQ=375m and Q is
downstream from P. Find also the least time the boat can take to cross the river.
Find the time taken to sail from P to Q by the slowest boat capable of sailing
directly from P to

4) A speedboat which can travel at 40kmh™" in still water starts from the
corner X of an equilateral triangle XYZ of side 20km and describes the
complete course XYZX in the least possible time. A tide of 10kmh™! is
running in the direction ZX. Find:

() the speed of the boat along XY,

(b) to the nearest minute the time taken by the speedboat to traverse the

complete course XYZX.

5) A destroyer is travelling north-west at a constant speed of Sms™. A gun
‘mounted on the ship can fire a shot with a horizontal muzzle velocity of
25ms™". If the target to be hit is due east of the ship find the direction in
which the gun should be aimed. (Ignore the vertical motion of the shot.)

FRAMES OF REFERENCE

Most of the time we judge the position or the movement of an object with
reference to the earth’s surface, i.e. the earth’s surface is our basic frame of
reference.

Sometimes, however, we ‘see’ motion that is not relative to the earth. For
instance, if an observer B, sitting in a moving railway carriage, looks out of the
window at a passenger A who is in another train travelling on a parallel line at
the same speed in the same direction, A appears to be stationary. Relative to the
earth, of course, A is moving but, relative to the observer B, A is stationary.
If B's train is travellingat 90kmh™" and A’s trainat 100kmh™ then A
passes B at 10kmh~'. Relative to the earth, A’sspeedis 100kmh™ but
relative to B itis (100—90)kmh™'.

In these two examples, B has become the fixed point in the frame of reference.
The velocity of B relative to the earth is thus discounted i.e. B's velocity
vector is subtracted from the velocity vector of A relative to the earth. In
general

the velocity of ‘A ‘relative to B is v4—vj

where vy and vy are the velocities of A and B
relative o the earth’s surface.
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So the true wind velocity is  5v21kmh™ ina direction 190.9°.

Note. Wind direction can be defined in two ways. In this problem we were
told that ‘the wind appears to be blowing in the direction 240°. This
information could equally well be expressed in the form ‘the wind appears to be
blowing from 060°. Great care must always be taken, when reading questions
involving wind direction, to interpret correctly the information given, since the
two modes of expression are so similar.

5) From two reconnaissance vessels A and B observation is being kept on a
foreign ship C.

To A, which is moving at 10 knots ona course 030° the ship C appears
to be travelling in a direction 120°, When viewed from B whose speed is

12 knots ona course 150°, C appears to be travelling due east. What is the
true velocity of the foreign ship?

Let C have velocity components u and 2 to the east and south respectively.
Then, resolving the velocities v, vg and v of the three ships, in the
directions east and south we have:

—»
N >
307
Component > 5 6 u u—5s u—6
Component | —5v3 | 6v3 v v—(=5v3) | v—6v3

The direction of ve—v, is 120°

ie.
u-—3
Therefore an60° = ——-
2453
= V3(@+5V3) = u—5

- V3v = u—20 1



Resultant Motion, Relative Motion a3

6) Two aircraft are flying at the same height on straight courses. The first is
flying at 400kmh™" due north. The true speed of the second is 350 kmh™*
and it appears, to the pilot of the first aircraft, to be on a course 220°. Find
the true course of the second aircraft.

7) A, B and C are three objects each moving with constant velocity. A's
speed is 10ms™ in a direction PQ. The velocity of B relative to A is
6ms™ atanangle of 70° to PQ. The velocity of C relative to B is 12ms™

in the direction QP. Find the velocity of B and of C.

8) When a motorist s driving with velocity 6i-+8] the wind appears to come
from the direction i. When he doubles his velocity the wind appears to come
from the direction i+j.

Prove that the true velocity of the wind is 8j.

‘The motorist changes his speed but still drives in the same direction. If the
wind appears to come from the direction 2+ j, calculate the motorist’s
speed.

9) A boy is walking due north along a straight road and the wind appears to be
blowing south west. When he turns right at a cross roads the wind appears to be
blowing in the direction 260°. If the boy walks at a constant 6kmh™ and
the two roads cross at right angles, find the true wind velocity.

10) Twoaircraft, A and B, are flying at the same height. Both have speed
400kmh™'; A is flying on a bearing 330° and B is flying due east. A third
aircraft, also flying at the same height, appears to the pilot of A to be on a
course due south while to the pilot of B its course seems to be 240°. In what
direction is the third aircraft actually flying?

11) Aboat A is sailing due east at 18kmh™" and a second boat B s sailing
on a bearing of 030° at 12kmh™'. At a certain instant a third boat C appears
toan observer on A to be sailing due south and appears to an observer on B to
be sailing on a bearing of 150°. Find the speed of the boat C and the bearing
on which it is sailing.

12) During a race between two yachts, A and B, there is a wind of 18 kmh™"
blowing from due north. The resultant velocity of A is 12kmh™ on a bearing
of 060°. Find the direction of the wind relative to A.

At the same time, the resultant velocity of B is 12kmh™ on a bearing

of 300°. Find, correct to the nearest degree, the direction of the wind

relative to B and,in kmh™' correct to one decimal place, the velocity of A
relative to B.
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RELATIVE POSITION

When one moving object, A, is viewed from another moving object, B, we
usually choose a frame of reference in which B is regarded as fixed. In this
case displacement as well as velocity is measured relative to B. Hence, if in a
certain time A undergoes an actual displacement (ic. relative to earth) of 1,
and B has an actual displacement of g, then the displacement of A relative to
Bis ro—rp.
We also know that, relative to B, A hasa velocity vo—vg so, when B is
taken as the fixed point in the frame of reference,

B does not move from its original position

A hasa displacement ry—rg and avelocity vo—vp.

It follows that A’s motion relative to B is in the direction of vy—vg and
that A and B are closest together when |ry—rg! is least.

In some problems involving relative position, the given data is in Cartesian
vector form and the methods used in Chapter 11 can be applied. When the
information is given in other forms, problems can be solved by calculation or

by drawing and measurement. If the latter method is chosen, two different
scales are needed, one for speed and one for distance. It is safer to draw separate
figures, one to each scale, the property they have in common being the direction
of the relative motion.

EXAMPLES 13d

1) An object P passes through a point whose position vectoris 3i—2j,
with constant velocity i+j. At the same instant an object Q, moving with
constant velocity 4i—2j passes through the point with position vector
i+4j. Find the displacement of P relative to Q after ¢ seconds and the
time when P and Q are closest together. How far apart are they at that time?
(Units are ms™ and m.)

If rp and rg are the position vectors of P and Q at time ¢, then

o= H-Hi+]) and 1 = i+4j+rdi—2j)
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P travels the distance PN at the relative speed ¥ inatime ¢ so PoN = Vz.
This relationship allows the value of ¢ to be calculated.

The method described and explained above can be carried out quickly and
easily by drawing and measurement except for evaluating f. It is recommended
that the reader draws the two diagrams illustrated, to two separate scales, and
sofinds ¥, PN and QoN by measurement. Finally ¢ can be evaluated.

Measurements from accurate drawings give

V 2 180; PoN = 7690; QoN = 2200

Then ¢ =

So the aircraft are closest together after 43 seconds and are then 2200 metres
apart.

3) A ship moving at a speed of 15kmh™, sights an enemy destroyer 10km
due south. The destroyer is travelling at 20kmh™" north west. The captain of
the ship is ordered to steer as far west of north as possible but the ship will be
in range of the destroyer’s guns if it approaches closer than 2 km. On what
bearing can the ship steer 0 that it just stays out of range?

B,

24 S,

10km

D,
(i) Velocity disgram
(i) Displacement diagram

In diagram (i) DoN rcplzscnls the path of the destroyer relative to the ship
and is on a bearing (360°—a) where @ = arcsin 5 = 11.5°.

In diagram (ii) the side AC of the velocity triangle represents the velocity of
the destroyer relative to the ship.
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Both DoN and AC represent the direction of motion of the destroyer relative
to the ship. So DoN and AC are parallel.

46 s —
In triangle ABC % - dn@5°—a)

15
Therefore sing = Bsin33.5°
- 0= 132.7° (8 is known to be obtuse)
N

The angle between BC and the north
i 180°—(0—a)

ie. 58.9°

‘The ship must not travel further to the west than 58.9° west of north.

Note. When graphical solutions are offered, explanation similar to that given in
these examples should be included. Only the trigonometric calculations should
be replaced by measurement.

Closest Approach (Choice of Course)

‘We have so far been considering the relative motion of two objects A and B,
both of which are moving with specified velocities, and have found that the
shortest distance between them is dsina where d is the initial distance apart
and @ is the angle between the relative path and the initial line.
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Suppose now that, while the speeds of both objects are fixed and B moves in
a specified direction, A is free to choose its bearing.

The angle « is no longer fixed and, as « varies, the shortest distance 1,
between A and B, also varies.

If it is impossible for A to intercept B, i.. I cannot be zero, then A will
pass as close to B as possible when /, and hence a, takes its smallest possible
value.

Consider first a general case where the relative path makes angles § and 7
with the directions of motion of B and A respectively.

In this diagram, quantities which are constant are:
the magnitudes of v, vp and d,
the directions of v and AgBy,
the compound angle  (a+ ).

Quantities which vary as A’s bearing varies are: «, 8,7 and 1.

If @ is to be as small as possible, B must be as large as possible because a -+
is constant. By applying the sine rule in the velocity triangle we see that § is
greatest when 1y = 90°.

Thereforel in.order to @pproachids ¢losk s possible o L Tiis direGiion of:
nidtion of /A ’should be pefpendichlar 10 the relative path,

4) A speedboat travelling due eastat 100kmh™ is 500m due north of a
launch when the launch sets off to try to catch the speedboat. If the speed of
the launch is 60kmh™ show that the launch cannot get closer to the speedboat
than 400m.

The launch cannot catch the speedboat because even when travelling due east at
60kmh™" the speedboat is pulling away at a relative speed of 40kmh™%. The
launch will approach as close as possible to the speedboat when the velocity of
the launch v is perpendicular to the relative velocity vy—vg (where vg
is the velocity of the speedboat).
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If Ao and By are the initial positions of the launch and the speedboat, then:

p

sinf = % =1
Therefore sina = sin (90°—f) = cosp = .
‘The shortest distance 1 between the launch and the speedboat is therefore

given by 1 = 500sina andis 400m

5) A motorboat with a speed of Sms™" sets out at 12.00 from a point with
position vector —11i+16] with the aim of getting as close as possible toa
yacht owned by a famous filmstar. At 12.00 the yacht is at the point 4+ 36j
and is moving with constant velocity 10i—S5j. Find the direction in which
the motorboat must steer and show that the motorboat cannot ever reach the
yacht.

Let the optimum velocity of the motorboat, vg, be ai+bj

The velocity of the yacht, vy, is 10
The path of the motorboat relative to the yachtis vp—vy

where vp—vy = ai+bj—(10i—5j)

The best direction for the motorboat to steer is perpendicular to the relative
path, i.e. vy is perpendicular to vy —vy

Therefore Vi (vg—vy) = 0
= (ai+bj).(jla—10}i + (b+5}j) = 0
= a@a—10)+b(b+5) = 0 n

But we also know that the speed of the motorboat is Sms™ so
a4b =25 2
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Question 1 2 3

va magnitude | 3ms™ |10ms™ 20kmh™
direction | dueS | perpendicular to AoBy | NE

vp magnitude | 4ms™ |20ms 30kmh™!
direction | due W dueN

AoB, magnitude | 20m  |40m

direction | dueS | any convenient direction | SE
va—vp magnitude
direction
' 15 minutes
! 20m

4) Two straight paths, inclined to one another at 60°, intersect at a point O.
Aboy A isonone path 300m from O, whileaboy B is on the other path
400m from O. Angle AOB = 60°. Simultaneously the boys begin to run
towards O, A with speed 15kmh™ and B with speed 12kmh™'. What is
the shortest distance between the two boys.

5) At noon an observer on a ship travelling due east at 20kmh™ sees another
ship 20km due north which is travelling S30°E at 8kmh~. At what time
are the ships nearest together?

6) Two aircraft P and Q are flying at the same height at 300kmh™ ona
bearing 135° and 350kmh™" on a bearing 060° respectively. If P is initially
10km north of Q, how close do they get to one another?

7) Two cyclists are riding one along each of two perpendicular roads which
meetat A. At one instant both cyclists are S00m from A and both are
approaching A. If the speed of one cyclist is 8ms™ and the shortest distance
between the cyclists is S0m, find the two possible speeds of the second rider.

8) Attime =0 aship A isat the point O and aship B isat the point
with position vector 10j referred to 0. The velocities of the two ships are
constant. Ship A sails at 34kmh™", in the direction of the vector 8i+ 15j
and ship B sails at 30kmh™ in the direction of the vector 3i+4j.

Write down

(a) the velocity vector of each ship,

(b) the velocity of B relative to A,

(c) the position vector of B relative to A at time ¢ hours.

Given that visibility is 10km, show that the ships are within sight of each other
for 3 hours.
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9) A and B are two ships which, at 1200 hours, are at P and Q respectively,
where  PQ=39km. A issteamingat 45kmh™" in a direction perpendicular
to PQ and B is steaming on a straight course at 30kmh™" in such a direction
astoapproach A as closely as possible. Show that B steams at an angle
arcsin § with PQ.

Find when the ships are closest together.

10) Aship A is travelling due east at 24kmh™. At noon a second ship B is
8km away from A in a north-casterly direction, and one hour later B is again
8km away, but in a south-casterly direction. Find the speed of B, which is

to be assumed constant.

Calculate the minimum distance between A and B and show that when this
position occurs B is due east of A.

1) Unit vectors in the directions east and north are i and J respectively. To
a cyclist travelling due north at 8kmh™ the direction of the wind appears to
be —i. He increases his speed to 15kmh™ without altering course and the
wind now appears to be in the direction —i—j. What is the true velocity
vector of the wind?

The cyclist continues to cycle in a straight line at 15 kmh™" but changes
direction and the wind now appears to blow in the direction . Find the
direction in which the cyclist is now travelling.

12) Ariver flows at 4ms™ from west to east between parallel banks which

are at a distance 400 metres apart. A man rows a boat at a speed of 3ms~

in still water.

(a) State the direction in which the boat must be steered in order to cross the
river from the southern bank to the northern bank in the shortest possible time.
Find the time taken and the actual distance covered by the boat for this crossing.
(b) Find the direction in which the boat must be steered in order to cross the
river from the southern bank to the northern bank by the shortest possible
route. Find the time taken and the actual distance covered by the boat for this
crossing,

INTERCEPTION

Interception, or collision, occurs if the relative line of motion of an object A,
passes through the initial position of the reference object B (so that the shortest
distance apart, BN, is zero).
Hence, if A intercepts B their relative velocity is parallel to the line joining
their initial positions.
The time, ¢, that elapses before interception, is given by
Initial distance apart
" Relative speed
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EXAMPLES 13e

1) A cruiser is travelling due east at 15 knots. At 1200 hours a destroyer
which is 12 nautical milles south west of the cruiser sets off at 20 knots to
intercept the cruiser. At what time will interception occur and on what bearing
should the destroyer travel?

Diagram (i) shows the positions at noon of the destroyer and cruiser.

In diagram (ii) the side PR, of the velocity triangle PQR, represents the
velocity of the destroyer relative to the cruiser.

For interception PR is parallel to DoCo, therefore PRQ = 135°.

sin135° _ sina

In APQR,

T
- a=32°
- POR = 13°
And the destroyer’s bearingis a+45° ie. 077°
hen PR 20

sin13° " sinl3s®
Therefore the speed of D relative to C is 6.4 knots

Interception will take place after 7 hours where

The destroyer will intercept the cruiser at 13.53 hours if it travels on a bearing
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8) Atnoon, the position vectors of two ships A and B, relative toa
lighthouse O, are (5i+20j) and (—20i—10j) respectively, where

i and j are unit vectors due east and due north, The constant velocities of ships
Aand B are (=21i—Sj) and (15i+25)). (Units are km and kmh-)
Find the velocity of A relative to B. Find also the position vector of A
relative to B at time ¢ minutes after noon.

Determine, to the nearest minute, the time at which the two ships are closest
together. (UofL)

9) At noon an aircraft A is at a point with position vector Si+j andis
moving with constant velocity —i+3j. A second plane B, whose constant
velocity is 2i+5j, is simultaneously at the point with position vector
3i—3j. Show that,at noon, A and B are equidistant from any point on
the line with vector equation r=4i—j+X(2i—j) and find the point on this
line which is also equidistant from the point  i—j

If £=0 atnoon find the value of ¢ when A and B are closest together.

10) A cruiser is moving due east at 35kmh™", Relative to the cruiser a frigate

is moving on a bearing of 210° at 56kmh~". Using a graphical method,

or otherwise, find the magnitude and the direction of the velocity of the frigate
relative to a coastguard who is recording the paths of these ships from a
lighthouse.

At 1300 hours the frigate is 12km due east of the cruiser. If both ships maintain
their speeds and courses, find the time at which the distance between them is
least and their actual distance apart at this instant.

Find also the time at which the frigate is due south of the cruiser.

SUMMARY

The motion of one object A relative to another object B s the motion it
appears to have when viewed from B.

The velocity of A relative to B is vo—vp.

For interception or collision to occur, the relative velocity must be parallel to
the initial displacement of A from B.

It is important to appreciate that several different methods are suitable for
solving problems on relative motion. No one method is ideal for all problems
and the student is advised to develop flexibility in choice of approach.

Further Problems

Although relative velocity is usually encountered in problems about moving
vehicles, ships, aircraft etc., there are some questions of a less practical nature
in which speeds are not necessarily constant and the paths are not always linear.
The set of examples which follow are of this type.
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EXAMPLES 131
1) A particle P is movingina clockwxsc sense at constant angular velocity
round a circle whose equation is  x?+y* When =0, P isatthe

point (—a,0). A second particle Q moves along the x axis with constant
velocity aw in the positive sense. Q is at the origin when ¢=0. Find, in
terms of a, w and ¢ the speed of P relative to Q at time r. Find also the
direction of the velocity of P relative to Q when =m/w

awsinwt o

w Yo

Yo

i

Diagram (i) shows the positions of P and Q after ¢ seconds. During this
time, at angular velocity w, P will describe an arc subtending an angle wr
at the centre, and will have a tangential speed of ac.
Diagram (if) shows the components parallel to Ox and Oy of the velocities of
P and Q and the velocity of P relative to Q at time .
If ¥ is the relative speed, then
V? = (awcos wi)*+ (awsin wt —aw)?

= Wt~ 2*wsin wr +aw?

The relative speed, V' = awy/2(1—sinw).

n
When 7=, the components of the rlative velocity, parallelto Ox and

Oy are:
- awsinT—aw = —aw

t aweosT = —aw
3
Therefore the direction of the velocity of P relative to Q when =~ s
w

parallel to the line, y = x.
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2) Two particles P and Q are projected simultaneously from a point O in
which i and § are unit vectors horizontally and vertically upwards respectively.
P is projected with velocity ¥3/3j and Q is projected with velocity

1Vi+ 1V3/3). Find the velocity and displacement of P relative to Q atany
time ¢. Hence find the vertical displacement between P and Q when the
horizontal displacement between them is of magnitude 2V. Find also the
distance between P and Q when P is at its highest point.

N Attime 1,
forP ¥ =0 Jp=-g
3 xp =0 W3—gt
. xp=0 = v3—har
forQ ¥ =0 =z
¢ So =4V 1W3—gt
* xg = i1t n/3-ler
Hence Vo = (IW3=g0)j

vo = Wit (J3—gnj

= (Vy/3—4er?)j

1o = JVri+ (Jvey/3 - Jer?)j
The velocity of P relative to Q is vp—vg where

vp—vg = —}Vit VA3
The displacement of P relative to Q is rp—rg where

prg = —§Vri+ iV
The horizontal distance between P and Q is of magnitude 2V when

| —4vril = 2V

ic. when t=4

The vertical distance between P and Q is then

GV3) = 23

. W3

When P is at its highest point  jp=0 = (=——
g

—VA/3 312

Then p—rg = it—j
°T T
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The distance d between P and Q is given by
—va/3\? (3r3?
(52
2% 2
vay/3
£

VA3

Therefore when P is at its highest point  PQ =

EXERCISE 131
1) Two particles P and Q start simultancously in the same sense from the
origin O and both have constant speed v. P moves on the circle
x'+y?-2x=0 and Q moves on the tangent to the circle through O. Find
the relative speed of the particles when P has rotated through an angle

@ir 7 (© i

2) Apoint P moves so that its coordinates at time ¢ are x=1; y=2r%
Asecond point Q moves along the x axis so that at time ¢ its position is
x=2t. Athird point R, moving on the y axis, is such that y=¢* Find:
(a) the velocity of P relative to R,

(b) the velocity of P relative to Q, when ¢

3) Two particles are travelling round the circle  x*+y*=4. One particle, A,
is initially at the point (2,0) and moves anticlockwise with constant angular
velocity . The other particle, B, travels clockwise with constant angular
velocity 2 from its initial position at the point (0,2). Find:

(a) the speed of A relative to B at time £,

(b) the value of ¢ when the particles are first travelling in the same direction,
(c) the acceleration of A relative to B when = 1.

4) Aparticle P is moving along theline y =x _so that its speed at time ¢

is v2ur where u Isa constant. A second particle Q moves along the positive
yaxls with constant speed u. If, when =0, P isat the point (—4,—4)
‘moving towards O, and Q is at the origin, find:
(a) the velocity of P relative to Q at time ¢,
(b) the distance PQ when t=2.
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MISCELLANEOUS EXERCISE 13

1) Aship A is travelling due east at a speed of 8ms™", and a ship B is
travelling due south at 10ms™. Atan instant when A is 3km from B in
adirection 060%, a motor boat leaves A and travels in a straight line to B
with speed 14ms™". Show that it reaches B in 500 seconds. On reaching the
ship B, the motor boat immediately turns and travels back to A in a straight
line, again with speed 14ms™. Find graphically (or otherwise) the time taken
for the return journey. ©)

2) At 1000hours a pilot boat leaves the jetty to join a ship which is 4 nautical
‘miles from the jetty on a bearing of 315°. The ship is steaming due east at a
sicady speed of 12 knots. Find the time at which the pilot boat reaches the ship
ance and bearing of the ship from the jetty at that time if:

(4) Lh: pilot boat travels at 15 knots,

(b) the pilot boat travels at the least possible speed. (AEB)

3) Aship P steamingat 20km/h in the direction 050° is 120km due west
of ship Q steamingat 12km/h in the direction 330°. If the ships do not alter
course or speed, find by means of a scale drawing, or otherwise, the shortest
distance between them in the subsequent motion. Find also the period of time
during which the ships are within a range of S0km of each other. (Uof L)

4) A ship is moving due West at 20knots and the wind appears to blow from
224° West of South. The ship then steams due South at the same speed and the
wind then appears to blow from 224° East of South. Find the speed of the
wind and the true direction from which it blows, assuming that they remain
constant. (IMB)

5) The banks of a river 40m wide arc parallel and A and B are points on
opposite banks. The distance AB is S0m and B is downstream of A. There
isa constant current of 4ms™ flowing. What is the minimum speed at which
amotor boat must be able to move in still water in order to cross this river from
A to B? Ifaboat sails from A to B with constant velocity in 7§ seconds,
find its speed relative to the water and the direction in which it is steered. Whilst
this boat is sailing from A to B a man runs across a bridge which is at right
angles to the banks of the river. To this man the boat appears to be travelling
parallel to the banks of the river. Find the speed at which the man is running.
(AEB)

6) Relative to a ship which is travelling due north at a speed of 20kmh™, the
velocity of a speedboat is in the direction 045°. Relative to a second ship
which is travelling due south at a speed of 20kmh™, the velocity of the
speedboat is in the direction 030°. Prove that the speedboat is travelling on the
bearing 8° where tan0 =+/3—1, and find its speed.
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7) A cruiser sailing due north at 24 kmh™" sights a destroyer 48km due east
sailingat S6kmh™ on acourse (360—a)° where cosa=J}}. Show that
the destroyer's course relative to the cruiser is on the bearing 300° and find the
relative speed. If the cruiser’s guns have a maximum range of 30km and both
ships maintain course and speed, find for how long the destroyer will be within
range. Immediately the destroyer is sighted an aircraft is despatched from the
cruiser and flies in a straight line at a steady speed of 440kmh™ on an
intersection course with the destroyer. Find the course on which the aircraft
es.

8) Amotorboat moving at 8km/h relative to the water travels from a point A
toapoint B 10km distant whose bearing from A is 150°. It then travels to
apoint C, 10km from B and due west of B. If there is a current of constant
speed 4km/h from north to south, find the two courses to be set, and prove
that the total time taken to reach C is approximately 2 hours 20 minutes.
(UofL)

9) Aport X is 18 nautical miles due north of another port Y. Steamers

A,B leave X,Y respectively at the same time, A travelling at 12 knots due
eastand B at 8 knots in a direction arcsin} cast of north. Find in magnitude
and direction the velocity of B relative to A. Prove that subsequently the
shortest distance between A and B is 14 nautical miles and find the time
taken to reach this position.

If when the steamers are in this position a boat leaves A and travels due west

s0 as to intercept B, find at what speed the boat must travel. (JMB)

10) Two aircraft are in horizontal flight at the same altitude. One is ﬂymg due

northat 500kmh™! whilst the other s flying due west at 600kmh™".

Realising that they are on collision courses the pilots take avoiding action

simultaneously when the aircraft are 10km apart. The pilot of the first plane

changes his course to 345° (N 15°W) maintaining his speed of 500kmh™*

and the pilot of the second plane maintains his course but increases his speed

to Vkmh™. Find the value of V' if

(a) the aircraft are still on collision courses,

(b) the change of speed is the least possible to ensure that the distance between
the planes is never less than 2km. (AEB)

11) A ship is steaming at 15 knots due east, while the wind speed is 20 knots
from due north. Find the magnitude and the direction, to the nearest degree, of
the wind velocity relative to the ship.

Find also the course, between east and south, along which the ship would have
tosteerat 16 knots for the wind velocity relative to the ship to be at right
angles to the course of the ship.

Obtain the magnitude of the velocity of the wind relative to the ship in this
case. (Uof L)
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21) A river flows at a constant speed of Sms™ between straight parallel banks
which are 240m apart. A boat crosses the river, travelling relative to the water
ata constant speed of 12ms™. A man cycles at a constant speed of 4ms™
along the edge of one bank of the river in the direction opposite to the direction
of flow of the river. At the instant when the boat leaves a point O on the
opposite bank, the cyclist is 80m downstream of 0. The boat is steered
relative to the water in a direction perpendicular to the banks. Taking i and j
to be perpendicular horizontal unit vectors downstream and across the river
from O respectively, express, in terms of i and j, the velocities and the
position vectors relative to O of the boat and the cyclist f seconds after the
boat leaves 0. Hence, or otherwise, calculate the time when the distance
between the boat and the cyclist is least, giving this least distance.
I, instead, the boat were to be steered so that it crosses the river from O toa
point on the other bank directly opposite to 0, show that this crossing would
take approximately 22 seconds. (UofL)
22) Toa motorist driving due South along a level road with constant speed u
the wind appears to be blowing in a direction WO°N. When he is driving with th
the same speed u due North the apparent direction of the wind is Wg°N.
Show that when he is driving at a speed 2u due North, the apparent direction
of the wind is Wy°N, where

2tany = 3tan¢—tanf.

Determine the true direction of the wind. (UofL)



CHAPTER 14

RESULTANTS OF COPLANAR
FORCES.
EQUIVALENT FORCE SYSTEMS.

The resultant of a set of forces s the simplest possible force system which
has the same effect in all respects as the original set.
The resultant of forces in one plane may be either a single force or a torque.

COPLANAR FORCES REDUCING TO A SINGLE FORCE

‘When the resultant of a set of coplanar forces is a single force, it is fully
defined only when its magnitude, direction and line of action are known.
‘The magnitude and direction can be found by collecting the components, in
each of two perpendicular directions, of the original forces (see Chapter 2).
The position of the resultant is determined by comparing its turning effect
about a specified axis with that of the original forces.

In this way three independent equations are obtained.

EXAMPLES 148
1) Find the magnitude and direction of the resultant of forces of magnitudes
g et ey
N, 2N, 2N and IN which act along the sides AB, BC, CD and AD ofa
square ABCD and find where the line of action of the resultant cuts AB
(produced if necessary).

Let the side of the square be a. Diagram (i) shows the original forces and
diagram (ii) shows the resultant, represented by a pair of components X and
Y parallel to AB and AD respectively and cutting AB at an unknown point
P where AP=d.
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Comparing the original forces with the resultant we have:

A

Hence

w|&

Therefore the resultant is of magnitude /(4*+3*)N = 5N,

Its line of action makes arctan § with AB
andcuts AB producedat P where 3AP = 4AB.

2) Find the equation of the line of action of the resultant of forces of magnitudes
4V/2N, 13N and 3N which act as shown along lines whose vector equations
ae r=Mi+j), r=2+M12+5) and r=2i+)\j respectively.

Tz l

readh ‘

[0 i
Let the three forces be F,, F; and Fy, and let their resultant be F.
F, has magnitude 4y/2 and direction i+j, therefore

F = é\/z(‘\/i:’) = 4i+4j
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F, has magnitude 13 and direction  12i+5j, so
12i+5] .
Fy = 13[-—7) = 12i+5j
13
F3 has magnitude 3 and direction j, so
Fy =3
F=F+F+F; = 16i+12

Hence

[0 i

Comparing clockwise moments about an axis through O we have,
(12)(2) = (3)2) = (16)(c)

- c=3

The line of action of F therefore passes through the point with

position vector 3j and is in the direction 16i+ 12j. Therefore its vector

equation is

12j)

Note. The direction vector can be simplified to  4i+3j.

= Zi+(6i

In this problem it would have been just as convenient to work with the line of
action of F cutting the x axis, instead of the y axis, at an unknown point.

If, however, the cartesian equation of the line of action is wanted it is best to
take a point P on the y axis as the unknown point through which the resultant
passes. In this way the distance OP is also the y intercept of the line of action
of the resultant and can be used directly in the general equation y =mx+c.

3) ABCD is a square in which L bisects AB and M bisects BC. Forces of
magnitudes 4, 8, P(newton) act respectively along AB, BC, CD and their
resultant is parallel to LM. Find the magnitude and position of the resultant
and the value of .
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'S

@ G

Since LM makes an angle of 45° with AB, the resultant, of magnitude R is
alsoat 45° to AB. Let the resultant cut AB at P where AP=x.

Comparing the resultant with the original forces,

- 4—P = Rcosds® 0l
t 8 = Rsin4s® 2]
A} 8a+Pa = Rxsin4s® 3]
From [2]
From [1]
From [3]

Therefore the resultant is of magnitude  8v/2N
and cuts AB atapoint JAB from A, ie. the resultant is along LM.

4) Forces 2P, 3P, 4P act respectively along the sides AB, BC, CA ofan

equilateral triangle ABC of side a. Find the magnitude and direction of their
resultant and the distance from A of the point where it cuts AC.

B / 1
2 L

LA L

0 [0
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6) Forces of magnitudes 3, 4, 2, 1, P, Q act along the sides AB, BC, CD,
DE, EF, FA respectively of a regular hexagon ABCDEF. Find the values of
P and Q if the resultant of the six forces acts along CE.

Since the resultant is known to act along CE, a diagram in which CE is cither
horizontal or vertical makes the solution simpler.

Taking G as the centre of the hexagon and 2a as the length of each side,
comparison gives:

- 4—P+(Q2~1-0Q+3)cos60° = 0 m

t @+1-Q-3)sin60° = ¥ 21

Gy (+4+2+1+P+Qay3 = Ya [B)]
V3

From [2] and (3] (P+Q+10)V/3 = —Q7

Hence 2P+30+20 = 0

From (1] 2+0-12 =0

Therefore Q=-16 and P=1

Note. An alternative method of solution is to take moments about axes through
C and E. The resultant moment is zero in both cases since the resultant force
passes through both C and E.

EXERCISE 14a

In Questions 1-5, find the magnitude, direction and equation of the line of
action of the resultant of the given forces (units are the newton and the metre
throughout).
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RESULTANT OF PARALLEL FORCES

(a) Like Parallel Forces (i.c. forces in the same sense).

Consider two forces P and Q whose lines of action are parallel and are a

distance d apart.

Q ¥

Ao B

G

If A and B are two points on the lines of action of 2 and Q respectively
such that AB is perpendicular to both forces, then  AB = d.

Diagram (ii) shows the resultant represented by components X and ¥ and
passing through a point C on AB where AC=x.
Comparing the given forces with their resultant we have:

A
From [3]

‘Therefore BC

P+Q =Y
X
Qd = Yx
-(; 9~)a - ac
\P+0Q
ol
d-x = |—=)a
rve

483

U]
21
8]

Heniee flie-resiltant of twio like parallel forces P and @ is parallel 6.7 3id* @,
is of pidgiitude (P 0)’and divides AB (the distance botween the-parallel

forces) iy the ratio Q< P

Note. Because of the geometric properties of parallel lines, it is not only AB
butany transversal between P and Q which is divided by the resultant in

the ratio Q:P.
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(b} Unlike Parallel Forces (i.c. forces in opposite senses)

Consider two forces P and Q whose lines of action are parallel and
distant d apart and suppose that Q> P.

Again taking points A and B on the lines of action of P and Q respectively
where AB=d and representing the resultant by components X and ¥ as
shown, comparison gives:

+ Q-P=Y
- 0=Xx
A} Qd = Yx
o ( 4 )
‘This time AC =x = |—-]d
o-P
_p
50 that BC = d-x = (-—).1
QP

Therefore  AC:CB = Q:—P showing that the resultant, which is of
magnitude Q—P, divides AB externally in the ratio Q- P.

When parallel forces occur in problems it is frequently simpler to locate the
resultant by using the principle of moments than to quote the results derived
above.

(c) Equal Unlike Parallel Forces

This is a special case of (b) above when P
The magnitude of the resultant, (Q—F), is now zero.
‘The turning effect however s not zero as can be seen by taking moments about
an axis through A.

»

A

[r—

A
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A pair of equil and apposite parallel forces {HErdfrt fissa esultant which is
pure torquie. Sutha pair.of forces fs Kitowsi as acouples

When a couple acts on a body there is no change in the linear movement of the
body but there is a change in its rotation.

CONSTANT MOMENT OF A COUPLE

Consider a couple comprising two equal and opposite forces each of
magnitude P whose lines of action are distant d apart.

PRE—
Ao— 4y —e|
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"

Axes perpendicular to the plane of action of the couple could be taken between
the two forces (e.g. through A,) or outside the lines of action of the two forces
(e.g. through Ay or Ajy).

We shall now determine the torque exerted by the couple about each of these
axes in tumn,

Ay Anticlockwise torque = P(a;+d)—Pa, = Pd
A Anticlockwise torque = P(d—a;)+Pay = Pd
Ay Anticlockwise torque = P(d+a3)—Pay = Pd

Therefore fhe moment of a couple is the §ime-about all axes perpendiciiar fo'its
plafe.

‘The magnitude of the moment of a couple is often referred to as the magnitude
of the couple.

Characteristics of a Couple

1. The finear resultant of a couple is zero.

2. The moment of a couple is not zero and is independent of the position of the
axis so long as the axis is perpendicular to the plane in which the couple acts.

These characteristics are also those of a force system whose resultant is a couple,
a property which can be used in solving many problems.
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EXAMPLES 14b

1) ABCDEF is a regular hexagon of side 2a. Forces of magnitudes SP, P, 3P,
4P, 2P and 2P act respectively along the sides AB, BC, CD, DE, EF and
FA. Prove that they reduce to a couple, and find its magnitude.

-——

The resultant is a couple if the six forces have a linear resultant which is zero
and a resultant moment which is not zero.

Resolving parallel and perpendicular to AB and taking moments about an axis
through G we have:

- SP—4P+(P—3P—2P+2P) cos60° = 0 m
t (P+3P—2P—2P)sin 60° = 0 21
] (SP+P+3P+4P+2P+2P)av/3 = 17Pa\/3 31

Equations [1] and [2] show that the linear resultant s zero.
So the six forces reduce to a couple of magnitude 17Pa+/3 in the sense ABC.

2) ABCD isa square, Forces of magnitudes 1, 2, 3, P and Q units act along
AB, BC, TB, DA and AC respectively. Find values for 7 and Q so that the
tesultant of the five forces is a couple.

X If the resultant is a couple, the linear
B tesultant is zero. Hence the components
in any direction total zero.

\a RS Resolving gives
, - 1+Qcosd5° -3 = 0
L N t 2+Qsin45°—P = 0

Hence, when  Q
is zero.

and P=4 the linear resultant of the given forces
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7) A third force, together with the two given forces, reduce to a couple of
magnitude 2Fa. Find the magnitude and direction of the third force and the
distance from A of the point where its line of action cuts AB (produced if
necessary).

8) Two forces both of magnitude nF* are added to the system. One acts along
AC and the other passes through B.
Calculate n if the new system reduces to a couple.

9) Four forces are represented by i—4j, 3i+6j, —9i+j and Si—3j,
and their points of application are given by  3i—j, 2i+2j, —i—j and
—3i+4j respectively.

() Show that the forces reduce to a couple and find its magnitude.

(b) If the fourth force is removed and the first force is moved to the point
i—8j show that the system now reduces to a single force through the origin.
10) ABC is a right-angled triangle in which  AB =da; BC=3a. Forces of
magnitudes P, Q and R act along the sides AB, BC and CA respectively.
Find the ratios of P:Q:R if their resultant is a couple.

If the force along AC is now reversed, find in terms of P the magnitude of the
resultant of the new system.

11) Forces of magnitudes 1, 6, 8, 2 and Sunits act along the sides AB, BC,
, DE and EF respectively of a regular hexagon and another force acts along

FA. Give as much information as you can about the resultant of the six forces

if the sixth force is:

(2) 1 unitalong FA,

(b) 7 units along AF.

IDENTIFICATION OF FORCE SYSTEMS

A sset of coplanar forces may:
() be in equilibrium,
(b) reduce to a couple,
() reduce to a single force.

In order to establish which of these applies to a particular set of forces, tree
independent facts are needed (since coplanar forces have three degrees of
freedom). These three facts are derived from various combinations of resolving
and taking moments.

Suppose that X and ¥ represent the collected components in two perpendicular
directions and that M4, My and M represent the resultant moments about
axes through any three non-collinear points A, B and C in the plane of the
forces then:
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() the system is in equilibrium if
@) X=0 Y=0 My=0
or (i) X=0 My=0 Mp=0 (provided that AB is not
perpendicular to X)
or (i) My=0 Mz=0 Mc=0
(b) the system reduces to a couple if:
@) X=0 Y=0 My#0
or (i) My =Mp=Mc#0
(c) the system reduces to a single force if X and ¥ are not both zero.
‘The value of M, is then required to locate this force.

Fartial Identification

When less than three independent facts are given, the coplanar force system to
which they apply cannot be identified precisely.

EXAMPLES 14c

In these examples X, ¥, My, Mg, Mc have the same significance as in the
preceding paragraph.

1) What is the state of a set of coplanar forces for which X=0 and Y =07

If X=0 and ¥=0 thereis no linear resultant.

Therefore the set of forces is either in equilibrium or reduces o a couple.
(Without further i there is no way of differentiating between these
two possibilities.)

2) What is the resultant of a set of coplanar forces for which M, = Mg # 07
Since the turning effects about two different axes are equal the resultant could

be a couple.
On the other hand, points A and B could be equidistant from a linear resultant.

.
//V f

Therefore the set of forces reduces cither to a couple or 10 a single force parallel

to AB.

-,
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3) Aset of coplanar forces is such that X =0 and M, =0. Towhat
simple forms is it possible for the forces to reduce?

Since X=0, the linear resultant,
if there is one, is in the direction of Y.

Vo 4 ) Then M, = Yd and can be zero
eitherif  ¥=0
orif d=

The resultant cannot be a couple since M, =0. Therefore,
cither the system reduces to a single force in the direction of ¥ and passing
through A (ie. d=
o the system is in equilibrium (ie. ¥ =0).

EXERCISE 14c
Describe carefully the resultant of a set of coplanar forces if:

1) The turning effect about each of three non-coplanar axes perpendicular to

the plane of the forces is zero.

2) The turning effect about each of two axes perpendicular to the plane of the
forces is zero.

3) The collected components of the forces are zero in the directions both
of Ox and of Oy.

4) The collected components in Question 3 are not zero but the total moment
about an axis through a point A in the plane of the forces is zero.

5) The system of forces causes a body to rotate while its centre of gravity
remains stationary.

6) The forces are all parallel and in the same sense.

THE RESULTANT OF FORCES REPRESENTED BY LINE SEGMENTS

Suppose that two forces are represented completely (i.¢. in magnitude,
direction and position) by pAB and qAC where p and g are constants.
" 3

PAB,

gAC
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Sometimes a pair of forces whose resultant cannot at first be found by using
this theorem, can be alternatively represented so that the theorem can be applied.

2) Inatriangle ABC, M is the midpoint of AC. Two forces are represented
completely by 2AC and 3MB. Find the resultant,

Since M is the point of intersection of
the two forces, the resultant vector
theorem can be used only if each force
is represented by a line segment, one
end of which is M. An alternative form
must therefore be found for the force
2aC.

Now AC=2MC so 2AC=4MC.
The theorem can now be applied giving:

4MC+3MB = (4+3)MD
where CD:DB=3:4

Therefore the resultant of 2AC and 3MB is represented completely by 7MD
where D divides CB in the ratio 3 :4.

Successive applications of this theorem can be used to find the resultant of more
than two forces given in line segment form, as is shown in some of the following
examples.

3) Forces represented completely by 2AB, CB, 2CD and 4AD act along the
sides of a quadrilateral ABCD. Find their resultant and find the points where
its line of action intersects the diagonals of the quadrilateral.

Applying the vector theorem we haye:
2AB+4AD = (2+4)AP
where BP:PD=4:2

and CB+ 20D = (1+2)CQ
where BQ:QD=2:1

P and Q divide BD in the same ratio,
therefore they are the same point.
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Hence anf =1
and Q=22
‘The replacement force system therefore comprises two forces each of 8N

along OA and OC and a force of 24/2N passing through A and making an
angle of 45° with AO.

2. The Combination of a Force and a Couple

Consider a force of magnitude # and a couple of moment M which act in
one plane. With reference to perpendicular axes Ox and Oy which, for
convenience, are chosen to be parallel and perpendicular to the given force, the
original system and its resultant can be represented in a diagram as shown.

va A

Note how the moment of the couple is shown as a curved arrow indicating
turning effect. This must not be mistaken for a force.
Comparing in the usual way we have

- 0=x 0]
1 F=y ]
o Fa=M = Yb B

From (1] and [2] we see that, in magnitude and direction, the resultant is
identical to the original force.
From [2] and [3] @—b) = %’

A

~ta— b=
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The very useful conclusion reached therefore is:

A couple M Together sith a coplanar force 4 are equivalent to

an equal force F displaced through a distance %’

Because the direction of the displacement of the line of action depends on the
sense of the couple it is advisable to calculate the displacement, rather than to
quote it, in each problem.

SUMMARY
1) The resultant of any force system which is not in equilibrium is elther a
single force or a couple and has exactly the same linear and turning effects as
the given system.

2) The resultant of two like parallel forces P and Q is of magnitude P+Q
and acts in a line parallel to P and Q dividing them internally in the ratio
Q:P.

3) The resultant of two unlike, unequal, parallel forces P and @ is of
magnitude |P—Q| and actsina line parallel to P and @ dividing them
externally in the ratio Q:P.

4) If each member of a set of parallel forces passes through a fixed point, then
their resultant also passes through a fixed point which is independent of their
orientation.

5) A couple is a pair of equal and opposite non-collinear forces. It has zero
linear resultant and produces pure rotation. The magnitude of a couple is its
moment, which is Fd where F is the magnitude of each force and d is the
distance between them.

6) The moment of a couple is the same about all axes perpendicular to its plane.

7) The combination of a force and a couple in the same planc is an equal force
whaose line of action is displaced.

8) The resultant of two forces represented completely by pAB and gAC is
represented completely by (p+¢)AD where D ison BC and
BD:DC=q:p.

9) Complete specification of a force system in one plane requires three
independent facts. When fewer than three are given or used, incomplete or
ambiguous results arise.
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3
mwm
A Y
< 30 A)y
%0 Ui

Comparing turning effect only (since the magnitude and direction of the new
resultant are known to be the same as those of the old resultant),

A V3P2a sin30°++/3Pa = \/3Pdy sin30°

Hence dy =4

Therefore the new resultant cuts AC produced at E, distant da from A.

To reduce the system to equilibrium, a force equal and opposite to, and collinear
with, this resultant must be added, ie. a force v/3P at 30° to AC and cutting

AC produced at E.
/\/X
g

3) Forces 7P, 5P, 3P and 2P act along the sides, AB, BC, CD and DA of
asquare ABCD of side a. Find the equation of the line of action of the
resultant of the system using AB and AD as x and  axes respectively.
Aforce F along AB and a couple of moment M are added to the system so
that the new resultant passes through B and D. Find the magnitude and sense
of the force and the couple.

\

“

aYer s

Given forces Resultant
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Comparing, we have:

- P3P = X 0]
t sP-2p =Y [B)]
A —5Pa—3Pa = Xe 3]
Therefore X=4P, Y=3P, c=-u

5.

‘The gradient of the line of action of the
Y 3
resultantis — = = and the line of
X 4
> action cuts the y axisat (0, —2a).
Its equation is therefore
y=-u

0.~ ) - 4y = 3x—8a

Adding the force F* and couple M 1o this resultant (which is equivalent to the
original system) gives:

As the new resultant passes through B and D

the turning effect of the system
about axes through both B and D is zero.

B, M+3Pa—4P(2) = 0
D, M—4Pa(3a)—Fa = 0
Therefore M=SP and F=-7P

‘The force is of magnitude 7P in the sense BA

and the couple is of magnitude
SPa in the sense CBA.
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4) Forces 3P, 7P, P, 2P, mP and nP act along the sides AB, BC, CD, DE,
FE and FA of a regular hexagon. Find the values of m and n if:

(@) the six forces reduce to a couple,

(b) the system reduces to a single force along AD.

@

‘When the resultant is a couple the linear resultant is zero but the resultant
moment is not.

Therefore 3P—2P+(1P—P+mP+nP) cos60° = 0
and t (7P+P+mP—nP)sin60° = 0

Thesegive  m=—8 and n=0
With these values, and taking O as the centre of the hexagon,
(y (3P+ TP+ P+2P+8P)M # 0

Therefore when m=—8 and n=0 the system does reduce to a couple.

If the resultant is along AD, it is simpler i this line is horizontal (or vertical) in
the diagram. Comparing gives

+ (P+2P—nP—3P)sin60° = 0
o (3P+7P+P+2P—mP+nP)d = 0
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These give: n=0 and m=13
With these values
- X = TP+13P+(P—2P+3P) cos60° # 0

Therefore when n=0 and m=13 the system does reduce to a single
force along AD.

5) OABC isa rectangle in which OA =2z and OC=a, Forcesof
magnitudes P, Q and R actalong OA, AB and BC respectively. When OA
and OC are takenas x and y axes respectively, the line of action of the
resultant of these forces has equation  x = 4(y +a).

Find the ratio of the magnitudes of P, Q and R. Find also in terms of P and
a, the moment of the couple necessary to transfer the line of action of the
resultant to the line with equation 4y =x +2a.

actionis tana=}

Comparing gives

- P—R = Feosa 1l
t Q = Fsina @
0} 2Q+aR = Facosa 31
From [3] R = Feosa—2Fsina = -—(4-2)

V17

F
From [1] P = FeatR = Z(4+2)



488 Mathematics — Mechanics and Probability

MULTIPLE CHOICE EXERCISE 14
(The instructions for answering these questions are given on page x.)

TVPE
n 2x

= Forces act as shown round the sides of
asquare ABCD of side 2a. The
resultant force cuts AB ata point P.
) (a) P ison AB producedand AP = da.
2 (b) P bisects AB.
(c) Pison BA producedand AP =2a.
(d) P ison BA producedand AP=a.

2) The resultant moment of a set of coplanar forces about each of two axes
through points A and B is zero. The set of forces reduces to:

(2) equilibrium,

(b) a force through A and a couple,

(¢) a couple,

(d) a force through A and B,

(¢) either equilibrium or a force through A and B.

3) 8 ABC is an equilateral triangle. The
resultant of the three given forces
intersects AC:

, (a) on AC produced,
3 (b) on CA produced,
(c) between A and C,

@ at C.

The resultant of AB and 2AC is:
@) 3AP,
(b) 3BC,
© 349,
(@ 3PA.

4
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5) "
8N N

60" 60"
@.0) 4 @.0) X
o [}

The force in figure (i), together with a couple are equivalent to the force in
figure (ii). The couple is:

(a) 4Nm clockwise,

(b) 83N m anticlockwise,

(c) 4V/3Nm clockwise,

(d) 16Nm anticlockwise.

TYPE N

‘The diagrams represent a set of forces and their resultant.
(@) X=-2.

(b) The resultant is a couple.

(c) The resultant is a force at 45° to Oy.

(d) The resultant is a force at 45° to Ox.

7) 7
The resultant of the force of 4N and
o~ the clockwise couple of 8Nm shown
in the figure is:
(a) a force of magnitude 4N,
aNm (b) a force of magnitude —4N,
(c) a force passing through O,
(d) a force passing through (4, 0).
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TYPE I
8) (a) A set of coplanar forces has zero linear resultant.

(b) A set of coplanar forces reduces to a couple.
9) (a) A set of coplanar forces s in equilibrium.

(b) The moment of a set of coplanar forces about each of two different axes

is zero.
10) (2) A set of coplanar forces reduces to a couple.
(b) A set of like parallel forces acts in a plane.

11) (a) Forces represented by 2AB and 3AC have a resultant represented

by SAD.
(b) Ina triangle ABC, D isapoint on BC where BD:DC=3:2.
12) (a) The moment of a set of coplanar forces about each of three axes which
are not in line, is zero.
(b) A set of coplanar forces s in equilibrium.

TYPE IV
13) Find the magnitude and direction of the resultant of a set of coplanar forces.
(2) The resultant anticlockwise torque about an axis through a point
2i+3j is 10N
(b) The resultant anticlockwise torque about an axis through a point
Si—j is 8Nm,

3

(<) The resultant anticlockwise torque about an axis through a point
—di+j is —4Nm.
(d) The forces are not concurrent.
14) Find the resultant of forces represented by AB, 2BC, 3AD and 6DC.
(a) ABCD is a quadrilateral.
(b) AB=2m.
(c) BAC = 60°.
15) Six forces act round the sides of a hexagon. Find the equation of the line
of action of their resultant.
(@) Their magnitudes are P, 2P, 4P, 3P, P, 22 along AB, BC, CD, ED,
FE, AF respectively.
(b) The hexagon is regular.
(<) The coordinates of vertex B are (1, 1).

TYPEV

16) The resultant of a set of forces is a force F. When a couple is added to the
system the new resultant also is F.

17) A set of forces whose linear resultant is zero must be in equilibrium.
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18) The moment of a couple depends upon the axis of rotation.

19) Ifa set of coplanar forces is not in equilibrium they reduce either to a force
or to a couple.

20) If an axis is chosen passing through a point on the resultant of a force
system, the resultant torque of the system about that axis is zero.

MISCELLANEOUS EXERCISE 14

1) If ABC is any triangle and PQRS is a square of side 3a, write down a

complete specification of the resultant of each of the following sets of forces:

(@) Three forces which act on a particle and are represented in magnitude and
direction by AB, BC and CA.

(b) Three forces represented completely by AB, BC and CA.

(c) Two forces of magnitudes F and 2F acting along PQ and SK.

(d) Two forces of magnitudes F and 2F acting along PQ and RS.

(€) Two forces each of magnitude F acting along PQ and RS.

(f) Two forces represented completely by AB and AC.

(2) Two forces represented completely by AB and CA.

2) Prove that a couple, together with a force in the same plane, is equivalent to

a single force. Describe completely the possible resultants of a force of 10N

acting in the same plane as a couple of magnitude 20Nm.

3)
" E
A
©,3) 0 G
0.1)
50 . «
o
N 4
w1 an
o c2,0) X 8N

Two forces act as shown in diagram (i).
A third force is added to the system and the resultant of the three forces is
shown in diagram (ii).

Find the magnitude, direction and position of the third force.

4) Replace forces F, 2F, 3F, 4F acting in order round the sides of a square
ABCD of side a, by three forces acting along the sides of triangle AEB where
E is the midpoint of CD.
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5) Show that the resultant of forces AB, CB, 2CD and 2AD acting along the
ing sides of a quad ABCD, is completely by
6QP where P divides BD in the ratio 1:2 and Q bisects AC.

6) Arod AB is loaded and supported as shown in the figure. Find the largest
torque which can be applied to the rod in a vertical plane without causing the
10d to overturn if the torque is:

() clockwise,

(b) anticlockwise.

- —— U —— % — -

oo T

7) A system of coplanar forces has anticlockwise moments M, 2M and SM
respectively about the points (,0), (0,a) and (a,a) in the plane. Find the
‘magnitude of the resultant of the system and the equation of its line of action.

(UofL)
8) o e o
4N W2N A &t}
A > .

Forces of magnitude 4, 7, 1, 4 and 3v/2newtons act along the sides

AB, CB, CD, AD and the diagonal BD respectively of a square ABCD of
side 0.1'm, as shown in the diagram. Show that the force system is equivalent
10 a couple and find the moment of this couple. UofL)

9) Three forces 7i+5j, 2i+3j and i act at the origin O, where i and j
are unit vectors parallel to the x axis and the y axis respectively. The unit of
force is the newton. If the magnitude of the resultant of the three forces is 17N,
calculate the two possible values of X. Show that the two possible directions of
the line of action of the resultant are equally inclined to Oy. (AEB)
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10) A non-uniform rigid beam AB, of length 3a and weight ¥, rests on
supports P and Q at the same level, where AP =PQ=QB=a. Whena
load of weight ¥ is hung from A, the beam is on the point of tilting about P.
Find the distance of the centre of gravity of the beam from A. When an
additional load of weight W, is hung from B, the forces exerted on the
supportsat P and Q are equal. Find W, in tems of # and W.
If a couple, of moment L and acting in the vertical plane through AB, is now
applied to the loaded beam, the reaction at P is increased in the ratio 3:2.
Show that: L =Y+ (JMB)
11) Al forces in this question act in the plane of a triangle ABC in which
AB=4a, AC=3a andtheangle A =90
Forces of magnitude 17P, 15P, 3P act alul\g "AB, BC, AC respectively in the
directions indicated by the order of the letters. Calculate
(2) the magnitude of the resultant of these three forces and the tangent of the
angle made by its line of action with AB,
(b) the distance from 4 of the point where the line of action of the resultant
cuts AB.
Acouple G is now added to the system and the resultant of this enlarged
system acts through the point B. Calculate the magnitude and sense of G.
(UofL)
12) (a) In the regular hexagon ABCDEF, AB=a and BC=b.
Express in terms of a and b, the vectors
) AC (i) AD (i) AE () AF
(b) The origin O, the point A with position vector 4i+3j and the
point € with position vector  3i—4j are three vertices of a
square OABC. Calculate the position vector of B.
Forces of magnitudes SN, 10//2N and 10N act along 04, 0B
and CO respectively. Express cach of these forces as a vector in terms
of i and j.
Hence show that the resultant of these forces acts along OA and
caleulate the magnitude of this resultant. (AEB)

13) Forces 2, 4, 6, 2p, 2q and 18 newtons act along the sides AB, BC,
CD, ED, EF and AF respectively of a regular hexagon ABCDEF, the
directions of the forces being indicated by the order of the letters. If the system
is in equilibrium, find, by resolving parallel and perpendicular to AB, the values
of p and q. Check your result by finding the moment of the forces about 0,
the centre of the hexagon.

The forces along £D, EF and AF are now replaced by a coplanar force
through O and a coplanar couple. If the resulting system is in equilibrium and
if the length of each side of the hexagon is 2metres, calculate

(a) the magnitude of this force through O,

(b) the magnitude of the couple.
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19) Forces of magnitude 2P, P, 2P, 3P, 2P and P actalong the sides AB,
BC, CD, ED, EF and AF respectively of a regular hexagon of side 24 in the
directions indicated by the letters. Prove that this system of forces can be reduced
10 single force of magnitude 2Py/3 acting along AC together with a couple.
Find the magnitude of the couple.
Show that the system can be reduced to a single force without a couple. If the
line of action of this force cuts FA produced at X, calculate the length of AX.
(Uof L)

20) In the triangle ABC, AB=AC=10a and BC=12a. The point E

on AC is such that angle BEC is 90° and D is the midpoint of BC. Forces

of magnitudes 2P, 10P, 5P and 10P act along CB, AD, BE and AC

respectively. Calculate

(a) the sum of the resolved parts of these forces parallel to BC,

(b) the sum of the resolved parts of these forces parallel to D,

(c) the magnitude of the resultant of these forces,

(d) the acute angle made by the line of action of the resultant with BC, giving
your answer (o the nearest degrec.

The line of action of the resultant of these forces cuts BC at the point F. Find

the distance BF in terms of a. (AEB)

21) Unit vectors along the axes Ox and Oy are represented by i and j
respectively. The position vectors of the points A and B are 8i+6j and
Si—12j respectively. The line AB crosses the x axis at the point C.
Calculate

(a) the position vector of C,

(b) the position vector of the point D, the fourth vertex of the parallelogram

The force Fy, of magnitude 40N, acts at O along 04 and the force F,, of
magnitude 26N, actsat O along OB. By expressing Fy and F in terms of
i and j calculate the magnitude of the resultant of these two forces and show
that the line of action of the resultant passes through C.

The force F, is replaced by another force Fj, actingat O along OA. The
resultant of F and Fy passes through D. Find Fs in terms of i and j. (AEB)

22) A lamina is in the shape of an equilateral triangle ABC, and D, E, F are
the midpoints of BC, CA, AB respectively. Forces of magnitude 4N, 8N,
4N, 3N, 3N actalong AB, BC, CA, BE, CF respectively, the direction of
each force being indicated by the order of the letters. Find the magnitude of the
resultant force on the lamina, and show that its line of action cuts AD produced
at G, where DG = AD.

‘The lamina is kept in equilibrium by three forces acting along FE, DF, ED.
Find the magnitudes of these forces. ©
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23) The points A, B, C, D, E, F are the vertices of a regular hexagon.
Forces each of 2newtons actalong AB and DC, and forces each of 1newton
act along BC and ED, in the directions indicated by the order of the letters.
Forces Pnewtons and Qnewtons act along EF and AF respectively. Find
P and Q:

(a) if the system reduces to a couple,

(b) if the resultant of the system is a force acting along EB. (UofL)

24) A system of forces in the plane of a triangle ABC has anticlockwise
moments of G, 2G and —2G about the points A, B and C respectively.
State why the system reduces to a single foree and not a couple. Find the point
of intersection of the line of action of this force with the side BC, and calculate
the moment about the centroid of the triangle ABC. (MB)p

25) State one set of conditions sufficient to ensure that a system of coplanar
forces is in equilibrium.

Three points, A, B and C, have coordinates (2, 0), (24, 22) and (0,2a)
respectively referred to perpendicular axes Ox, Oy. A system of forces in the
plane xOy has anti-clockwise moments of 40Pz and 60Pa about A and C
respectively and a clockwise moment of 20Pz about B. Calculate the
magnitude and direction of the resultant of this system and the equation of its
line of action, (AEB)

26) Atriangle ABC has AB=4m, BC=5m, CA=3m, and D, E, F
are the midpoints of BC, CA, AB respectively. Forces of magnitude 4N, SN,
3N, xN, yN actalong AB, BC, CA, ED, CF respectively, the direction of
the forces being indicated by the order of the letters. The resultant of the system
acts along EF. Caleulate x and y, and show that the magnitude of the
resultant is 20N,

The system is equivalent to a force 7 acting llong AC, aforce Q acting along
CF and a couple of moment . Find P, Q and ©

27) Forces NOA and uOB act along the lines AO and OB respectively.
Show that the resultant is a force (\+u)OC where C lieson AB and
AC:CB =\, Forces 3AB, 2AC and CB act along the sides AB, AC and
CB respectively of a triangle ABC. Their resultant meets BC in P and AC in
Q andits magnitude is kPQ. Find BP:PC, AQ:QC and k.  (UofL)




CHAPTER 15

CENTRE OF GRAVITY

WEIGHT AND CENTRE OF GRAVITY

A solid body is made up of a number of particles rigidly held together by
forces of attraction, where each particle has a mass and therefore a weight which
acts vertically downward. The weight of a solid body is the resultant of the
weights of its constituent particles so, unless the body is of very great size, its
weight is the resultant of a set of parallel forces. It was seen in Chapter 14 p. 464
that such a resultant passes through a fixed point whatever the orientation of the
forces, so the weight of a body passes through a fixed point whatever the
orientation of that body. This fixed point is called the centre of gravity of the
body or (with certain limitations which are discussed later) the centre of mass

of the body.

Thus the weight of a body is equal to the sum of the weights of its constituent
particles and acts vertically downward through a fixed point in the body called
the centre of gravity. The centre of gravity s independent of the orientation of
the body

To find the centre of gravity of a body we can use the fact that the sum of rhe
moments of the weights of the constituent particles about any axis is equal to
the moment of the resultant weight about the same axis. This will give the
distance of the centre of gravity from that axis.

To locate the centre of gravity completely it may be necessary to take moments
about two non-parallel lines or, for three dimensional problems about three
non-parallel lines, but such problems do not concern us at this stage.

THE CENTRE OF GRAVITY OF A SET OF PARTICLES IN A PLANE

Consider three particles of weights 5gN, 2N, 3gN whlch e points
(3,~1), (2,3), (~2,5) referred to coordinate axes Ox and

498
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y, Y,

The centre of gravity of these particles is in the xy plane.

Let this point be G(Z, 7).

Suppose that the xy plane is horizontal so that the weights of the particles act
vertically downward perpendicular to the xy plane and the total weight, 10g,
acts in the same direction through G.

Using the principle of moments gives

5

z
S @ertGes-Go2 = (03

\

So the centre of gravity is at the point (}.%)
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Note. When both coordinates of the centre of gravity are to be calculated, it is
usually best to use a diagram drawn in a horizontal plane containing the x and
» axes (as was done in the example above). Such a diagram allows the distances
from the axes of each particle to be seen clearly. It must be appreciated,
however, that the lines of action of the weights cannot be marked on a diagram
of this type; only the point through which the weight passes can be sen.

“The General Case

Consider particles of mass my, ma, my. .. at the points (x3,7,), (2, ¥2),
(x3,73)... in the xy plane.
The weights of these particles are myg, mag, msg ..
The total weight is mg acting at a point G(F,) in the xy plane.

Taking the xp planc to be horizontal so that the weights of the particles are
perpendicular to the xy plane, then using the principle of moments gives

"
\F/ (myg)xy + (maghxa+ (magvs+ ... = (my+my+my+.. )%
o - gZmx = ¥gEm

Then, if we cancel g, X (see Note on p. 501)

~ . __ Imy
Similarly o ives
Y N b m
This result may also be expressed in vector terms.

Let the particles be at the points whose position vectors are 1y, z, T, . . .
Then 1,

Xyl 1 =xaityaj X3+ yaj...
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Asbefore ¥ = =%
B

The position vector of G is ¥ where

Smxi+ Dmyj
. vi
=m
(myxiit myxait )+ (g mayag + )
- m
_ Mty tmaityg)t...
Em
_ mntmrtmgr
Sm
Smr
ie. =

Reconsidering the first example in vector terms, we have particles of masses 2 kg,
Sk and 3kg at points whose position vectorsare  2i+3j, 3i—j and
—2i+5j.

Using the result above, the position vector of G is

202i+3)) +5Gi=j) +3(—
10
= $03i+16).
5
Note. The formulae ¥ = = and 5 =222 really give the coordinates of
Zm Zm

the centre of mass of the set of particles.
We have used them to find the centre of gravity and it js correct to o this for all
practical purposes.

These two points are not the same, however, if the set of particles occupies so
large an area that the weights are not all parallel, or the value of g is not the
same for all particles.
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UNIFORM BODIES

A uniform body is made from uniform material, i.e. any given quantity of the
material (measured by length, area or volume as appropriate) will have the same
mass as any equal quantity of the same material.

It follows that a uniform body will have mass equally distributed about any line
of symmetry: so

e ceritie of fraity:ofa iiforinbody dies oneachline'of synfery; it
body possesses.

For example, the centre of gravity of a uniform rod, circular lamina, sphere etc,
lies at the centre of the body. The centre of gravity of a cylinder (hollow o
solid) lies at the midpoint of its axis.

We can extend this argument to find the centre of gravity of some other simple
bodies.

Centre of Gravity of a Uniform Triangular Lamina

Consider the triangle as being made from a series of strips with sides parallel
to the side BC. As cach strip is uniform and is approximately a rectangle, its
centre of gravity is at its midpoint.

So the centre of gravity of the triangle, G, must lie on the line joining the
midpoints of these strips: i.e. on the median through A.

Similarly by considering the triangle as being made from a series of strips
parallel to AC, G also lies on the median through B. Therefore

the position of the centre of gravity of a uniform triangle is at the point.6f
interséction of tlie medians, This'paint Is the centroid of the triangle and
it is § of the wiy alongeacly médian from the vertex.
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Note. Centroid should not be regarded as another term for centre of gravity.
The centroid of any body is its geometric centre and depends only on the shape
of the body. When the body is uniform the centre of gravity is at the centroid
but for non-uniform bodies the centre of gravity and centroid are unlikely to
coincide.

Centre of Gravity of Some Special Uniform Triangular Laminas

(1) For a uniform sosceles triangular lamina ABC, in which AB= AC, the
centre of gravity is on the line of symmetry AD andis 3AD from A.

Al

(2) Fora uniform right-angled triangle lamina ABC. in which angle ABC is
90°. the centre of gravity is at distances §BA and §BC from the right angle.
along BA and BC.

-
s G

1B

3) The centre of gravity of a uniform triangular lamina ABC coincides with
the centre of gravity of three particles of equal mass placed at the vertices of the
triangle. This property can be proved as follows.
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EXERCISE 152

1) Theee particles A, B, C of mass 2, 3, 4kg are at the points (1,4),
(3,6), (2,1) inthe xy plane. Find the coordinates of their centre of gravity.

2) Four particles A, B, C, D of mass 3, 5, 2, 4kg are at the points (1,6),
(~1,5), (2,-3), (—1,~4). Find the coordinates of their centre of gravity.

3) Three particles of mass S, 3, 7kg are at the poinis A, B, C, whose
position vectors are j. —3i+5j. Find the position vector of
their centre of mass. Find also the position vector of the centroid of the points
A, B, C

4) Four particles of mass 3, 2, 5 and 1kg are at the points A, B, C, D
whose position vectors are  2i—j, 3i+5j, i—3j. Find:
(a) the position vector of the centre of mass of the particles,

(b) the position vector of the centroid of the points A, B, C, D.

5) A uniform lamina is in the form of a trapezium ABCD where AB and DC
are the parallel sides. Show that the centre of gravity of the trapezium lies on the
line joining the midpoints of AB and DC.

6) The vertices of a triangle are at the points i+, 3i—j, 2i+j. Find the
position vector of the centre of gravity of the triangle, assuming it to be a
uniform lamina.

7) Show that the centre of gravity of a uniform lamina in the form of a
parallelogram is at the point of intersection of the diagonals.

8) By dividing a parallelogram into two triangles show that the centre of gravity
of a lamina in the form of a parallelogram s the same point as the centre of
gravity of four particles, two of mass m_at one pair of opposite vertices and
wo of mass 2 at the other pair of opposite vertices.

COMPOSITE BODIES

Consider  body made up from two or more parts, each of which has a known
weight and centre of gravity. As the weight of the complete body is the resultant
of the weights of its parts, the principle of moments can again be used to find
the centre of gravity of the body.
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A
5 @w)(3a)+ (JaPwV3)a+hav3) = §(4+V3)awE

= 1(5+2v/3) = J(4+V3)F
- = (14+3V3)

2) A thin uniform wire is bent to form the two equal sides AB and AC of
triangle ABC, where AB=AC=5cm. The thirdside BC, of length Gem,
is made from uniform wire of twice the density of the first. Find the centre of
gravity of the framework.

AO=4cm  (Pythagoras)

Let w be the weight per unit length of AB and AC so that the weight per unit
length of BC is 2w.

From symmetry the centre of gravity, G, of the body lies on OA, so we will
take moments about BC.

Body Weight x coordinate of centre of gravity
Wire AB Sw 2
Wire AC Sw 2
Wire BC 12w 0
Framework ABC 2w ¥
¥
\1/ (SWR2+ (5w +(12w)0 = (22w)F

¢ - =8

em from BC on the line of symmetry OA.

The centre of gravity is
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A N B Qa*w)a+(6aw)fa = 8a°wF
- F=12
A
\J,' (2a*w)a+(6a*w)ha = 8a*wi
o - F=4a

So the centre of gravity is 22 from AB and §a from AD.
4) A uniform lamina s in the form of a square ABCD of side 3a. E isa point
onBCand F isapointon DC such that CE=CF=a. Asquare FCEH is

removed from the lamina. Find the centre of gravity of the remainder.

I £

and it is sufficient to find

The figure is symmetrical about AHC so %
only one coordinate of G.

‘The moment of the square ECFH subtracted from the moment of the square
ABCD is equivalent to the moment of ABEHFD. Using w for the weight
per unit area and taking moments about AD (the y axis) we have:

Portion Weight x coordinate of centre of gravity
Square ABCD 9a*w 3a
Square FHEC aw $a
Remainder 8aPw X

9a*w)3a) - (@*w)fa) = 8a’wi

- %=l

The centre of gravity of the remainder ison AH distant Y¥a from AD.
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5) A uniform solid is in the form of a cylinder of radivs 24 and height 2/
with a cylindrical hole of radius a and height 4 drilled centrally at one plane
end. Find the centre of gravity of the solid.

|
LB

[ e

From symmetry the centre of gravity of the solid lies on the axis of the cylinder.
The complete cylinder and the cylinder removed from it are similar bodies so
their volumes (and therefore their weights) are in the ratio 8:1, (the ratio of
the cubes of corresponding lengths)

Let w be the weight of the portion removed.

Body Weight | Distance of centre of gravity from AB
Solid cylinder ABEF Sw ]
Solid cylinder CDHL w n
Remainder 7w *
A‘%B (W) —wikh) = ()T
= *=H§n

‘Therefore the centre of gravity of the solid lies on the axis at a distance of &
from the end with the hole in it.

Note. This method for determining the relationships between the weights of
similar bodies is quicker than using ‘weight per unit volume’ and should be used
whenever possible.

6) A uniform lamina is in the form of a triangle ABC where AB = 3a.
D and E are points on AC and BC such that DE is parallel to AB and
DE =a. The portion CDE is removed. Find the centre of gravity of the
remainder.
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The centre of gravity of the trapezium ABED can be found by the methods
used in Examples 4 and 5 but an interesting alternative will be used this time.

—-— - A M B
] i)
w waw W aw
i
W3 3 aw aw
() i

The line AE divides the trapezium into two triangles, ABE and ADE, with
the same perpendicular height. Their areas and therefore their weights are
proportional to their bases, i.e. in the ratio 3:1.

Now each of these triangles can be replaced by three particles of equal weight
placed at the vertices. As the weight of each triangle is thus going to be divided
by three, their weights will be taken as 9W and 3W (ratio 3:1).

The centre of gravity of triangle ABE is the same as the centre of gravity of
three particles each of weight 3W at A, B and E
For triangle AED we use three particles cach of weight W at A, E and D

Now, taking /r as the height of the trapezium, we have, from diagram (iv),

g Wh+ 4Wh+aW(0) + 3W(0) = 12WR
= %= fh

But G lies on the line LM where L and M are the midpoints of DE and AB.
So G ison LM and is distant SLM from AB.
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8) A uniform lamina is in the form of an isosceles right-angled triangle. The
equal sides of the triangle are of length 4 m and the lamina has a weight W

per unit area, A particle of weight 3W is attached to the right-angled vertex.
Find the centre of gravity of the resulting body.

9) A uniform lamina consists of a square of side @ with a circle of diameter a
(made from the same material) glued on to the square so that a diameter of the
circle coincides with one edge of the square. Locate the centre of gravity of the
lamina.

10) A uniform lamina ABCD is in the form of a square and a uniform wire is
placed round the circumference of the square. Locate the centre of gravity of
the complete body.

The rectangular laminas illustrated in Questions 11 and 12 are uniform and part

of the lamina has been folded back upon itself to form a section of double
thickness. Locate the centre of gravity in each case.

1)

12)

S —)
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Laminas

Consider a uniform lamina bounded by the x axis, the ordinates
x=b andacurve with equation y =f(x).

4 i

)

«GE.7)

)

ol
=4 D % T d

o

The chosen element is a vertical strip of height y and width bx.
As the strip s approximately rectangular, the coordinates of its centre of gravity
ate (x,4y). If the weight per unit area is w and the area of the lamina is
represented by A, the following table of data can be constructed.

Coordinates of centre of gravity
Portion Weight x y

Element @ sxpw x by
Complete lamina Aw % ¥y

y x=b
\J:/ (v 5xwx = AnE

T =
- | xpdx = A%

Ja
x=b
0% Z v 8xw(hy) = Aw
= ["hiax = a5
o

11, for any particular lamina f(x) is known, the necessary integration can be
performed.
The value of A may, in some cases, be found from a standard formula.

Otherwise it can be evaluated using A={ yax

Slight variations in the boundaries of the lamina do not affect the general
method.
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EXAMPLES 15c

1) Find the coordinates of the centre of gravity of a uniform lamina bounded
by the axes and that part of the parabola y=1—x which is in the first
quadrant.

&

. 1)

The curve cuts the x axis where x =1

s0,if the weight per unit area is w,

Coordinates of centre of gravity

Portion Weight x y
Element (v Sx)w x 1
Complete lamina Aw H 7

fre

=1
Z O 6xwx = AWE
&=

o
>
Yo

™M

dx = A% n

(yax)w(,)) > AWy

iy =a @l
b

1
| (1—x)" dx
o

'
[—gu —x)’“]
o
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n
So [1] gives 3= :Jo x(1—x)" dx

o
= [ 0—w0ut (-du)
N

.
;

- %=
2 l‘l
Then [2] gives =i -9
Yo
- 5=

So the coordinates of the centre of gravity of the lamina are (3, 3).

2) Find the position of the centre of gravity of a uniform semicircular lamina of
radius a.

G0 b )

‘The element is an approximately rectangular strip of length 2y and width &x.
Because the lamina is symmetrical about Ox, G is on Ox, so we need only to
take moments about Oy.
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Using w as the weight per unit area we have:

Portion Weight x coordinates of centre of gravity
Element (2 6x)w x
Semicircle Aw = ma*w *

wma
\I/ Y Gronr = jraus
&

xydx = fma’®

‘The semicircle is part of a circle, radius a, centre O, 50 its equation is
+yi=a

a
Hence 2 J Vel = dx = jna'®
o
4 © _ da
P L=y
- %= —|-l@— ..
mz’[ 3@ = ]o T

So the centre of gravity of a uniform semicircular lamina is on the radius of
symmetry and distant 4a/37 from the centre.

EXERCISE 15¢
1) Find the position of the centre of gravity of a uniform lamina that is:
3) in the form of the area between the x axis and the curve whose equation is
y=1-x%
b) a quadrant of a circle of radius a,
©) in the shape of the area bounded by the x axis, thelines x =1 and

1

x=2, andthecurve y

x

'd) in the form of the area between the  axis and the parabola y? =x+ 4,
(Hint. Use a horizontal strip as element.)

¢) the section of a circle of radius a, cut off between two straight parallel
lines at distances of 4a and a from the centre of the circle.
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EXAMPLES 154
1) Find the position of the centre of gravity of a uniform solid right circular
cone of base radius a and height .

[ir. o) %

S

Referring the cone to x and y axes as shown, we see that the generator of the
a

cone is the line with equation y==x

n

Taking w as the weight per unit volume of the cone and using a ‘disc’ element
of radius y and thickness 8x, we have:

Body Weight x coordinate of centre of gravity
Element ny3xw x
Cone Jnathw X

7
x=h
‘P Z (mysxwix = fnathn®
° =
n
- [0 ax = Jau
o
- dv = fa?x
R 3 [x‘]" _ 3
nlaf, 4

So the centre of gravity of a uniform solid right circular cone is on the axis of
symmetry, three-quarters of the way from the vertex to the base.



Centre of Gravity 521
2) Find the position of the centre of gravity of the uniform solid obtained by
rotating, about the x axis, the area bounded by the x axis, the line x=2a
and the parabola y? = 4ax.

4

-

Taking w as the weight per unit volume and an element that is approximately
acircular disc of volume 7y?5x, we have

Body Weight x coordinate of centre of gravity
Element myiExw x
Paraboloid Vw X

\I/ xin (myBxwix = Vi

| =

Hence the centre of gravity of the paraboloid is on the axis of symmetry and
distant 3a from the plane face.
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Note that when choosing the position of the x and ) axes within a solid of
revolution, the simplest equation of the generating curve should be considered.

In determining the position of the centre of _
gravity of a hemisphere, for instance, /

the centre of the plane face should be taken as [N R
the origin so that the generator is part of ' *
the circle with equation  x2+y? = r? N

EXERCISE 15d
Find the position of the centre of gravity of the following uniform solid bodies.

1) A hemisphere of radius a.

2) A frustum of a cone formed by cutting a cone of base radius r, from the top
of a cone of base radius 3r and height . (Hinr. Take the vertex of the large
cone as origin.)

3) A solid sphere of radius 4 is cut into two sections by a plane. The maximum
depth of the smaller section is 4. Find the distance of the centre of gravity of
the smaller cap from its plane face.

4) A section is cut from a uniform solid hemisphere of radius 3z by two cuts
parallel to its plane face. If the radii of the plane faces of the section are 2a
and a find the distance of its centre of gravity from the centre.

5) The solid formed by rotating, about the x axis, the area bounded by the
x and yaxes, theline x =1 and thecurve y=¢*.

Surfaces of Revolution

When a portion of a curve rotates about a fixed line, it traces out the surface
of a three dimensional object, called a surface of revolution.
The location of the centre of gravity of a surface of revolution is, in general,
beyond the scope of this book but there are two important cases that can be
dealt with at this stage. These are:
(a) the surface of a cone without base, or hollow cone, formed when a straight
line rotates about an axis to which it is inclined at an acute angle,
(b) the curved surface of a hemisphere, or hollow hemisphere, or hemispherical
shell, formed when a circular quadrant rotates completely about a boundary
radius.
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EXAMPLES 150
1) Find the distance from the vertex of the centre of gravity of a uniform
hollow right circular cone.

The conical surface can be divided completely into thin strips, from vertex to
base. Each strip is approximately a triangular lamina. The centre of gravity of
each such lamina is two thirds of the way from vertex to base. So the centre of
gravity of the hollow cone must also be two thirds of the way from vertex to
base and, from symmetry, on the axis of the cone.

2) Find the position of the centre of gravity of a uniform hemispherical shell
of radius a.

From symmetry the centre of gravity G of the hemisphere lies on Oy.

If we divide the hemisphere into slices parallel to its plane face then each slice is
approximately a circular ring with its centre of gravity at its centre.

‘The ring shown in the diagram is approximately a cylinder of radius a cos and
width a8 and so has a surface area of (27a cos0)(a 80).

Let w be the weight per unit area of the hemisphere.
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SPECIAL CASES

Certain uniform bodies require individual methods for locating their centres
of gravity. The commonest of these are explained in the following examples.

EXAMPLES 16¢

1) Find the position of the centre of gravity of a uniform wire bent into the
form of an arc of a circle of radius @ and subtending an angle 2 at the centre.

» P

o cos-

Let the weight per unit length of the wire be w.
Taking axes as shown, the centre of gravity of the arc lies on Ox.

If we divide the wire into small arcs subtending an angle 60 at O, then each
element of length a86. is approximately a particle.

Body Weight x coordinate of centre of gravity
Element (@s0yw 4cosd
Are (@x2ehw H
¥
% Z (aw80)a cos8 = (ax 2axw)F
- [" ahwcost db = 200u%
- 2 [ana|”
2 e

- _ asina

- 7 = asina
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2) Find the position of the centre of gravity of a uniform lamina in the form of a
sector of a circle of radius a subtending an angle 2a at the centre.

\

Let w be the weight per unit area of the lamina,

Taking axes as shown, the centre of gravity G of the sector lies on Ox.

If we divide the lamina into sectors, then each sector is approximately a triangle
with centre of gravity G' ata distance 3a from O.

Body Weight x coordinate of centre of gravity
Element (Ja*s0pw 3a cost
Whole sector (Ja20)w X

ia
4/ Z (a*80w)(3acost) = (Ja*2aw)@

(==
o
+a
- | detweosodo = atans
al. 1% _ 2asina
- Zfsimg| =
3a 3a

‘The position of the centre of gravity of a semi-circular lamina can be obtained
from this result by substituting @ =/2, thus giving an alternative method
for No. 2 in examples 15c.
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o3«
Hence = [;Jn =3n
Therefore 0G = 30D

Therefore the centre of gravity of a uniform solid tetrahedron lies one quarter
of the way up the line joining the centroid of the base o the vertex.

We can deduce the position of the centre of gravity of any uniform solid
pyramid from this result. (The base of a pyramid can be any plane figure
bounded by straight lines; the remaining faces of the pyramid are triangular and
meet in a common vertex.)

v
1f the pyramid is divided into sections A!\

parallel to the base, all such sections are
similar 5o it can be seen that the centre of
gravity G of the pyramid lics on the line

joining the vertex V to O, the centroid
of the base.

If the pyramid is divided into
tetrahedrons each having the same height
as the pyramid, the centre of gravity of
each tetrahedron is at a point which is one
quarter of the height of the pyramid
above the base.

So the centre of gravity of a uniform solid pyramid lies on the line joining the
vertex to the centroid of the base. at a point which s one quarter of the length
of this line from the base.
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Note. As the number of sides of a pyramid becomes infinitely large the sloping
faces tend to form a curved surface and the pyramid becomes a cone thus
confirming the position of the centre of gravity of a solid cone

NON-UNIFORM BODIES

The centre of gravity of some non-uniform bodies can be found by using one
of the methods already described but this can be done only if we know the way
that the density varies. If this is the case, the weight per unit area or volume
is no longer taken as a constant w.

EXAMPLES 15 (continued)
4) Find the position of the centre of gravity of arod AB of length [ where the
weight per unit length of the rod at a point distant x from A is (1+x)g.

T

Consider 2 small section of the rod of length x. This is approximately a
particle of weight (1+x)g6x.

Body Weight Distance of centre of gravity from Oy
Element (1+x)g5x x
'
Rod Z (1+x)gbx %

M\

\ i
{(l+x)g&x}x ~ ch; «a +x)gﬁx]i

x

i

)

'
[ +xgax

M
- j x(1+x)g dv
Yo Yo

which gives
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Bodies Hanging Freely from One Point

Consider a body freely suspended at one point A on the body.

+ ‘There are only two forces acting on the body,
the tension in the tie at A and the weight
acting through the centre of gravity G.
If the body s in equilibrium under the action
of these two forces then, as the weight acts
vertically downward, the tension must act
vertically upward. Then, as there is no torque,
AG must be vertical.

Bodies Resting on Planes

Consider a body resting with its base in contact with a smooth horizontal
plane.

The forces acting on the body are its weight and the normal reaction forces at
the points of contact between the body and the plane. These reaction forces are
vertical and parallel, so the resultant normal reaction force must be between A
and B, the extreme points of contact with the plane. If the body is resting in
equilibrium the weight and the normal reaction force must be acting in opposite
senses: therefore the vertical through the centre of gravity must fall between A
and B,

If the vertical through G falls outside AB then the weight causes an overturning
torque about A or B and the body will topple.
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When the particle is attached to B, the weight of the wire and the weight of the
particle are a pair of equal, like, parallel forces. So their resultant, and hence the
centre of gravity of the composite body, is midway between G and B.

P T

Now when this body is suspended from A, AG’ is vertical, so the inclination
of AB to the vertical is the angle BAG'.

But wnBAG' =~
B

So AB makes an angle arctan2/3m with the vertical.

2) A frustum of a uniform solid right circular cone is of height 3a and the
radii of the plane facesare 2z and 4. The frustum is freely suspended from a
point on the edge of the smaller plane face and a particle is attached to the
lowest point of this face so that the generator through the point of suspension
is horizontal. If W is the weight of the frustum find the weight of the particle
in terms of W.

We must first find the centre of gravity of the frustum.
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The complete cone and the cone removed are similar figures with corresponding
lengths in the ratio 2:1, so their volumes, and therefore weights, are in the
ratio 8:1.

Let W be the weight of the cone BCD.

Body Weight Distance of centre of gravity from Oy
Cone ACE 8w 4(6a)
Cone BCD W (a+3a)
Frustum W X

8W(Sa)—W(a) = (TW)F

- =

Let w be the weight of the particle at D.

From the diagram,

wna=4, TS=auna=la and TG =ga,
50 SG=TG-TS=1%a

B) (w)(2 sina)— (W)(Fa cosa) = 0
= 2wtana = W

- w = Bw
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3) A uniform lamina is in the form of a square ABCD of side 2m. E isa
point on AD such that ED =x metre and the portion EDC is removed.
Show that, if the lamina s placed in a vertical plane with AE on a rough
horizontal surface, it will topple if x> 3 —+/3.

If x=13 and the weight of the lamina is W find the least force which must
be applied to the lamina to stop it toppling.

If G is the centre of gravity of the lamina, the lamina will rest in equilibrium in
the position shown if the vertical through G falls within AE and it will topple
if the line of action of the weight falls outside AE. So we must first
find the distance of G from AB.

Let w be the weight per unit area.

Body Weight Distance of centre of gravity from AB
Square ABCD aw 1
ACDE xw 24
Remainder (d=xpw H
\{, (@)l —xw(2—4x) = (@ —xwE
N 12-6x+x?
3(4-x)
The Jamina will topple if > AE
—ox +

ie.if E

1(4 X)
- x*—6x+6 <0
- K—G+VIk—G-v3)) <0

iic. the lamina will topple if x>3—v/3
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3) A child's toy consists of a solid uniform hemisphere of radius 7 and a solid
uniform right circular cone of base radius 7 and height /. The bases of the two
solids are glued together. If the density of the hemisphere is & times that of the
cone, show that the distance from the vertex of the cone to the centre of
gravity of the toy is
k(3r*+ 8rh)+ 3h*

4Qkr+h)

if the toy is

(a) The toy is suspended from a point on the rim of the common base and rests
in equilibrium with the axis of the cone inclined at an angle ¢ to the
downward vertical. Find tan ¢,

(6) If 7=2r, and the toy can rest in equilibrium with any point on the
surface of the hemisphere in contact with a smooth horizontal plane, find
the value of k.

4) A square lamina PQRS of side 2/ is made of uniform thin material. When
a semi-circular piece with PQ as diameter is removed from the square, show
201
that the centre of mass of the remainder of the lamina is at  distance 35—
-
from the line
The remainder of the lamina is suspended from a light string attached at R and
hangs in equilibrium. Show that RS is inclined to the downward vertical at an
214-37)
angle 0, where ang = ———
3(8—m)
(You may quote the position of the centre of gravity of a uniform semicircular
lamina.)

5) ABCD is a uniform thin sheet of card of weight I and side 12a. The centre
of the card is the point P. A cut is made along AP and the section APB is
folded over, along PB, and stuck to the section BPC. Find the distances from
BC and CD of the centre of gravity of the resulting object APBCD.

If this object hangs freely from B, find the angle between BC and the vertical.
If a particle of weight kW is now attached at A so that the object rests in
equilibrium with AC horizontal, find &.
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4 The area bounded by the curve y = f(x),
» /) the x axis and the ordinates at O and
x; represents a uniform lamina, The x
coordinate of its centre of gravity is

given by:
o 5 3
[ xy dx
@
| Txax
o
©

5) A uniform solid cone has a base radius 7 and height 4r. It rests with its plane
face on an inclined plane which is rough enough to prevent sliding. The cone will
topple when the inclination of the plane to the horizontal is greater than:

(@) 45° (b) arctan} (c) arctand (d) 90° (e) arctan}.

TYPE V.

6) The centre of mass of a non-uniform triangular lamina coincides with its
centroid.

7) The centre of gravity of three particles of equal weight placed at the vertices
of a triangle ABC coincides with the centroid of the triangle ABC.

8) A uniform wire is bent to form the sides of a triangle ABC. If the centre of
gravity of the wire coincides with the centroid of the triangle ABC, triangle
ABC must be equilateral.

9) The centre of gravity of a uniform lamina in the form of a quadrilateral
coincides with the centre of gravity of four particles of equal weight placed at
the vertices of the quadrilateral.

10) A uniform lamina in the form of a
rectangle has one corner bent over as
in the diagram. The centre of gravity o
of the resulting lamina lies on the
diagonal AC.
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7) Show that the centroid of a uniform solid hemisphere of radius a isata
distance 3a/8 from O, the centre of the plane face.

The figure below shows the central cross-section of a casting made in the form
of a uniform solid hemisphere of radius & and centre O, with a hemispherical
cavity of radius 4a and centre A. If this solid rests in equilibrium with its
curved surface in contact with a horizontal plane, find the angle made by OA
with the horizontal.

(UofL)

8) Prove that the centre of gravity of a uniform triangular lamina is the same as
that of three equal particles placed at the vertices of the lamina.

A uniform lamina of weight ¥ is in the shape of a quadrilateral ABCD. The
diagonals AC, BD meetat P, where AP<PC, BP<PD, and O, R are
points on AC, BD respectively such that QC=AP, RD=BP. By replacing
triangles ABD, BCD by equivalent systems of particles, or otherwise, prove
that the centre of gravity of the lamina is the same as that of a particle of weight
W at Q and a particle of weight 3W at the midpoint of BD.

Deduce that the centre of gravity of the whole lamina is the same as that of the
triangle PQR. ©

9) Show that the centre of mass of a uniform right circular solid cone of
height ki isat a distance 3/4 from the vertex.

A uniform solid spinning top has the shape of an inverted right circular cone of
radius 3r and height 4r surmounted by a cylinder of base radius 3r and

height 6r. Find the position of the centre of mass of the spinning top and

hence show that if it is placed with the curved surface of the cone on a horizontal
plane, the top will topple. (Uof L)

10) Ina uniform rectangular lamina ABCD the lengths AB and BC are 4a
and 3a respectively and E is the pointin CD suchthat CE=)a. The
portion BCE is removed. Find the distance of the centroid of the remainder
from (i) AD, (i) AB.

When this remainder s freely suspended from the comer A, the line AM,
where M. is the midpoint of BE, is vertical. Find the value of \. (AEB)
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11) A heavy uniform circular dise centre X and radius R hasa circular hole
centre Y and radius r cut fromit,where r<R. If XY=R—r, andthe
centre of gravity of the crescent-shaped lamina is at a distance 37 from X,
show that R = §r.

‘The lamina is now suspended from a point on its outer rim lying on the
perpendicular to XY through X. Find the angle which XY makes with the
vertical. If the weight of the crescent is ¥, find the smallest weight which must
be attached to the lamina to maintain XY in a norizontal position. (U of L)

12) A triangle ABC with AB=BC=22 and AC=2ay2 isdrawnona
uniform lamina. A semi<circle is drawn on BC as diameter, on the opposite side
of BC from A, and the area enclosed by the triangle and the semi-circle is cut
out. The resulting lamina is suspended freely from B. Show that AB makes an
angle tan™'(2+37) with the vertical. A point P is taken on AB and the
triangle APC is cut off. If the remaining lamina hangs with BC vertical, find
the distance BP.

[The centre of gravity of a uniform semi-circular lamina of radius a isata
distance §(a/m) from the centre.] ©

13) Prove, by integration, that the distance of the centre of mass of a uniform
solid right circular cone, of height /, from its plane base is 1/4.

The cone is freely hinged at its vertex and is kept in equilibrium by a light rigid
tod of length / joining the centre of the base to a point /v/3 directly above
the vertex. Show that the tension in the rod is W/3/4, whete ¥ is the weight
of the cone.

Find the magnitude of the reaction at the hinge. (UofL)

14) Find the coordinates of the centroid of a uniform lamina bounded by the
curve x* where y>0, thexaxisand theline x=4. This

lamina is suspended freely from the origin O. Find, to the nearest degree, the
inclination to the vertical of the x axis. (Uof

15) Show that the distance of the centroid of a uniform circular sector AOB
from the centre O is (2asin0)/30, where 20 is the angle AOB and a is
the radius. Find the distance from O of the centroid of the segment of which
AB is the chord, given that 6 =/6. 1f a uniform lamina in the shape of this
segment hangs at rest freely suspended from A, show that the tangent of the
angle which AB makes with the downward vertical equals
(1=20v/3)/2n—3v/3). (Uof L)

16) PQRS is a uniform square lamina of side 2a and weight w per unit area.
L is the midpoint of RS and M is the point on PS distant Ja from P. The
triangular section SLM is removed.

Find the distances of the centre of gravity of the portion PQRLM from PQ
and QR. This portion s suspended so that PR is horizontal, by vertical
strings attached at P and R. Find the tensions in the strings.
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17) A uniform lamina of weight W is in the shape of a triangle ABC with
AB=AC=2q and the angle BAC equal to 2a. The side AB is fixed alonga
diameter of a uniform solid hemisphere of radius a, the plane of the lamina being
perpendicular to the flat surface of the hemisphere. The body rests in equilibrium
with a point of the curved surface of the hemisphere in contact with a horizontal
table and with BC vertical. Show that the weight of the hemisphere is §Wcota.
A particle of weight W is attached to a point P of AB where AP=%a and
the body now settles in equilibrium with the midpoint of BC vertically above A.
Prove that tana=}, ©

18) Prove by integration that the centre of gravity of a uniform solid right
circular cone of vertical height /& and base radius a isat a distance 34/4 from
the vertex of the cone. Such a cone is joined to a uniform solid right circular
cylinder of the same material and of height 4 and base radius a, so that the
plane base of the cone coincides with a plane face of the cylinder. Find the
distance of the centre of gravity of the solid from the centre of the base of the
cone.

When the solid hangs in equilibrium from a point A on the cirumference of the
base of the cone, the line joining A to the vertex of the cone is horizontal,
Prove that 42 =h+/5S and find the angle of inclination of the steepest
inclined plane on which the solid can stand in equilibrium on its plane face, the
plane being sufficiently rough to prevent sliding. (IMB)

19) Show that the centre of mass of a uniform solid right circular cone of height
i isata distance 3h from its base.

From a uniform solid right circular cylinder, of radius r and height , a right
circular cone is bored out, The base of the cone coincides with one end of the
cylinder and the vertex O is at the centre of the other end. Show that the centre
of mass of the remainder of the cylinder is at a distance 34/8 from O.

‘The bored-out cylinder is placed with O uppermost on a horizontal plane which
is rough enough to prevent slipping; the plane is then gradually tilted. Show that
the cylinder topples when the inclination of the plane to the horizontal exceeds
tan”}8r/5h). (IMB;

20) Prove that the centroid of a uniform solid hemisphere of radius a isata
distance 3a/8 from O, the centre of its plane face.

‘The hemisphere is suspended by two vertical strings, one fastened at O and the
other at a point P on the rim of the plane face, Given that the tension in one
string is three times the tension in the other string, find the two possible values
of the tangent of the angle made by OP with the horizontal. (UofL)

21) A uniform lamina is bounded by that part of the parabola »* = ax,

>0, which lies in the first quadrant, by the axis y =0 of the parabola
and by theline x=a. Find the coordinates of the centroid of the lamina.
‘This lamina is suspended freely from the vertex of the parabola. Find the tangent
of the angle of inclination to the vertical of the axis of the parabola. (U of L)



CHAPTER 16

PROBLEMS INVOLVING RIGID
BODIES

EQUILIBRIUM OF RIGID BODIES

There are several general considerations which are important when solving
problems concerned with a rigid body which is in equilibrium under the action
of a set of coplanar forces. These have all been explained in previous chapters
and a summary of the main points is set out below.

1) When a body is in equilibrium under the action of three forces, the lines of
action of the forces are concurrent. Useful methods for calculating unknown
forces are Lami’s Theorem and the Triangle of Forces. When determining
angles the cotangent rule for a triangle can be useful (see p. 546).,

2) When a body is in equilibrium under the action of more than three forces,
only three independent equations can be found by various combinations of
resolving and taking moments for the forces acting on that body. If more than
three equations are needed they must come from other sources, such as the
mensuration of the figure, Hooke’s Law, etc.

3) The choice of axes about which moments are taken, or the direction in which
forces are resolved, should be made with the following considerations in mind:
(a) to keep the number of unknown quantities in any one equation down to

a minimum,
(b) to eliminate as many as possible of the unknown quantities that are not
required.

4) In problems involving frictional forces, when equilibrium is about to be
broken by slipping, friction is limiting at all points of contact at which
slipping is about to occur.

5) If equilibrium is about to be broken by toppling the normal reaction force
between the objects in contact acts through the point (or linc) about which
the body will topple.

545
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Cotangent Rule for a Triangle

The general cotangent rule is given on p.ix.
It becomes particularly useful when m =, asis the case in AABC when D

bisects AC.
I3

<[>
[

Then 2cotf = cota—cotf A o c
EXAMPLES 16a

1) Artod AB of length I has its centre of gravity at a point G where

AG=}1. The rod rests in equilibrium in a vertical plane at an angle 8 to

the horizontal, with its ends in contact with two inclined planes whose line of
intersection is perpendicular to the rod.

If the planes are smooth and are equally inclined at an angle « to the
horizontal show that 2 tana tanf= 1.

bt
As the planes are smooth the forces acting on the rod are the normal reactions
at A and B and the weight at G. As only three forces act on the rod, they
must be concurrent at the point marked O.

In AOAB, BOG=ea, AOG=a, OGA=90°—p

Using the cotangent rulc on this triangle gives
Jicota—4lcota = (§+§)I cot (90°—B)

= Joota = tanp

Therefore 2tanatanf =
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2) Aladder whose centre of gravity is at a point of trisection leans in a vertical
plane with one end on rough horizontal ground and the other end against a
rough vertical wall such that the centre of gravity of the ladder is nearer to the
wall. If the coefficient of friction at each point of contact is 4 and the ladder is
on the point of slipping when it is inclined at an angle 8 to the vertical prove
that

3
tanf = ¢
-

When the ladder is on the point of slipping, the end B will tend to slip away
from the wall 5o the total reaction R at B makes an angle A, where u=tan),
with the normal reaction at B as shown in the diagram. The end A wil tend to
slide down the wall so the total reaction § at A makes an angle A with the
normal reaction at the wall as shown in the diagram.

Considering the total reactions at A and B, the ladder s in equilibrium under
the action of three forces only so these forces must be concurrent, say at O.

Now in triangle AOB, G divides AB in the ratio 1:2 and we can use the
cotangent rule in this triangle giving
(2+1)cot8 = 2cotA—cot(90°—1)

2
- 3coth = = —p
"

3
= tang =
-
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3) A uniform cylinder of radius a and weight W rests in equilibrium between
two rough planes which are both inclined at 30° to the horizontal. The axis of
the cylinder is parallel to the line joining the two planes and the coefficient of
friction at the points of contact with both planes is }. Find the greatest couple
that can be applied to the cylinder without making it rotate about its axis.

If a torque C is applied to the cylinder, and friction is limiting, then
- Risin30°— 4R cos 30°— S cos 30°—§'sin 30° = 0 m
t 1Rsin30°+ R cos 30°+ S c0s 30°—}Ssin30°— W = 0 ]
I the cylinder is not to rotate about its axis then
o C—4Sa~4Ra <0 = 20< (R+Su Bl
Simplifying [1] and [2] we have:

2AR—8)-V3R+S) = 0

and (R—8)+2V3(R+S) = 4W
Hence R+S) = {W/3
‘Then in equation [3] 20 < Ewa/3

Therefore the greatest possible couple is {; Wav/3.
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Note. It is always wise to assemble all the equations which are to be used before
beginning their solution. The form of equation [3] suggests that (R+5) be
found from equations [1] and [2] rather than R and S separately. In practice
this is 2 much shorter process.
4) A uniform solid hemisphere of radius a rests with its curved surface in
contact with a vertical wall. The hemisphere is supported by a light inextensible
string of length a, one end of which is fixed to the wall and the other end to the
highest point of the plane face of the hemisphere. If the hemisphere is on the
point of slipping down the wall when its plane face is inclined at arctan$ to the
horizontal find the coefficient of friction between the hemisphere and the wall.
<

Let a be the inclination of the string to the wall.

From the diagram we see that ~ SA+QO=PO=a
s0 asina+acosd
- sina

But  tanf =

e

So sina = 1-3 = = 2
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In this problem the tension, 7 in the string is not asked for so, if we avoid
introducing it into our solution, only two equations will be nceded to determine
the other two unknown quantities, # and R.

T can be avoided if we take moments about axes through A and C.

o

c Wa—Jasin0)—R(acosa-+asin0) = 0 m
) ina—Rasi —3a6in0) =
0\ uRasina—Rasinf + Wacos6—3asin6) = 0 21
Al trig ratios for @ and 0 are known so
[1] becomes W = 2R(V21+4)
[2] becomes W = 2R(4—2p)

34—
Hence FRabv-TEwy

16—3+/21

- - oTvel

# 14
Sliding and Overturning

Certain types of problems concerning a rigid body involve a variable quantity
(such as a force or the inclination of a plane) which, as it increases, will eventually
reach a point where it disturbs the equilibrium of the body. This equilibrium can
be broken either by sliding or by overturning.

In order to determine the manner in which equilibrium is broken, each of these
possibilitics is considered separately and the results compared.

EXAMPLES 16a (continued)

5) A uniform solid cube of side 2a rests in rough contact with a horizontal
plane, the coefficient of friction being 3. A gradually increasing force, P, is
applied at the midpoint of one top edge, perpendicular to the vertical face.
Determine how the equilibrium will be broken.
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Ak

4
W 47

bt

) Cube an the poio of sicing
I the cube begins to slide, it will be about to do so when, from diagram (i),
Pi=pR and R=W

= Po= 3w 1
(The line of action of R is not known in this case.)
AR
£y

B

I J7

w

i) Cbe on the point of overturring

If, on the other hand, the cube begins to overturn, it will rotate about the edge
through C in diagram (ii). So the normal contact force, R, acts through this
edge.
Taking moments about this edge in diagram (ii) gives

24P, = aW
- Py=dw )
(1] and [2] show that P, <P,

So, as P increases, the value of P, is reached before the value of P, can be
reached.

Hence equilibrium is broken by sliding.
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6) A uniform solid cylinder of radius @ and height 3a is placed with one plane
face in contact with a rough inclined plane. The inclination of the plane is
slowly increased. Show that equilibrium will be broken by sliding if 4 <}

In diagram (i), the inclination of the plane to the horizontal is @ and equilibrium
is about to be broken by sliding.
Resolving perpendicular to the plan gives

R—Wcos, = 0
resolving parallel to the plane gives
4R —Wsin0, = 0

Hence n = tanf,

)

In diagram (i) the plane is inclined to the horizontal at an angle 6, and
equilibrium is about to be broken by overturning. So the line of action of I
passes through A

Therefore tan0, = §
Ifsliding s to occur before overturning, 0 < 6,

ie. n<i
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EXERCISE 162

1) A uniform rod rests in equilibrium with one end against a smooth vertical
wall and the other end against a smooth plane inclined at 30° to the horizontal.
Find the inclination of the rod to the horizontal.

2) A uniform ladder rests with one end against a rough wall and the other end
on rough horizontal ground. When the ladder is inclined at 30° to the vertical it
is on the point of slipping. The coefficient of friction between the ladder and
the wall and the ladder and the ground is u. Find the value of u.

3) A smooth hemispherical bowl of radius @ is fixed with its rim uppermost and
horizontal. A smooth uniform rod of length 2/ (/>a) rests with one end

inside the bowl and leaning on the rim. Find the length of the rod that overhangs
the bowl.

4) A uniform cylinder of weight W rests with its axis horizontal and its curved
surface in contact with a rough vertical wall and with a rough plane inclined at
45° o the horizontal. The coefficient of friction between the cylinder and the
wall and the cylinder and the plane is 1. If the radius of the cylinder is a, find
in terms of @, 4 and W the greatest couple that will not rotate the cylinder.

5) A uniform solid cone of base radius a and height 2a is placed with its plane

surface in contact with a rough plane which is initially horizontal. The coefficient

of friction between the cone and the plane is 3. Determine how equilibrium

will be broken if:

(a) the plane is gradually tilted so that its inclination to the horizontal increases

y,

(b the plane is kept horizontal but a gradually increasing horizontal force is

applicd to the cone half-way up its height.

6) A uniform sphere of radius a rests against a vertical wall supported by a

string of length 2a fixed to a point of its surface and to a point of the wall.

() If the wall is smooth find the inclination of the string to the vertical.

(b) If the wall is rough and the sphere is on the point of sliding down the wall
when the string is inclined at 30° to the vertical, find the coefficient of
friction between the sphere and the wall.

7) A uniform lamina in the form of a semicircle of radius a rests in a vertical
plane with its curved edge in contact with a smooth vertical wall and rough
horizontal ground. If the coefficient of friction between the lamina and the
ground is § find the inclination of its straight edge to the horizontal when it is
on the point of slipping.
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EQUILIBRIUM OF BODIES IN CONTACT

When two or more bodies in contact are in equilibrium under the action of a
set of coplanar forces, the complete system is in equilibrium under the action of
the external forces and each separate body is in equilibrium under the action of
the forces acting on that body (these will include contact forces with other
bodies). If the system is made up of two bodies, each body has three degrees of
freedom so six independent equations may be derived for the system. The
equilibrium either of the individual bodies or of the system as a whole may be
considered when resolving or taking moments to form these six equations.

It must be remembered that six is the maximum number of independent cquations
but that many problems can be solved by using fewer than six. This occurs when
some of the unknown quantities are not required and in this case their
introduction into any equation should be avoided if this is possible. Careful
choice of axes when taking moments, and direction when resolving, helps to

keep the number of unknown quantities (and therefore equations) to a minimum.
If there are more than two bodies in contact, the number of independent
equations is three times the number of bodies in the system and these equations
can be formed by considering the equilibrium of individual bodies or of two
bodies or of any number of bodies, but the general principles mentioned above
are important 5o that the number of equations is always kept to a minimum.

EXAMPLES 16b
1) A uniform rod of length 24 and weight W rests at an angle of 60° to the
horizontal with one end hinged to a horizontal plane and resting on a cylinder of
radius @ and weight W which is itself resting on the horizontal plane. The axis
of the cylinder is perpendicular to the vertical plane containing the rod. The
contacts between the rod and the cylinder and between the cylinder and the
ground are rough. Find the ratio of the frictional force to the normal reaction
force at each point of contact.

Diagrem (i) shows the
forces acting on the
complete system.
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Diagram (ii) shows separately the forces acting on the rod and the forces acting
on the cylinder.

(Note that the contact forces between rod and cylinder are equal and opposite.)

i

If C is the point of contact of the rod with the cylinder

then AC = atan60°

=aV3 = AD
A for complete system Wacos60°+ Way/3—Rav/3 = 0 [1]
C for the cylinder only (W—R)asin60°+Fa/3sin60° = 0 [2]
(1] gives IV3+ew

= FiR = (6-+/3):33

Then [2] gives  F = W
D for the cylinder only Sasin 60°— Fiav/35in 60° = 0 31
Therefore Fy:S = 1:4/3

Note. By choosing to take moments about axes through A, C and D, we
avoided introducing X and ¥ altogether and also kept the number of forces
in each equation to'a minimun.
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2) Auniform rod AB of length 2/ and weight 2W rests with the end A on
rough ground. The rod is supported at an angle of 45° to the horizontal by a
string of length 1 attached to the end B. A small ring of weight W is attached
to the other end of the string and the ringis free to slide on a rough horizontal
wire. The rod and the wire are both in the same vertical plane, and the coefficient
of friction between the rod and the ground and between the ring and the wire

is 4. The wire is at a height / above the ground. Find the two possible values
of It for the system to be in limiting equilibrium.

[

‘This is an example of a type of problem in which there are two possible
geometric configurations, cach leading to slightly different force systems which
must be analysed individually.

Diagrams (i) and (ii) show the two possible positions of the string relative to the
rod. In cach position, resolving the forces acting on the system horizontally
shows that the frictional force acting on the rod at A is equal to the frictional
force acting on the ring at C.

First consider the position shown in diagram (i)
For the system as a whole, resolving vertically gives
S5, +R,—3W =0 0]
For the ring alone, taking moments about B (to avoid introducing 73) gives
Wisine+ Fylcosa—Rylsina = 0
- (Ri—W)tana = F, 2l
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For the rod alone, taking moments about B gives

2Wlcos 45+ 2F, cos 45°— 218, cos 45° = 0
W+F, = 8§, &)

-
Solving equations [1], [2] and (3] gives
R = W(tana+2)
tana+ 1
_ Wiana
tana+1

W2t +1
5, = Weunaty

n

tana+ 1

Now for equilibrium there must be no slipping cither at A orat C.

F
Noslippingat A = — <}
S
- tana n
2una+1 2

This is always true, so slipping cannot occur at A whatever the value of c.

£

Noslippingat C = > <}
R,
e,
wnat2 2

=  tana <2

So the system in position (i) s in limiting equilibrium when tana =2 and

the ring is on the point of slipping.
h = 2Usinds°+1lcosa

= W2+IV5 = H(SV2+V5)

In this case

When we consider the position shown in diagram (ii) it s clear that the same
approach should be made, resulting in similar equations. These equations are

Si+R;=3W = 0 [1a)

(R~ W)tana = F; [2a)

W—F =S5, (3a]
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F, tana F tana
== and ==

Ry 2—tana 5
So, for no slipping at C,

Hence —_—
—2tana

tana

<} = tma<
2-tna  * i

and, for no slipping at A,

tana | N
————<} = wa<}

1-2tana

Limiting friction is therefore reached at A before it can be reached at C, so
this time the system is in limiting equilibrium when tana'=} and the rod is
about to slip.

In this case B = W24 ANIT = HI0TV2+4y/17)

EXERCISE 16b

1) A uniform rod AB of length 37 is freely hinged to level ground at A. The
rod rests inclined at an angle of 30° to the ground resting against a uniform
solid cube of edge 2. Contact between the rod and cube is smooth and contact
between the cube and the ground is rough. Find the reaction between the rod
and cube and the coefficient of friction between the cube and the ground if the
cube is on the point of slipping. The weight of the cube is twice the weight of
the rod.

2) A uniform plank AB of length 47 and weight W rests with one end on
Lovel ground and leans against a cylinder of radius I such that the point of
contact between the plank and cylinder is distant 31 from A. The cylinder is
uniform and of weight W and rests on the ground with its axis perpendicular
to the vertical plane containing the plank. Find the frictional force at each point
of contact and if  is the coefficient of friction at each point of contact show
that for equilibrium to be possible 1> £.

3) A uniform sphere of radius @ and weight W has a light inelastic string of
length @ attached to a point on its circumference. The other end of the string
has a small ring of weight W attached to it and the ring is free to slide on a
rough horizontal wire. The sphere hangs below the wire and a horizontal force is
applied to the sphere at a point level with its centre. The line of action of the
force, the string and the centre of the sphere are all in the same vertical plane. If
the coefficient of friction between the ring and wire is 3 find the maximum
force that can be applied to the sphere without upsetting equilibrium. Find also
the inclination of the string to the vertical when the ring is about to slide along
the wire.
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4) Two uniform spheres of radius @ and weight W rest on rough horizontal
ground with their centres distant 2v/2a apart. A third sphere of radius @ and
weight W is balanced on top of the other two spheres such that the centres of
all three spheres lie in the same vertical plane. If the coefficient of friction, u,
is the same at all points of contact, find the minimum value of # if equilibrium
is to be maintained.

CONNECTED BODIES

When two bodies are connected by a smooth light hinge, which offers no
resistance to their relative rotation, the bodies are said to be freely jointed.

vt If the system is in equilibrium, the
forces acting on the hinge are in equi-

librium. Unless an external force acts

at the hinge, the only forces affecting

it are the reactions which the two

" jointed bodies exert on each other.

" For equilibrium these forces are
el equal and opposite and so can be
treated in the same way as contact
forces.
(if there is also an external force acting
at the hinge however, the internal
forces are not equal and opposite.)

g

Because the directions of hinge forces are usually unknown it is most convenient
to show these forces in component form as shown in the diagram.

A TN
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EXAMPLES 16¢

1) Two uniform rods AB and BC of equal length but of weights W and 3W
are freely jointed together at B. The rods stand in a vertical plane with the ends
A and C on rough horizontal ground. If one rod is on the point of slipping
when they are inclined at 60° to each other find the coefficient of friction u
between the rods and the ground, u being the same at both points of contact.
Find also the reaction at the hinge B when the rods are in this position.

Itis clear, from resolving horizontally for the whole system, that the frictional
forcesat A and C are equal and opposite.
Considering the whole system

N (41 cos 60°) —3W(31¢cos 60°) — W(Ic0s 60°) =

- s =W m
© R(41c0560°) — W(31 cos 60°) — 3W(lcos 60°) = 0

- R=3W 21
Considering rod AB alone

B F(215in 60°)+ W(lcos 60°)—R(21 cos 60°) = 0

Hence F=1w/3 B8]

For no slipping at the end A,

F<uR = F<iuw
For no slipping at the end C,

F<uS = F<iuw

When the frictional force reaches the value 3uW, slipping is about to occur
at A but limiting friction has not yet been reached at C.
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EXERCISE 16¢

1) Two uniform rods AB and BC of equal weight W but of lengths @ and
24 are freely jointed together at B. The rods stand in a vertical plane with their
ends A and C on rough horizontal ground, such that the angle ABC = 90°.

If one of the rods is in limiting equilibrium find the minimum value of the
coefficient of friction between the rods and the ground, it being the same for
both rods. Find also the reaction at the hinge.

2) Two uniform rods AB and BC each of length / and weight W are freely
jointed together at B. The rods rest in a vertical plane with A against a smooth
vertical wall and C standing on rough horizontal ground. The coefficient of
friction between the end C and the ground is §. Find the angle between the
rods when they are resting in limiting equilibrium.

3) Three uniform rods each of length @ and weight W are freely jointed
together to form a triangle. The framework is freely suspended from one vertex.
Find the reactions at the ends of the horizontal rod.

4) Four uniform rods of equal length 7 and weight W are freely jointed o form
aframework ABCD. The joints A and C are connected by a light elastic
string of natural length a. The framework is freely suspended from A and
takes up the shape of a square. Find the modulus of elasticity of the string.

5) Two uniform rods AB and BC of lengths 7 and 2/ and of weights W

and 2W are frecly jointed togetherat B. The rods restin a vertical planc with BC
horizontal and resting on a rough peg at a point which is distant 37 from B.
Theend A of the rod AB rests on a rough horizontal plane such that the angle
ABC s 120°. The coefficient of friction between BC and the peg and
between A and the ground is 4. Find the minimum value of g for equilibrium
to be possible.

6) Three uniform rods AB, BC, CA of equal length @ and weight W are freely
jointed together to form a triangle ABC. The framework rests in a vertical
plane on smooth supportsat A and C so that AC is horizontal and B is
above AC. A mass of weight I is attached toa point D on AB where
AD=af3. Find the reaction between the rods AB and BC.

MISCELLANEOUS EXERCISE 16

1) A uniform ladder of weight W rests with one end on rough horizontal
ground and with the other end against a smooth vertical wall. The ladder s at
anangle tan™ 2 to the ground and is in a vertical plane perpendicular to the
wall. The coefficient of friction between the ladder and the ground is . Find
how far up the ladder @ boy of weight 2 can climb without disturbing
equilibrium. Find also the least horizontal force which must be applied to the
foot of the ladder to enable the boy to climb to the top of the ladder without

it slipping. (AEB)
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2) A uniform rod AB of length 2! and weight W is in limiting equilibrium
atan angle of 45° to the horizontal with its end A on a rough horizon

plane and with a point C in its length against a horizontal rail. This rail is at
right angles to the vertical plane containing AB. The coefficient of friction
between the rod and the plane is § and between the rod and the rail is 3.
Calculate:

(a) the magnitude and direction of the resultant reaction at A,

(b) the length AC. (AEB)

3) A uniform cylinder of radius @ and weight W rests with s curved surface
in contact with two fixed planes, each of which is inclined at 45° to the
horizontal, the line of intersection of the planes being horizontal and parallel to
the axis of the cylinder. A couple is applied to the cylinder in a plane perpen-
dicular to its axis. If the angle of friction between the cylinder and each plane is
15° show that the cylinder will rotate if the moment of the couple exceeds
Wal(23/2). (Uof L)

4) Two points, A, B on a horizontal ceiling are at a distance 2a apart. A
uniform rod CD of length @ and weight W is suspended from A and B by
two light strings AC, BD. A particle of weight 2 is attached to the rod at D,
and the system hangs in equilibrium with the rod horizontal and AC inclined at
anangle arctan$ to the horizontal. Prove that the rod is at a distance §a

below the ceiling, and find the inclination of BD. If both strings are elastic and
of natural length }a, find the modulus of each string in terms of W. ©

5) Aheavy thinrod AB of length I can be made to balance across a small
smooth peg C when a weight 2W is suspended from A. Alternatively, it can
be made to balance across the peg with a weight 31 suspended from B. If the
distance AC in the first case is the same as the distance BC in the second,
show that the distance of the centre of gravity of the rod from A lies between
21 and 1. If the two equal distances above are each 4/ and if the weights 2W
and 3W are suspended from A and B respectively, find the distance from A
to the peg when the rod balances. (UofL)

6) A uniform block in the form of a cube stands on a plane inclined at an
angle a tothe horizontal in such a way that four of its edges are parallel to the line
of greatest slope. A gradually i isappli

edge of the block at right angles to it and in a vertical plane through the centre
of mass of the block, in the direction which would tend to move the block down
the plane. If g (> tana) is the coefficient of friction between the block and
the plane, show that the block will tilt without sliding provided that

S 2tan’at+tanatl ©
u>—
tan’ et tana+2
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7 c

3

A uniform cube of weight W is placed as shown in the figure on a rough plane
of inclination & (<), the centre of the mass of the cube lying in the plane
ABCD and the edges perpendicular to this plane being horizontal. If the
coefficient of friction between the cube and the plane is u show that the cube
cannot remain in equilibrium unless 4> tan a.

If tana=1/2, p=2/3 andahorizontal force P, steadily increasing in
magnitude from zeroisapplied at D (acting from left to right and with its line of
action lying in the plane ABCD) show that equilibrium will be broken by the
cube turning about the edge through B before it slides up the plane. (U of L)

8) A rough heavy uniform sphere of radius a and centre C rests in contact
with a horizontal floor at D. A uniform rod AB of length 2b and weight W
is smoothly hinged at A to a fixed point on the floor and rests on the sphere,
touching it at E. The rod is inclined at an angle 20 to the horizontal (with
2b>acot) andis in the vertical plane ACD. If the contactsat D and E
are rough enough to prevent slipping, prove that the mutual action and reaction
at E actin theline ED and are each of magnitude Wb sin (1 —tan’0)/a.

The angle of friction at both D and E is A. Prove thatif A>8 the friction
is not limiting at either contact but that if A=0  then the friction is limiting
at E andnotat D. (JMB)

9) A uniform sphere of radius a, centre O and mass M rests on a rough

horizontal plane. A uniform rod AB of length 2a and also of mass M rests

withitsend A on the plane and with a point C of the rod in contact with the

sphere. The points C, O and A are in the same vertical planc and AB makes

an angle of 60” with the horizontal.

(a) Show that the magnitude of the frictional force is the same at all three
points of contact.

(b) Find the normal reaction between the rod and the sphere.
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(¢) The coefficient of friction 4 is the same at all three points of contact and
friction s limiting at one of them. Show that it must be at the point of
contact between the rod and the sphere and find 1.

10) AN

E

c

In the diagram, AB is a uniform ladder of length 2a and weight ¥, and

G is the centre of mass of the ladder. The ladder is resting against a fixed
eylindrical roller with circular cross-section whose axis is perpendicular to the
vertical plane containing AB. The ladder i inclined at an angle }7 to the
horizontal. The point of contact X of the ladder with the roller is at a distance
4a from the end A and the contact at X is smooth. Show that, in order that
equilibrium be maintained in this position, the coefficient of friction 4 at B
‘must not be less than §.
Aman of weight W stands at X and then starts walking slowly up the ladder.
Show thatif u=1}  the ladder is on the point of slipping when he has moved
a distance of 1a. ©)

11) A uniform rod AB of weight W and length 24 is freely hinged at A toa
fixed point on a rough horizontal table. A uniform rough sphere of radius @ and
weight W/3 rests on the table. The rod leans against the sphere so that the point
of contact is at a distance av/3 from A and so that the rod and the centre of
the sphere lie in a vertical plane. Show that the frictional force between the rod
and the sphere is 3W. If the coefficient of friction at each point of contact is 1
find the smallest value of w which makes equilibrium possible.

12) Two equal uniform planks AB, CD have their lower ends B, D on rough
horizontal ground and their upper ends A, C resting against one another. A
third equal plank is now inserted between A and C and is held in a vertical
position, not touching the ground, by friction at A and C. The coefficient of
friction at A and C is , thatat B and D is ', and AB, CD are inclined
to the horizontal at an angle 6. Find, in terms of 4 and 4’ the limits between
which tan® must lie. Deduce that equilibrium in this position s possible only
if ' >1/3. (JMB)
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13) A uniform rod of weight 4 and length 24 is maintained in a horizontal
position by two light inextensible strings each of length  attached to the ends
of the rod. The other ends of the strings are attached to small rings each of
weight 1 which can slide on a fixed rough horizontal bar with which the
coefficients of friction are each §. Show that in equilibrium the distance
between the bar and the rod cannot be less than 4a/S, and find the greatest

and least possible distances apart of the rings. (UofL)

14) Two uniform rods, AB and BC are of the same length and weigh 3W and
W respectively. They are smoothly jointed at B and stand in a vertical plane
with A and C on a rough horizontal plane. The coefficient of friction

between each rod and the plane is 3. Equilibrium is about to be broken by one
of the rods slipping on the plane. Find which rod will slip and calculate the angle
cach rod makes with the plane. Calculate also the reaction at the hinge B in
magnitude and direction. (AEB)

15) Two equal uniform rods AB, AC each of weight W and length 2a and a
third uniform rod of weight W,, are freely hinged together to form a triangle
ABC in which the angle BAC is 20. The triangle hangs in a vertical plane from
asmooth pivot at B, and a couple is applied to the rod AB so as to keep the
triangle in equilibrium with BC horizontal and A below BC. Find:
(a) the moment of the couple, showing its sense in a diagram,
(b) the horizontal and vertical components of the forces exerted on AC by

BC and AB. (IMB)

16) The diagram shows two uniform rods AB, BC, each of length 2a and
weight W which are smoothly hinged at B. Theend A is smoothly hinged to

a point on a fixed rough horizontal bar, the hinges allowing the rods to rotate in
the vertical planc through the bar. The end C is fastened to a small ring of weight
w which is threaded on the bar.

A c

The rods are in equilibrium with each inclined at an angle 0 to the vertical.

Find the force of friction at C and the components of the reaction of the hinge

ontherod AB at A

Show that, when W= 2w and the coefficient of friction at C is 1/4 the

greatest possible distance AC in an equilibrium position of the rods is 12a/5.
(IMB)



CHAPTER 17

FRAMEWORKS

A framework consists of a number of light rods which are smoothly jointed
together at their ends to form a rigid construction.

Note that the term ‘light’ rods means that the weights of the rods are negligible
compared to the loads that they bear.
If a framework has external forces acting on it, each rod can perform one of two
functions:

cither they stop the framework from collapsing inwards

or they prevent the joints from flying apart.
A rod which is preventing a collapse exerts a push at either end. It is described
as a strut and is said to be in thrust or in compression.

O—G————————0  Rodintwun
T

T

A rod which is preventing the framework from coming apart exerts a pull at
cither end. It is described as a tie and is said to be in tension.

O—Pp———————¢—0  Rodintension
T T

In both cases the forces exerted at the ends of the rod are equal and opposite.
Consider a framework of three light rods smoothly jointed as shown in the
diagram.
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If the framework carrics aload at B and is supported at A and C, then the
forces acting at B are the weight W and the forces 7; and Ty in the rods BC
and BA. The forces acting at A are the supporting force R and forces 7; and
7y inrods AC and AB. Similarly forces S, Ty, and 73 actat C as shown.
If the whole system is in equilibrium the forces acting at each joint are in
equilibrium.

As the forces in the rods occur in equal and opposite pairs they are internal
forces, thercfore the external forces acting on the framework are in equilibrium.
When solving problems it is not always as obvious as in the problem above which
rods are in tension and which are in thrust, so we will adopt the policy of
marking all rods in thrust so that negative answers indicate the rods which are

in tension.

EXAMPLE 172

A framework consists of three light rods each of length 22 smoothly jointed
together to form a triangle ABC. The framework is smoothly hinged at B toa
smooth vertical wall and carries a weight W at A, and rests in equilibrium with
C below B. Find the reaction at B and the force in each rod.

‘The reaction with the smooth wall at
C s perpendicular to the wall.

The unknown reaction at the hinge
B is made up of components X and

The external forces are in equilibrium
so resolving gives,

t Y=w 1
- X=n 2

o) Way/3 = 2aX 131
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Hence X =WV32 and Y =W

w
The reaction at B is VX*+ 77 = ;\/7

X
in a direction at arclan7 to CB, iec.at arctany/3/2 to CB.

Each joint is in equilibrium

Considering frst the forces acting at C,
we have

- Tyc0s30° = N
+ Ty+Tycos60° = 0
But, from [2], N=Wy2[2

therefore =W

and T,= —4w

Considering the forces acting at A:

d Tyc0530°+ Ty cos 30° = O

But T;=W so T,

Therefore there is a tension W in AB, a tension W in BC and
athrust W in AC.

EXERCISE 17a
1) Two light rods AB and BC of length 2a and a respectively are smoothly

jointed at B. The ends A and C are smoothly hinged to a vertical wall with A
above C such that BC is horizontal, and a weight W is hung from B. Find the
forces in the rods and the reaction at C.

2) The light rods AB, BC and CA of lengths 4a, 3a and Sa respectively are
smoothly jointed at their ends to form a triangle ABC. A weight W is hung

from B and the triangle is supported at A and C, with AC horizontal and B
vertically above AC. Find the reactions at A and C and the force in each rod.
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3) A framework consists of five light rods
2s shown in the diagram.
AC=CB=CD=a, AB=AD=+2a.
The framework carries a weight W at B
and is smoothly hinged at A with D
resting against a smooth support. Find
the reaction at D and show that there
is no force in AC.

RIFY A
A framework consists of four light
1ods as shown in the diagram.
AB=BC=CA=22, and AD=a.

It is smoothly hinged to a vertical
wallat B and D with BC horizontal,
and carries a weight W at C. Find the
reaction at D and the force in cach
rod.

‘The method for finding the force in the members of a framework used in the
previous section s not practical for a large number of joints as the number of
equations involved is too large to handle easily. There are two alternative
methods which simplify the work, one is graphical and the other involves
calculation.

GRAPHICAL METHOD  (BOW'S NOTATION)

This method is basically to draw a force polygon for each group of forces
that are in equilibrium, i.e. the set of forces acting at each joint. A specialised
notation makes this process easier by allowing each polygon to be superimposed
on the previous one.

Consider a framework of three light rods
as shown in the diagram.

The framework is smoothly jointed,
rests in a vertical plane on smooth
blocksat A and C and carries a
weight 200N at B. AB=a,
AC=22 and BC=+3a.

As the supports at A and C are smooth
the forcesat A and C are vertical




§74  Mathomatics — Mechanics and Probability

Space diagram

Aboundary is drawn round the diagram and the line of action of each external
force is drawn outside the framework and extended to the boundary so creating
a number of closed spaces. Each space is numbered, so that each force line is
identified by a pair of numbers, one on either side of the force.

Thus 1,2 identifies the load at B, 2,4 identifies the force in the rod BC,
and so on.

Also each vertex of the framework can be identified by the set of numbers in the
spaces around it.

Thus 1,4,2 identifies the vertex B, 2,4,3 the vertex C, and 1,3, 4 the
vertex A.

‘The force polygon for the external forces is drawn first. In this case the external
forces arc parallel so their magnitudes must be found by calculation:

t R+S = 200

therefore S = 50, R = 150

" Sx2 = 200x}a

Asall the external forces are vertical, their force polygon is a straight line.

1
The polygon is numbered so that the figures which identify a
force on the space diagram are used to represent the force on
the polygon of forces.
Therefore T—3  represents the weight 200N,

2=3  represents the force S, and

57T represents the force R.

P!
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to draw the force polygon for one of the vertices where an

external force acts and not more than two forces are unknown.

Choosing A, we
The line 3—

By measurement

2

By measurement

The triangle 1,4,

construct the triangle of forces for the forces acting at A.
representing R, is already drawn.

The force in AB is identified by the numbers 1,4 in the
space diagram, so starting at 1 we draw a line parallel to AB.
The force in AC is identified by 3, 4, so startingat 3 a line
is drawn parallel to. A
The point of intersection of these two lines is the vertex 4.
As the triangle 1,3,4 represents three forces which are in
equilibrium, the vertices of this triangle taken in order
indicate the directions of the forces.
As 31 represents R, T represents the force in
AB actingat A. This s towards the joint A, therefore
rod AB isin thrust.
Similaly 4—3 represents the force in AC actingat A,
and thus it is away from A. Therefore AC is in tension.
from the diagram:  the force in AB is a thrust of 170N

and the force in AC isa tension of 86N.

We have now introduced all four numbers in the diagram and
by joining 4 to 2 the diagram is closed.

Thus 4,2,3 represents the triangle of forces for the joint C.
Now 2=3 represents the force S,

therefore 3—4  represents the force in AC at C

the force in BC at C: this is towards C.
Therefore BC is in thrust.

from the diagram the force in BC is a thrust of 100N.

2 represents the forces acting at B.

Thustheline 4—1 represents the force in the rod AB acting on the joint B.

Theline 1—4
acting on A.

(in triangle 1,4,3) represents the force in the same rod but

So the line joining 1 and 4 represents a pair of equal but opposite forces. For
this reason the sense of each force along its line of action is not indicated in the

construction.
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Summing up, the steps to follow when using Bow’s Notation are:

(1) Draw a boundary round the diagram and extend each external force line
away from the framework to the boundary.

(2) Number each space. (Make sure there is only one number in each space.)

(3) Draw the polygon of forces for the external forces (these may have to be
calculated first).

(4) Superimpose the force polygon for a joint where an external force acts and
not more than two forces are unknown.

(5) Superimpose the force polygon for each remaining joint until the figure is
complete. (When choosing the order in which to do this, make sure that
there are not more than two unknown forces at any joint selected.)

We will now illustrate this method on a framework with more joints.

EXAMPLES 17

1) A framework consists of seven light rods smoothly jointed together as shown
in the diagram. The framework is smoothly hinged at A and carries a weight
of 400N at C. Itisheld inavertical plane, with BC horizontal, by a horizontal
force at B. Find the reaction at A and the force in each rod.

Space dagram
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As the framework is in equilibrium under the action of three forces, their lines
of action are concurrent: therefore the line of action of S is along AC
(ie.at 15° 1o the horizontal).

3

Diagram (i) shows the triangle of forces for the external forces:
theline 3—1 represents S.
By measurement the reaction S at A is 1550N at 15° to the horizontal.

[0}

B d

In diagram (i) the triangle of forces for the forces acting at A is superimposed.
= —

As § actsalong 3—1, the forcein AB(1.4) actsalong 1—4 and the

force in AE is represented by 4—3.

By measurement, the force in AB is a thrust of 800N
and the force in AE is a thrust of 800N.

6

3 s

Superimposing the force triangles for the vertices E, then D, the figure is
completed. By measurement from the diagram:

the force in EB is a tension of 290N
the force in ED is a thrust of 970N
the force in DC is a thrust of 800N
the force in DB is a tension of 290N
the force in BC is a tension of 690N.
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B Tiasin45°—Sv/3asin15° = 0

- T, = 980 (ED is in thrust)
A Tyasin60°+ Tyasin15° = 0

- T, = —293 (EB isin tension)

The force in AE can be found easily by considering the equilibrium of the forces
actingat A:

- Ty+ Tyc0s30°—Scos 15° = 0

- T, = 800 (AE isin thrust)

This leaves the forces in BC, BD and DC to be found. If we cut the framework

through BC, BD and DE and consider the section from C to this cut we can
find the forces in BC and BD.

T, is an internal force, so this section is in equilibrium under the action of
Ta, Ty, T, and the weight 400N.
Considering the equilibrium of these forces

B 400 cos 30°+ Thasin30° = 0
Therefore T, = —693 (BC is in tension)
c Taasin15°+ Tyasin60° = 0
- 7, = —293 (BD isin tension)

The remaining force, T, can be found by considering the equilibrium of the
forces acting at C:

t Tecos60° = 400
hd Te = 800 (DC isin thrust)
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B 7.
42s¥,

The forces in the rods AB, AE and BE are internal, so this section is in
equilibrium under the action of the forces T3, Ti, T, the reactionat A and
the weight at B.

So for these forces: 1 T,c0s30°+500—425 = 0
- T, = —87
E Tyav/3 + 5002 —425(24)

= T, = 202
Therefore the force in AB is a thrust of 491N,
the force in BC is a thrust of 202N,

the force in EC is a tension of 87N.

SUMMARY

If a framework of light rods which are smoothly jointed together is in
equilibrium then:

(a) the external forces acting on it are in equilibrium,

(b) the forces at each joint are in equilibrium.

When solving problems on light frameworks always find the external forces first.
The method of sections will usually give the shortest solution unless the
framework consists of many rods and all the forces are required.

EXERCISE 17b

The frameworks in Questions 1-4 consist of light rods smoothly jointed
together and rest in a vertical plane as shown. The frameworks are either supported
by forces as shown or smoothly hinged to a fixed support as shown. Find the
external forces and calculate the force in each rod.
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B

1008

3)

'S
]

452

2008

In Questions 5-10 find the external forces and find graphically the force in cach
rod

I S

T

600N
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8) 2008
c
G, =

10)

11) The framework in the diagram
is smoothly hinged at A and is
held with AE vertical by a
horizontal force at E. The

tods AB, BC, BD, ED, EA

are all equal and ABC is soun
horizontal. The framework

carries a load of 500N at C.

Find the reaction at A and ~
the forces in the rods ED, >
BD and BC.
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12) The framework ABCDEF & ¥
is smoothly supported at A and

D and carries weights of 200N
and 100N at B and C. Find
the forces in the rods FE, BE

and CD.

T T

13) The framework BECDGFA is B 3 <
smoothly supported at A and D

and carries weights W and 2V

at F and G. Find the forces in

the rods BE, BF and FG.

14) The framework ABCDE is smoothly
hinged at A and is held with AD hori-
zontal by a vertical force at D. A force
of 200N in the direction BE is applied
at B. Find the stresses in the rods BE,
EC and ED.

15) The framework ABCDE is
smoothly hinged at A and is held
with AED horizontal by a force at

B in the direction EB. The framework
carriesaload W at D. Find the
teaction at A and the stresses in the
rods CE, AB and ED.




16) The framework ABCDEF is
smoothly hinged at A and is held . o
with BCD horizontal by a tic at

B in the direction EB. A load

of 600N is carried at D. Find

the reaction at A and the forces

inrods BC,CE and ED. ]

17) t

600N

TC " Zr
The figure represents a framework consisting of nine smoothly jointed light
tods. AD is vertical, CD=DE and the acute angles in the figure are cither
30° or 60°. The framework carries weights 2 at A, W at B and W at F

and rests on smooth supports at C and E. Determine the stresses in the rods,
specifying which are tensions and which are thrusts. ©)

18) The smoothly jointed framework ABCDEF consisting of eight light rods,
i in equilibrium in a vertical plane, smoothly hinged to a vertical wall at A and
B and carrying loads 2W and 3W at C and D respectively. The rod AF is
of length @ and all the other rods are of length 2a. The rods AF, FE, BC
and CD are horizontal. Calculate the force exerted by the framework on the
wallat A. Find graphically, or otherwise, the forces in the rods CD, CE, CF
and BC, stating which rods are in compression.

2 3y (AEB)
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19) A framework consists of three light rods AB, BC, CA of lengths a, av/3,
and a respectively, smoothly jointed at A, B, C. The framework is suspended
freely from A and carries weights 2W at B and W at C. Show that, in the
equilibrium position with B below A, the thrust in the rod BC is 2W and
that the tensions in the rods AB, CA are 2Wy/3, WA/3 respectively.  (0)

20) Alight framework ABCD consists of 5
smoothly jointed rods of equal length. The
framework carries aload W at D and is

smoothly hinged and fixed at A. The framework

is kept in equilibrium in a vertical plane with AC
horizontal by a force P applied at B in a direction
parallel to CA. Find the magnitude of P and the
magnitude and direction of the reaction at A. Find,
graphically or otherwise, the forces in the five rods
and state which rods are in compression.

>

(AEB)

21) The light smoothly jointed framework shown is hinged to a vertical wall at
A and B and carties aload of 400N at D, AD being horizontal.
AE=ED=AC=CD=10m, EC=5m, BC=I5m.

By means of a force diagram find the forces in all the members, stating which are
in tension and which are in compression. Use the method of sections to check
the magnitude of the force in AE.

(AEB)




CHAPTER 18

PROBABILITY

Imagine that you have bought five tickets for a raffle and that 500 tickets
altogether have been sold. Assuming that any one of the 500 tickets is as likely
as any other to be drawn for first prize, you would say that you had S chances
in 500, ora chance of 1 in 100, of winning first prize.

In this chapter we develop methods to deal with problems concerned with chance
events.

Terminology and notation are introduced to enable us to refer to certain
categories of situations precisely and more briefly.

Probability gives us a measure for the likelihood that something will happen.
However it must be appreciated that probability can never predict the number
of times that an occurence actually happens. But being able to quantify the
likely occurrence of an event is important because most of the decisions that
affect our daily lives are based on likelihoods and not on absolute certainties.
For example, if it is known that it is likely to rain on two days out of five days
at a place where you are taking a holiday, it does nor mean that it will rain on
four days out of a ten day holiday but that you would be wise to take a
raincoat with you.

AN EVENT

An event is a defined occurrence or situation. For example:
(a) tossing a coin and the coin landing head up,
(b) scoring a six on the throw of a dic,
(c) winning the first prize in a raffle,
(d) being dealt a hand of four cards which are all clubs.
A particular event is denoted by a capital letter, e.g. 4,3, ... etc.

587
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POSSIBILITY SPACE

In each of the examples given there is an implied set of circumstances from
which there are several possible outcomes, including the event(s) described. This
set of possible outcomes is called the possibility space.

Considering the given examples, (a) to (),

in (a) the event is one of the possible ways in which the coin can land, viz.
head up, H, or tail up, T, i.c. the possibility space is H,T :

in (b) the event s one o the possible ways of scoring on the throw of  di,
iie. the possibility spaceis 1,2,3,4,5,

in (c) the possibility space is ~all the tickets in the draw ;

in (d) the possibility space is _all the different combinations of four cards that
can be obtained from fifty-two cards .

Now consider the following situation. A bag contains three white balls and two

black balls, and one ball is removed from the bag. The possibility space is the set

}

I the event denoted by A is ‘the removal of a white ball’ the possibilities for
A are the members of the set {©,0,0}.

Denoting ‘the possibilities for the event A’ as the set {4} we can write
{4} ={o,0,0}

and we note that {A} is a subset of {0,0,0,
In general, if £ is an event then {£) is a subset of {possibility space).

fo,0,0,

PROBABILITY THAT AN EVENT OCCURS
‘The probability that an event A occurs s defined as

the muinber 0f \ays in which A" ‘Gin Happen expresséd as a fraction of the
nuiber of ways in which all equally iikely events. including A, occus

‘The term ‘equally likely’is important. For example, if a coin is bent so that
when tossed it is more likely to land head up than tail up, then the events that
the coin lands head up or lands tail up are nof equally likely.
The probability of an event A occurring is denoted by P(4)

Hence

Number of ways in which 4 oceurs

Pla) =
2 Number of ways in which ali equally likely events, including 4, occur
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or, when all members are equally likely,
. Number of members of {4}
"~ Number of members of {possibility space}

This s the basic definition of probability. All other developments of probability
theory are derived from this definition, and a large number of problems can be
solved directly from it.

As {4) isa subset of {possibility space} the numerator of this fraction is
always less than, or equal to, the denominator so, for any event A,

0<PU) < 1

If P(4)=1 the event is an absolute certainty.
If P(4)=0 the event is an absolute impossibility.
For example, if one ball is taken from a bag containing only red balls

P(ballisred) =1 and P(ball is blue) = 0

EXAMPLES 182

1) A pack of felt tipped pens contains five red pens and four blue pens. If one
pen is withdrawn at random what is the probability that it is blue?

The term ‘at random’ means that all possibilities are equally likely.

Thus the possibility space contains 9 equally likely events.
If A is the removal of a blue pen, then A can occur in 4 equally likely ways
(ie. {4} has 4 members).

Thus P(A) = 4/9.

2) If one card is drawn at random from a pack of fifty-two playing cards what
is the probability that it is an ace?

There are 52 equally likely events, i .e. the drawing of any one of the fifty-two

playing cards.
Anace can be drawn in 4 equally likely ways.
Therefore Place) = 4/52 = 1/13.

3) Four cards are drawn at random from a pack of fifty-two playing cards. Find
the probability that the four cards are all clubs.

Let A be the event ‘the withdrawal of four clubs’.

As there are thirteen clubs in the pack, there are °C; different combinations
of four clubs.

So A can occurin '3Cy ways, ie. |4} contains 1°Cy members.
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Any distinct combination of four cards from the pack is equally likely and, as
there are *3C, of these, the possibility space contains *C; members.
Pe, 13tarasl 11
Thus  P(4) = 5 = ——r = 0.003 to 3d.p.
2y 4191521 4165
4) Four letters are chosen at random from the word DEALING.
Find the probability that:
(a) exactly two vowels are chosen,
(b) at least two vowels are chosen.

DEALING has three vowels and four consonants.
Four letters (without reslncucn) can be chosen in "Cy ways.
ie. possibility space has "C, members.

(a) A selection containing two vowels (out of E A I) also contains tvo
consonants (out of D LN G).
As these are independent combinations, the number of ways f choosing four
letters containing exactly two vowelsis °C;x*Ci.
Therefore the probability of selecting four letters, exactly two of which are

vowels, is
axie 18
cy 35
(b) If the selection contains at least two vowels, then either it contains two

vowels and two consonants or it contains three vowels and one consonant
and these combinations are mutually exclusive. The number of combinations
containing just two vowels is

3Gxtc = 18
The number of combinations containing three vowels is

Cxte = 4
‘Therefore the number of ways of selecting four letters containing at least
wo vowelsis  18+4 =22,
Hence the probability of four letters chosen at random containing at least
two vowels is

THE PROBABILITY THAT AN EVENT DOES NOT HAPPEN

If, in a possibility space of n equally likely occurences, the number of times
anevent A occursis r, thereare n—r occasions when A does not happen.

“The event A does not happen” is denoted by A (and is read as ‘not A’).
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On the other hand if in 100 tosses, say, it is found that the coin lands head up
80 times it is reasonable to assume that the coin is biased, i.e. it is not equally
likely to land head up or tail up.

Thus if a coin is known to be unbiased the probability of its landing head up on
any one toss is §. Similarly if a die (numbered 1 to 6) is thrown, and it is
known to be unbiased, the probability of throwinga six s §.

If a coin isknown to be biased, so that it is twice aslikely to land head up than
tail up, then the number of equally likely results of tossing that coin are

head up twice and tail up once.

So the probability of tossing a head with this coin is §.

More than One Event

We will now look at some problems involving the occurrence of two or more

events. They can loosely be divided into two categories:

(a) “either ... or" events such as the probability of scoring either 5 or 6 with
one throw of a die,

(b) *both...and" events such as the probability of selecting both an orange
and an apple from a bowl of mixed fruit.

Some events, such as the probability of obtaining at least one head when two
coins are tossed, fall into both categories since this event involves
either two heads or both one head and one tail.

At this stage however we will investigate the two categories separately.

MUTUALLY EXCLUSIVE EVENTS

Two evdnty aremuiually exclusivedf tiéBeciifrence ofidither eventexcludes
the:possibility of fhie ceburtence of tiie athier event, i.e, ditlier Gne event o the
otlier.ovent it narbots tan 0ochr;

Consider, for example, choosing numbers at random from the set
13,4,5.6,7,8,9,10,11,12}
If A is the selection of a prime number,
B s the selection of an odd number,
€ is the selection of an even number,

then A and C are mutually exclusive as none of the numbers in this set is both
prime and even. But A and B are not mutually exclusive as some numbers are
both prime and odd (viz. 3,5, 7, 11).
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ie. PRy = 22232

5x4 54
Now PW) =2 and P(RyIW) =}
ie. POW; N Ry) = P(W1) x P(RyIW,)

‘This s called the compound probability of Wy and Ry occurring.
In general
if £y and B, are two events, the compound probability
of both £, and £; occurring is given by
P(EYNEy) = P(Ey) x P(Ea|Ey)

Note that if £, and E; are independent events
then PENE) = PE)X P(E;) = PEIE) = P(EY)
Summing up we have:
If A and B are two events
ANB meansboth A and B
AUB meanseither 4 or B
A|B  means A given that B has already occurred
P(AUB) = P(A)+P(B) when A and B are mutually exclusive
P(ANB) = P(A)x P(B| ) which reduces to
P(ANB) = PA)xP(B)

when A and B are independent
= PBIA) = PB)

EXAMPLES 18b (continuod)
3) An unbiased die, marked 1 to 6, is rolled twice. Find the probability of:
(a) rolling two sixes,

(b) the second throw being a six, given that the first throw is a six,

() getting a score of ten from the two throws,

(d) throwing at least one six,

() throwing exactly one six.

IF the di is unbiased it i equally likely to land on any face, 50 a score of 6 is
just one of six equally likely scores, ie. P(6)=

‘Also, each roll of the die is an independent event.
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(b) A and B roll the die first so they must both fail at their first attempt
(4, and B,) if C is to win at his first attempt. These three events are
independent, so the probability that C wins at his first attempt is

5.1 25
PUAYXP@BYXP(CY = 6 T

() If B wins at his third attempt then A has had three failures, B two
failures, and C two failures. Again these are independent events. Therefore
the probability that B wins at his third attempt is

P(A) xP(B) x P(C) x P(A) x P(B2) x P(C) x P(A) xP(B3) = (3)"x}
(d) If A wins, then

either A wins on his first throw
or A wins on his second throw
or A wins on his third throw
or A wins on his fourth throw
and so on.

Now P(A wins) on his

first throw is Py =

second throw is P(A)xP(B)xP(C)xP(43) = (§¥x}
third throw is  [P(4,0B,NC)xPANBNC)) xP(A) = (§)°x}
fourth throw is (EPP P = (3 x}
and so on.

These are mutually exclusive events, therefore
PUA) = FHAQ @ A+
‘This is an infinite GP with first term & and common ratio ($)° and so has
H 36
IO

‘Therefore the probability that 4 winsis 3.

asum to infinity of

6) Ina game of darts, the probability that a particular player aims at and hits
the ‘treble twenty” with one dart is 04. How many throws are necessary so
that the probability of hitting the treble twenty at least once exceeds 0.9?

‘The probability of hitting the treble twenty, P(4), is 0.4 on one throw, so
the probability of not hitting the treble twenty, P(A), is 0.6 on one throw,
and P(A) in two throws s (0.6)%, etc
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‘The probability of hitting the treble twenty at least once in n throws
= 1—(probability of not hitting the treble twenty onall n throws)
Soin n throws P(A at least once) = 1 —(0.6)".

For P(A at least once) to exceed 0.9 in n throws, we have

1-(06)" > 0.9
- 06" < 0.1
- n10g0.6 < log0.1
- log0.1 (log0.6<0)
10g0.6
= n>45

Therefore five throws are necessary.

7) Ina group of students, 10% are left-handed, 8% are short-sighted and 2%

are both left-handed and short-sighted.

(2) Given that a student is short-sighted, find the probability that he is left-
handed.

(b) Find the probability that a left-handed student is also short-sighted.

If P(Lh) represents the probability that a student is left-handed and if P(s.s.)
represents the probability that a student is short-sighted then

P(Lh) = 0.1, P(ss) =008 and P(Lh.Nss) = 002

) Now PQh.Nss) = PLhss) x Pss)
- 002 = P(Lhlss)x0.08
= P(lhiss) = 025

b) P(h.Nss) = Pssllh)xP(Lh)
- 002 = P(ssILh)x 0.1

= Pssllh) =02

EXERCISE 18b.
1) Two unbiased coins are tossed. Find the probability of:
(a) twoheads  (b) atleastonchead  (c) exactly one head.

2) Three unbiased coins are tossed. Find the probability of:
(a) threc tails  (b) at least one tail.
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3) The probability of an archer hitting the bull's-eye with any one shot is .
Find the probability that:

(2) he hits the bull'seye with his second shot,

(b) he hits the bull’s-eye exactly once in three shots,

() he hits the bull’seye at least once in four shots.

4) Ina multiple choice examination each question has five possible answers,
only one of which is correct. If a candidate chooses his answers at random find
the probability that, in a test of ten such questions, he gets none right.

5) Two coins are tossed. One coin is fair and the other is biased so that throwing
a head is three times as likely as throwing a tail. Find the probability that:

(a) on one toss of both coins they both land head up,

(b) on two tosses of both coins, two talls are thrown both times,

(c) on two tosses, at least one head is thrown.

6) Two unbiased normal dice are thrown. On one throw find the probability of:
(@) two I's (b) ascoreof 3 (c) ascore of at least 4.

7) An unbiased die in the shape of a tetrahedron has its faces numbered
1,2,3,4.

The score is taken from the face on which it lands. Find the probability that:
(a) on one throw 4 is scored,

(b) on two throws a total of 2 is scored,

(c) on three throws a total of at least 4 is scored.

8) Two people, A and B, play a game by tossing a fair coin, and the first to
toss a head wins. If A tosses first find the probability that:

(a) A wins on his first toss,

(b) B wins on his first toss,

(c) A wins on his second toss.

9) Two people. A and B play a game by rolling two fair dice; the first to roll
a double six wins. If A goes first, find the probability that:

(a) B wins on his first throw,

(b) A wins on his second throw.

10) Two people, A and B, play a game by tossing a fair coin and the first to
toss a head wins. If A goes first find the probability that A wins.

11) Three people, 4, B and C play a game by rolling a fair die and the first
10 roll a six wins. If they play in the order A then B then C, find the
probability that B wins.
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12) Two people, A and B, play a game by drawing a card from a pack of
fifty-two playing cards. The first to draw an ace wins. The cards drawn are not
put back in the pack and they play in the order 4, B. Find the probability that:
(a) A wins on his first draw,

(b) A wins on his second draw,

(c) A wins on his third draw.

13) A boy at a rifle range has a probability of 2 of hitting a target with any
one shot. Find the probability that he first hits a target with his third shot. How
many shots are necessary for the probability of his hitting at least one target to
be greater than §?

14) A box of screws contains 5% defective screws. If a screw is taken at
random from the box, what is the probability that it is defective? How many
times does this have to be repeated before the probability of removing at least
one defective screw is 0.5?

15) In a card game for four players, a pack of fifty-two cards is dealt round so
that each player receives thirteen cards. A hand that contains no card greater than
nine s called a yarborough. How many deals are necessary for the probability

of at least one hand being a yarborough to be greater than 4? (Ace ranks high.)
16) A shelf has fifteen paperbacked and twelve hardbacked books on it. A book
is taken at random and not replaced. A second and a third book are similarly
removed. Find the probabiliy that:

(a) the first three books removed are paperbacks,

(b) the third book removed is a hardback.

17) Three balls are selected at random in order from a box containing 2 red,
3 yellow and 4 black balls. Find the probability that the third ball is yellow,
given'that the first is red and the second is black if:

() the balls are not put back in the box after selection,

(b) the balls are replaced in the box after each selection.

TREE DIAGRAMS

‘The number of ways in which an event A oceurs and the number of
occurrences of equally likely events is not always obvious from the statement of
a problem. This is particularly true of compound events which can involve three
or more separate events.

Consider, for example, tossing three coins. There are three ways in which the
coins can land with 2 heads and a tail showing, because if the coins are
numbered 1, 2, 3 for identification, they can land

HyH;Ty or HyTaHy or TyHaHy
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Any of these events is followed by two further likely occurrences when coin 3
is tossed. Branching again gives diagram (i).

|

I

| | head 0 N Hy

I

|

HOHAT

hesd BTy

HOTNT,
trunk T,0H;0H,

TOHNT,

TATNH,

TATAT,

@ comt Coin2
Starting from the trunk we see that there are eight different routes which can
be followed, i.c. there are cight likely cvents, three of which give two heads and
a tail
If the coins are all unbiased then these eight events are equally likely.
3 events 3
Th PEHaT) = ——oens 3
b CHand D) = il ikely ovents ~ 8
Note that (a) the cight compound events on the right of diagra (i) are
mutually exclusive,
(b) the events along any one route from left to right are independent,

EXERCISE 18c
1) Draw a tree diagram to represent the hkely outcomes of tossing a coin and
rolling a tetrahedral die numbered 1 to 4.

2) Draw a tree diagram to represent the likely outcomes of tossing two coins
and rollinga tetrahedral die numbered 1 to 4. From your diagram find the
probability of obtaining a head and a tail and a score of 4, assuming that the
coins and the dic are unbiased.

3) A die in the form of a cube is numbered 1, 1,2,2,3, 4. Draw a tree diagram
to illustrate the likely outcomes of rolling this die and tossing a coin. If both are

unbiased, what is the probability of rollinga 2 on the die and tossing a head on
the coin?
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‘The number of sample points for which the score is at least 7 (in the shaded
area) is twenty one.
Hence Patleast7) = ¥ = %

(The use of any other method would require consideration of the mutually
exclusive events: either a score of 7 orof 8 orof 9...orof 12.)

EXAMPLES 18e

1) Two unbiased tetrahedral dice numbered 1 to 4 are thrown. Set up the
possibility space and use it to find:

(2) the probability that at least one 4 is thrown,

(b) a total score of § is thrown.

In each sample point the left hand number is the score on one of the dice and
the right hand number is the score on the other die.

Hence the possibility space is

and we see that there are sixteen sample points.

(a) The subset of points with at least one 4, {4}, contains 7 points.
Hence P(4)= .

(b) The subset of points giving a total score of 5, {B}, contains 4 points,
Hence P(B)=f5=}.

“Either . . . Or" Situations Involving Events that are Not Mutually Exclusive

Using the example above, let us now consider the probability that either at
least one 4 is thrown or a total score of § is thrown, i.e. P(4UB).
From the possibility space we see that

the subset of sample points in {4} and the subset of sample points in {B)

are not mutually exclusive, because the sample points (4,1) and (1,4) are in
both subsets.

The situation becomes clearer if we rearrange the sample points in the possibility
space by placing the pointsin {4} in one circle and the points in (B} ina
second overlapping circle 5o that the points in both {4} and (B},

ie.in {ANB) are in the section common to both circles and the remaining
points are outside both circles.
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Such a diagram s called a Venn Diagram.

WD (1,2) 1.3) @D @2) 6.1 G.3)

From this diagram we see that
the number of pointsin either {4} or {B), ie.in {AUB),
is not equal to
(the number of points in {A]}) + (the number of points in {B})

because this includes the points (1,4), (4, 1) twice.
Now the points (1,4) and (4, 1) are in both (A} and {B), ie.in {ANB).

Hence,
(pointsin {AUBJ) = (points in {4})+ (points in {B))— (pointsin {4 NB})

=7+4-2
As there are 16 sample points in total, we have
7+4-2
P(AUB) = ———
(AU B) 6
_ 7 + 4 2
T 16016 16

= P(4)+P(B)—P(ANB)
We can see that this is a general result by considering a possibility space
containing n points in which,
the subset of possibilities for an event A contains r points,
the subset of possibilities for an event B contains s points
and ¢ points are common to {4} and {B).
‘The Venn diagram illustrating this information is given below

()
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(b) Using P(4UB) = P(A)+P(B)—P(ANB)
we have P(Aua)=%+%—é
_4
T 9

number of ways in which B, and ‘notA’, occurs

© PBIA) = e S
‘number of ways in which ‘not A’ oceurs

n—r
from [1], [2] and [4] we have r=1n
s=3n
(= 4n
n—n
Therefore fndn 1+3=14
n=r  n=in
te. PBIA) = §.
Note that:

(i) iftwoevents £, and E, are independent then P(E,) = P(Ey|Ey).

In this problem  P(4) # P(4]B) so A and B are not independent.
(i) if twoevents £, and £, are mutually exclusive then P(E,NE3) = 0.

In this problem P(4NB) # 0 so A and B are not mutually exclusive.

EXERCISE 180

1) Setupa possibility space for the toss of two fair coins and a fair tetrahedral
die numbered 1 to 4. From your possibility space find the probability of
obtaining:

() @ head, a tail and a four.

(b) at least one head and a four.

2) Two cubical dice are tossed. Both dice are unbiased and one is numbered

1 to 6, the other is numbered 1,2,2,3,3,4. Set up the possibility space and
use it to find the probability of obtaining:

(a) ascore of 5,

(b) ascore of at least S,

(c) a three on either of the two dice, but not on both,
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3) Two tetrahedral dice, both numbered 1 to 4 are tossed. If one die is fair
the other s biased so that a four is twice as likely as any other score, set up

'.hc possibility space and use it to find the probability that:

() at least one four is thrown,

(b) a total score of four is obtained,

() either at least one four is thrown or at least one three is thrown.

4) A football match may be cither won, drawn or lost by the home team, so
there are three ways of forecasting the result of any one match, one correct and
two incorrect. If random forecasts are made of the results of five matches, what
is the probability of getting at least three correct results?

5) Ina group of twenty students all of whom are studying Physics or
Mathematics or both, ten are studying Physics and fifteen are studying
Mathematics. Find the probability that a student chosen at random is:
(a) studying Physics,

(b) studying Physics and Mathematics,

() studying Physics but not Mathematics.

Illustrate your results on a Venn diagram,

6) Three unbiased dice, each numbered 1,1,2,2,3,3 are tossed. Find the
probability of throwing either at least one 2 or at least one 3

7) Two normal fair dice, numbered 1 to 6, are tossed simultaneously. What
is the probability of obtaining a total score greater than 7 if at least one of the
dice scores 5.

8) A and B are twoeventssuch that P(4)=} and P(B)=14
P(AUB)=}. Find P(ANB).

9) 4 and B are woeventssuch that P(4)=3 and P(ANB)=}.
If A and B are independent find P(B) and P(AUB).

10) A and B are two eventssuch that  P(4) =3, P(41B)=
P(BIA)=}.

Find P(AUB) and state, with reasons, whether A and B are mutually
exclusive,

EXPECTATION

The word ‘expectation’ or ‘expected” is used to mean the most likely
outcome of an experiment or the ‘average® result in a series of experiments. The
precisc meaning of ‘expectation’ depends on the way it is used. The following
examples illustrate its use in different situations.
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Sesx’e, 4

P(3RN1B) = ’,Z 7
s

G 1

PER) = = =-

(4R) o 7

Therefore in n trials we would expect
2 an
two red counters to appear Zxmtimes = = red counters

4 " 12n
three red counters to appear 7xn times = = red counters

- an
four red counters to appear 3 xn times > red counters

s0 we would expect a total of (3n+%n+%n) red countersin n trials,
i.e.an average of % counters per trial.

Expected Gain or Loss

We often encounter a situation in which the outcome involves either a gain or
loss of money. If such a situation is repeated many times the average (expected)
gain or loss can be found using the following definition.

1f there is'2 probability p of winning a sbm of money £2
the expected gain s £Lp.

EXAMPLES 18f (continued)

5) Two people, 4 and B, roll an unbiased die. The first to tossa 6 wins £10.
Find A’s expected winnings, if he goes first.

The probability that A wins, P(4 wins), is
either  P(A wins on his first throw) = P(4,)
=1
or  P(A wins on his second throw) = P(A, and By and 4)
= (§rx}
= P(A,NByNA;NBNAy)
=@

or P(A wins on his third throw

and so on.
ie. PAwins) = §+(@FA+DO ...
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‘This is a GP with first term } and common ratio (§)*
and hence with a sum to infinity of

i

-Gy

_ 6
1

Hence P(A wins) = §
So A's expected winnings are  £10x f = £5.45
‘This result is interpreted as meaning that if 4 and B played several times,
with A going first each time, then on average A would expect to win £5.45
per game.
6) The probability of a candidate passing an examination at any one attempt
is . He carries on entering until he passes and each entry costs him £1. Find
the expected cost of his passing the examination.
‘The probability of passing at the first attempt is § and the costis £1.
The probability of failing at the first attempt but passing at the second attempt
is (3)(3) and the cost of passing at the second attempt is £2.
‘The probability of failing at the first two attempts but passing at the third
attempt is (3)*(2) and the costis £3,
and so on.
Therefore the expected cost is

EHORHOTORHHNOR ONORI

= i +2B) 337+’

Now 1+2x+3x+4x’+,.

i(x+x’+x’+x‘+.4.
d -1
= gla=o7-1 if x| <1

if x| <1

Therefore, replacing x by §,

142)+3G7 +4GP+... =

Hence the expected cost of passing the examination is
xF = 8§ = £167
This result must be interpreted as being the cost per candidate averaged out for

several candidates with the same probability (3) of passing at any one attempt.
Obviously it will cost any one candidate an integral multiple of £1.
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22) A committee is chosen at random from a group of ten people, Find the

expected number of men on the committee.

(2) There are four members of the commitee.

(b) There are six men in the group.

() The committee of four are seated at a round table.

23) Find the probability that a candidate who guesses at random obtains at

least 40% in a multiple choice test.

(a) There are one hundred questions.

(b) Each question has five alternative answers, only one of which is correct.

(¢) Each correct answer scores one mark, no marks are given for an incorrect
answer.

TYPEV
24) The probability of tossing a head with a biased coin is §.

25) The number of ways of choosing two cards from a pack of fifty-two
playing cards is $P,.

26) If A and B are mutually exclusive, P(A4|B)=0.

) If P(a)=4, PA)=}

28) If P(4andB)=0 theneither P(4)=0 or P(B)=0.

29) The number of arrangements of the letters of the word EVERY is 24.

30) The number of ways of choosing two different letters from the set
{4,B,C,D) is 4.

MISCELLANEOUS EXERCISE 18

1) An unbiased die marked 1,2,2,3,3,3, is rolled three times. Find the
probability of getting a total score of 4. (UofL)
2) A boy spins a coin three times and a girl spins a coin twice. Find the
probability that the girl gets more heads than the boy. (UofL)
3) Two cards are to be drawn without replacement from a pack of playing
cards. Find the probability that

(a) both will be diamonds,

(b) one card will be red and the other will be black. (UofL)
4) Aboy and a girl spin a coin in turn, and the first to get a ‘head” is the winner.
‘The girl spins first. Find the probability that the boy wins. (Uof L)

5) A train daily makes a journey which involves stopping at two stations, The
probabilities of being delayed at these stations are 0.6 and 0.8 respectively and
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16) (a) Find the probability that the fourth power of any positive integer n

endsin the digit 6.
(b) Ina certain tournament in which games cannot result in a draw A plays
B until one of them has won a total of three games. If p is the
probability that A wins any individual game he plays against B and if
g=1-p, findintermsof p and q the probabilities that,
(i) A wins the first three games,

) a decision is reached in the third game,
(iii) A wins the match in the fourth game,
(iv) a decision is reached in the fourth game.

If p=3, determine the probability of A winning the match before the

sixth game. (AEB)

17) (a) Find how many numbers between 3000 and 4000 can be formed

using only the digits 1,2,3 and 4, no digit being repeated.
(b) Abag contains 4 red and 6 black balls. One ball is drawn at random;

ifitis black it is replaced in the bag, but if it is red it is not replaced. A

second ball is then drawn. X denotes the event ‘The first ball is red”

and ¥ denotes the event ‘The second ball s red". Find the probabilities

(@ P(Y),

) P(Y given X),

(iif) A

(iv) Pleither X or ¥ butnot both). ©

18) One of three coins is biased so that the probability of obtaining a head is
twice as great as the probability of obtaining a tail. The other two coins are fair.
One of the three coins is chosen at random and tossed three times, showing a
head on each occasion. Using a tree diagram, or otherwise, find the probability
that the chosen coin is biased. (UofL)

19) (2) In how many ways can a hand of 13 cards be dealt from a normal
pack of 52 cards, all of which are different? Assuming that each deal
is equally likely, what is the probability of being dealt 13 cards all of
the same suit?

[Answers to both parts should be left in factorial form. ]

(b) If A and B are independent events, the probabilities of which in a
certain trial are o and b respectively, what are the probabilities of:
(i) both A and B occurring,
(ii) event A occurring but not B,
(iii) neither A nor B occurring?

If these trials are repeated 1 times with no change in the values of a and b,

what is the probability that neither A nor B will occur? If a=b =001,

find how many trials are required before this probability becomes less than 0.5.

(AEB)
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20) Eight trees are planted in a circle in random order, If two of the trees are
diseased and later die, what is the probability that the two dead trees are next

to cach other?

If four of them are diseased find (a) the probability that at least two of them are
next to each other, and (b) the probability that all four are next to each other.

©
71) When a boy fires an air-rifle the probability that he hits the target is p.
(a) Find the probability that, firing 5 shots, he scores at least 4 hits.
(b) Find the probability that, firing n shots (n32), he scores at least
two hits. ©p

22) (a) Four men, two women and a child sit at a round table. Find the number
of ways of arranging the seven people if the child is seated (i) between
the two women, (ii) between two men.

(b) A die with faces numbered 1 to 6 is biased so that
P(scoreisr) =kr, (r= Find the value of .
If the die i thrown twice, calculate the probabiliy that the total score
exceeds 10. ©

23) (a) The results of eleven football matches (as win, lose or draw) are to be
forecast. Out of all possible forecasts, find how many will have cight
correct and three incorrect results.

(b) An unbiased die in the shape of a regular dodecahedron has twelve
faces with the numbers 2, 2,4, 4,4,6,6, 10, 10, 10, 12, 12, showing
separately on the faces. The result of a throw is the number showing on
the uppermaost face. Each of four players throws the die twice and
scores the sum of the two results, What is the probability that all of the
four players in succession will each obtain a score greater than six?

(<) An unbiased die in the shape of a cube shows 1,2,3,4,5,6 onts six
separate faces. It is tossed until it lands the same way up twice running.
Find the probability that this requires r tosses. (AEB

24) The probabiliies that a man makes a certain dangerous journey by car,
motor cycle or on foot are 4, § and } respectively. lf the probabilities of an
accident when he uses these means of transportare §, 3 and & respectively,
find the probability of an accident occurring in a single journcy.

If an accident is known to have happened, calculate the probabilities that the
man was travelling

(a) by car,

(b) by motor cycle,

(c) on foot. (UofL)
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25) Four cards are drawn at random from a pack, one at a time with
replacement. Find the probability that

(a) noheart is drawn,

(b) four hearts are drawn,

(c) two hearts and two diamonds are drawn (in any order),

(d) one card from each suit is drawn. (UofL)

26) (a) Two cards are drawn without replacement from ten cards which are

numbered from 1 to 10. Find the probability that
(i) the numbers on both cards are even,
(i) the number on one card is odd and the number on the other card
is even,
(iii)the sum of the numbers on the two cards exceeds 4.

(b) Events A and C are independent. Probabilities relating to events A,

B and C are as follows
F(A)= 1/5, PB)=1/6, P(ANC)=1/20, P(BUC)=3/8.
Evaluate P(C) and show that events B and C are independent.

(UofL)

27) (a) A box contains six dice, one of which is unfairly biased. If two dice are

chosen at random simultaneously from this box, what is the probability
that one of them will be biased?

(b) A uniform unbiased die is constructed in the shape of a regular
tetrahedron with faces numbered 2,2, 3 and 4, and the score is taken
from the face on which the die lands. If two such dice are thrown
together what total scores are possible at each throw and what s the
probability of each score? What is expected to be the average score over
a long series of throws?

What is the probability of scoring:
(i) exactly 6 on each of three successive throws,
(ii) more than 4 on at least one of three successive throws? ~ (AEB)

28) (a) Show that it is more probable to get at least one six with a throw of

three dice than to get two sixes with any one of fifteen throws of two

dice.
(b) There are three identical boxes each containing a sum of money, no two
boxes containing the same amount. A man chooses a box s follows: he
first takes a box at random (call it A) and sces how much is in it. He
then takes one of the other two boxes at random (call it B) and sees
how much is in it, If box B contains more than box A, then the man
chooses box B; if box B contains less than box A then he chooses
the third box (call it C). Find the probability that he will choose:
(i) the box containing the greatest value of money,
(i) the box containing the smallest value of money. (AEB)



APPENDIX

Quotable Formulae, Using Standard Symbols
MOTION WITH CONSTANT ACCELERATION
v=uta
s = flutoy
s = ut +jar*
s = vr—lar®

2as

v —u?

PROJECTILES
¥=0 y=-g
%= Veosa = Vsina—g
x = Vicosa  y = Visina—gr?
xx

. @
Xtana— ———
21 cos’a

SIMPLE HARMONIC MOTION

X = acosnt

2
Period = —
n

632



CENTRES OF GRAVITY

Uniform Body

Appendix 633

Position of G on axis of symmetry

Solid hemisphere 3a from plane face
Solid {"y“m“’ 3 from base

cone
Hollow hemisphere 4a from plane section
Hollow [ EZ;:“““ (no base) 14 from base

Circular are subtending

an angle 2a at centre

Circular sector subtending

an angle 2a at centre

asina
from centre

2asina
22 from centre
3a

PROPERTIES OF MOTION ETC.

Newton’s Law ~ F
Momentum

Kinetic Energy
Potential Energy

Elastic Energy

Work done

Impulse

ma

mv

ot or v

= mgh
e

{byAcansl;ml force = Fs or F.d
| by a variable force = [Fds

of a constant force

of a variable force



ANSWERS

Most of the answers given here are quoted in an exact form (using surds, otc.). Students who
have used a calculator in their solution can check their answers by converting an exact

result to decimal form.

Exorciso 10 —p. 4

1) 2) 6m 3/3m in the direction AC

b) 10.5m, 541 m from A o the
midpoint of DE

2) 3v/3min the direction AC

3) 2) 2ms along
b)2ms along AB

4) No

5) The straight sections AB and CD.

Exercise 22— p. 18

1) 3/2mNE
2) 9 AC u)BD ©AD &DB
3) & b—a; 2b-a)

6B, 9, o n

Exercise 2b — p. 23

1) 3) 5.64N, 205N
b} 10ms™, 17.3ms™
) 64N, 48N
2) 2N,35N
3) Punzo W cos 20°, T; P cos 20°,
W sis

3J ~3J<3 —2i;

-2
6 East: 7.07, s North: 7.07, 24
Exercise 2 ~ p. 26
1) 3i+4j
2) 15i-36)
3) —14i+ 141/3)
4) 48i—14j
$) i

6) 12i45j
7) 6080

9) xun\/zl—lwzu
10) Fi—3j

Exercise 2d — p. 29

4) =G+ 4+ 2

5) r=—di—j+k+AG+i—K)
Note that the answers 10 the following
questonscan be ghen bnother forms

e
P =8I+ k2G84 30
10) ¢ Ali+j—5k)
11) 3+ 75; w 0), 0, %)

=5i; 3,~7)
=i (1,=7), @, =14) etc.

5 =it iea@is 10p
4) T=T7i4 84 M= 2)

=7i+3k)
6) a) —¥i ) —ii
Dl 03
8) a) 1li b) 22§
9) No
10) No

11) +(25i~60j)

634



12) =4

13) +(8i+ 8))
14) x2\/lﬂ[u- 3
15) = W

—~k + A(=5i + 6 + 8K)
+j Tl

19j + A(8i — )
5) £=di+4j+ AOi-2)

Exercise 29 - p. 37
1) @) SN; arctan§ to the 3N force
b) 26 N; arctan ; to the 24 N force
©) V2N, 45° to each force
d) 2/10N; arctan 3 to the 2N force
€) 25 N; arctan ¥ to the 7N force

©) 5\2N; —aretan (—4)
) 14N

b) G4-15/3)"*N
99N

HSN

© 213+6VN

4) +5; 674° 1126

5) 445kmh-
6) a) 75.5° ) 138.6"
7 a) 15 b ILS
8) ) 104.5° b0

©) 180°

Exerciso 20 — p. 43
1) 13N; arctan ¥ w0
2) Sms; actngtod
V3
3) a) VIIN; arctan 3= to 4 N foree
b) @6+ 16v/2)'%
arctan %(14y/2 + 1) to force 3
4) 4V/IT30N;
arctan  to AB outside ABCD
5) V7N atarctan 3/3 with BA
6) 9i+5j
7) 292Nt 6 to centre roy
s) 261m ona bearing 3051
9 V36

Answors 635

10) 7.1kmh™ S4T°E

11) 139kmh-t

12) ) 1195 N at 3.5° to AD
) 12.13N at 64.9° 10 AB

Exercise 2i - . 46

i
2) 7i+2
3) Si+j
]
s) n;. No
8 a) !, A4 —T);
= 5i+u(—2! +D
b)46i—
or 11. LHMAsi—m)

Exercise 2j — p. 51

Fa
5) 1 Nm anticlockwise

6) 2) 460N m b)345Nm
o —460Nm )0

Exerciso 2k - p.57

1) Fa clockwise

2) (7—4/3)a Nm anticlockwise

3 %(IZ —V/3) clockwise

4) 13 ++/3) N m anticlockwise

5) 23 units, 47 units, both clockwise

6) 12, 6 units
7 1IN —4N; 3N

Exercise 2 - p.59

ne e 3a 44
5 e 6 ¢ na 8)d
9a 10 cd 1) bd 12)ac
13)ab B 14  10B
ME  18e 191 2004
1 i A WF
)7 200 F 2MF  2)F
W F 30 F

Miscellaneous Exercise 2 — p. 63
1) 24N; 36.9°

3) 8N

4




5) 6.7
6) 3) 8m ™! South West
b 4.3ms, 312
© 21ms,262.3°

D 9)AC W EB

10) 2(Y3 DN

1) P39 at mun an to AE

12) ) 12 both clockwise
13) 2) V3Nm

) 93 Nm  both in sense ABC
14) 2
15) —8i+ 10)

Wi-2
16~
P3N0
—2j + u(Bi + 6])

a1,

W 1o 5]
©) 1= 51 ++A(10i +5j)
18) V3P BD)IS0° o) 120°,60°
19) 5.14P at 76.5° to Ox.
20) Midpoint of XY
21) AB and CD bisect each other
fav.

9 a3

23) p=Sandq=1 or
Tandq=—11

Exerciso 32 — p. 69
D -2v2;2
2) 8.7Nat46.7° to BA
3) 4i— 45,492 ~4i +4j
~ 4

~1

5) —12i —3j
6) LISNor 035N
Exercise 3b — p. 78

n -) 26N; 10N b)25.5N;8.7N

25
3 mN 226"
4) 2 30° b) 18.4°

b)STIN

7) 12/3N; 24N
8) W/A/2 perp. to BC where W is the
weight of the rod.
Exercise 3¢ — p. 87

1) 2) 0.364 ) 26 +5/3)N
915°

d)2.8Nat 13.4° to the horizontal

b)19.34N

5) a) 1N, no
) 4N, yes
6) 2736 N

©)4N, no

Exercise 3d — p. 90
DN

2) 30N

2 Lamtrom theend

Exercise 3 - p. 97

1) 1:26¢
2) 60N; 180 Nsarctan 3
43

4 V3im3

3) a) 3mg;mey/T3 atarctan 1o PQ
b) 3mg: mg vertically downwards

6) 2;4;—a

LB
8) (5+4/3): 8,4V
9) 3a: {3

10) 6
11) 173.2N, 60° o1 86.6 N, 19.1°

Multiple Choice Exercise 3 — p. 100

ne )b o 4d
54 6bd  Nab  He
Nad 1008 1) 12) 8
HE WA 198 16 C
MBI 192 207
Wac 221 2Wd W F
F 20T IMF  WT
W7 30 F

Miscellaneous Exercise 3 — p. 103
1) /10 units at 18.4° to B,
Y10 unite w 184° b B produced
3) 45°1 W52
) Either 3W, 1A/3 or SW, V3/5
) 8640 N
7 10716 N
8) 2) 10N, 10V3N
)24 —4V/3, 1238
9 S.73N, 873N
4)515°,33.04N



9) 20V/3N, 40N
10) ¥N;FN

11) 08N

12) 1.2m; 4ON

15) 375 Nm; 450¢ Nm
17 ) BN

9 WIIN
18) 100y/3; 200
19) 1FVTT3 atarctan § to Ox;a
20) 1m from A
21) 2m from A; 100N; 100N
22) T0ke; 14 ke
23) 3w
24) 3W cosec, W cotd, 4w
25) @) 49 1 b) 58.4°
26) 4; 1
28) W\/SIA at 26.6° to vertical
29) ) S0V3 b) 1125
30) w 1w
31) 1.2W;36.9°
32) arctan a/(h—ua)
33) ) 2w

b)12.8N
) 36N; 10.25N

) arctan +/7/7
© 3V2W)2

34) 60° /3/3; V3W/3

35 L4

36) 24, ~

37 L

3M 4 2, 2M, — 2D, +M,

Exercise 4a — p. 113

© —1.Sms™t

Exercise 4b —p. 116
n n) ’m:" b)—2ms
»1ms?
b 1sm

Exercise 4c — p. 118
D ) i +£@V5i+ 25)
) (4 +89)i+4v/5)

Answers.

2) a) 3i 441GV +0V2))
b) (3 +8v2)i + (14 8V2)j
3) 2) + 14VT0I —12JT0)
b) 8/10i + (1 —24/T0))
4) a) 2+ 5t
b) 10i +2§
5 a0 i #1051 12)
b) 11i 25§

Exercise 4d - p. 119
1) —2ms?

2) 8ms™!

3) @) Ims ©o

Exercise 4e — p. 123
n smr' 250m

b)46.5m

o1
6) a) +15ms™*
o —4.5m

b)165m

Exercise 41 — p. 129

D17ms,47.5m
bgm

6) 3slater
7 6675

8) sms?

9) —hms?
10) ) §+/155s
1) 6+3V2s
12) 5.70m

13) 8s

14) 360m

15) 111s

b)5+3ss

Exercise 4g — . 133

6) 26.1m

637
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Exercise 6a — p. 185
1) 7x,0,0,~)

2) 0, 71 cos (a +4), Wi sina, —FI
3) 490001

66

7) 2J106

8) 8844 X10°J

9) 1400 10°3

10) 11300,173003
11) 20N

12) 2501

13) 1330N

14) 0.13

Exercise 6b — p. 192

1) 1110kW

2) 1800N

3) 4950 kW

4) SL4N

5)a)37.5mst b 19.5ms
©)461.5ms"

6) 328ms!

7) 60N

8) 1801,329W

9) 8ms;

10) 5.51m

11) 0.127ms*

12) 33ms, 1420N

13) 0.121ms™

14) 6000N

Multiple Choice Exercisa 6 — p. 194
nd 20 e 4 a

91 104 I)e )T
1B)F F 15F 16T

Miscellaneous Exercise 6 — p. 195
1) 125kW

2) 4800N, 35.7 ms™!

3) 70kW

4) 132W,0275ms™

u

9 2%, 04ms

6 u.s:w“,s.umr’

7) 892.5N, 81800N

8) 24ms%, 13.9kW

9) 45ms, 1.715ms™?

10) 734kW, 50km/h,
11) 270W, 240

km/h  b)24km/h

12) 0.833ms~, 86.2km/h

13) 2160N,79.7m

o

15) a) ‘MV —gsina
108
) S e sine

16) S00N; 15kW
17) a) 234kN

10°H
o

) dym/s?

©) 190kN; 35 X 10°)

18) 450 N; 4.91 kW

Exarcise 7a - p. 207

D®)23m bém
2) 0625m
3) 40N

el
CEs

Exercise 7b — p. 212
1 9J,10m

2) 24m

3)H

4) %x1077)

Exercise 7c — p. 218
1) 54J,5m
2) 2)0.16)
3) 572K

431
S) 10m(2eh + v*)

) 4.5m

aMy—aM, 2o, —Ma,)
=, o

&
00253



Exercise 7d - p. 223
D 25m
M (y-i Au’)
3
4) el
5) 6m

l
6 G+Vsig

£

T
8) 0.45m

Multiple Choice Exercise 7 — p. 224

De  Da He 4o
5 d 6) b,c 7 ed 8) d
9 B 10 ¢ m s 12) D
137 141 15) 4 16) b, ¢
mF 18) F 97 20) F
Miscollaneous Exercise 7 — p. 226
1) meh —{mo?
2) 1001
3) 6801
4) 1500w

BVsm

b) WV3, WT\/s 30°
12) n)&N ) 0.128m

13) 1.5 m;2.82m
14) szsu 10KS; 720KW; 127.6m

ns) H vt b) 2Vka
©) 2\/ga(cos 0 — cos 20!

17) W33
18) 9 2% PR
19) 53-8

20) 2880

Answers 641
w
m Favs-y
22) mg
\F
25) azctan 173, 241, ”;T @

Exercise 82 — p. 236

5) 104Ns

10) 20¢/5 Nsat aretan § to the direction
of the initial velocity
b)‘sl\/u_ih Ns

ma) ’S—ZV’st
12) 2000 litre

Exercisa 8b — p. 241

D @) dmst Bims

2) 600 kg

3) a) 486 ms™! b) 480 ms™"
4) SOkg.

6) a) du b &

7 my_ m'v? 4M(M+ml’

Mim® 22i(M +m)
Exorcisa 8 — p. 208
u /T3 mu

1 a) 3 b) e

i3, muys
o3, miy

2) 1.12ms™;336Ns
W3 4N/3
157 15
W3
2 o
Ar Tom gf\B

z/J‘

3

atarctan 33 to AB;

J
[eRs B
Tom along CB.

REELNCS b) #/6x



This book I about Mechanics and the salving of
machanical probloms with the holp of Pure
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