

Ismail Digital Library

Calculations for A-level CHEMISTRY

THIRD EDITION

E. N. Ramsden

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, placetonic productions, the subset of the prior written mechanical placetonic productions, and the subset of the prior written produced to the publishers. Stanley Thornes (Publishers) Ltd. Old Station Drive, Leckhampton, CHELTENHAM, GLS 50 ND. Regular.

First published in 1982 Second edition published in 1987 Third edition published in 1993 by: Stanley Thornes (Publishers) Ltd

Ellenborough House, Wellington Street, CHELTENHAM GL50 1YW

00 01 02 03 04 05 / 20 19 18 17 16 15 14 13 12 11

A catalogue record of this book is available from the British Library.

ISBN 0-7487-1594-0

ACKNOWLEDGEMENTS

I thank the following examination boards for permission to print questions from recent A-level papers.

The Associated Examining Board, The Joint Matriculation Board, The Northern tecland Schools Examinations and Assessment Council, The Christ and Carshridge Schools Examination Board, The Oxford Delegacy of Local Examinations. The University of Cambridge Schools Local Examinations Syndicate; The University of London School Examinations Council, The Welsh Joint Education Committee.

Many numerical values have been taken from the Chemitry Data Book by JG Stark and HG Wallace (published by John Murray). For help with definitions and physical constants, reference has been made to Physica-chemical Quantities and Units by M. McGlashan (published by The Royal Institute of Chemistry).

I have been fortunate in receiving excellent advice from Professor R R Baldwin, Professor R P Bell, PRS, Dr G B Davies, Professor W C E Higginson, Dr K A Holbrook, Dr R B Moyes and Dr J R Shorter. I thank these chemists for the help they have given me. I am indebted to Mr J P D Taylor for checking the answers to the problems in the First Edition and for many valuable comments and corrections.

I thank Stanley Thornes (Publishers) for their collaboration and my family for their encouragement.

> EN Ramsden Oxford 1993

Typeset by Tech-Set, Gateshead, Tyne & Wear. Printed in Great Britain by Redwood Books, Trowbridge, Wiltshire

Contents

List of Exercises y
Foreword by Professor R P Bell FRS vii
Preface viii
Rasic Mathematics 1
Using equations 1—rearranging equations 2—a triangle for rearranging equations 3—cross-multiplying 4—calculations on ratio 5—working with numbers in standard form 6—how to enter exponents on a calculator 7—estimating you answer 7—logarithms 7—antilogarithms 9—rounding off numbers 9—choice of a calculator 10—usins 11—solution of quadratic equations 13—drawing graphs 13—usins 11—solution of quadratic equations 13—drawing graphs 13—
a final point 15
Formulae and equations 17
Formulae 17 – equations 18
Relative atomic mass 21
Relative atomic mass $21-$ relative molecular mass $21-$ percentage composition 23
The mole 27
The mole 27 — calculation of molar mass 29
Equations and the mole 32
Calculation based on chemical equations 32 - using the masses of the
reactants to work out the equation for a reaction 36 - percentage yield 38 - limiting reactant 39
yield 58 — limiting reactant 59
Finding formulae 41
Empirical formulae 41 – molecular formulae 42
Reacting volumes of gases 46
Gas molar volume 46 - finding formulae by combustion 49
Volumetric Analysis 59
Concentration 59 – acid-base titrations 62 – oxidation-reduction reactions 69 – potassium manganate(VII) titrations 76 – potassium dichromate(VI) titrations 79 – sodium thiosulphate titrations 80 – complexometric titrations 88 – precipitation titrations 90

Mass spectrometry 104 – nuclear reactions 111

9 The Atom

104

11	Liquids	1.2
	Determination of molar mass 127 - anomalous results from	measure
	ments of molar mass 127 - vapour pressure 131 - solution	s of solid
	in liquids: osmotic pressure 132 - solutions of liquids in liqu	ids 134 -
	immiscible liquids: sum of vapour pressures 136 - distribu	ition of
	solute between two immiscible solvents 138	
12		14
	Electrolysis 148 - evolution of gases 150 - electrolytic co	
	153 - molar conductivity and concentration 154 - calcu	ılation o
	solubility from conductivity 156 - ionic equilibria; weak el	
	156 - calculation of the degree of dissociation and the di	
	constant of a weak electrolyte from conductance measurer	nents 15
	 calculation of pH, pOH and pK 159 – buffer solution solubility and solubility product 169 – the common ion 	ns 167 -
	- electrode potentials 175 - galvanic cells 176	meet 17
13		18
	Internal energy and enthalpy 189 - standard enthalpy cha	
	chemical reaction 191 - standard enthalpy of neutralisati	on 192 -
	finding the standard enthalpy of a compound indirect standard enthalpy of reaction from standard enthalpies of	пу 193-
	196 – standard bond dissocation enthalpies 197 – average	standar
	bond enthalpies 197 - standard enthalpy of reaction fro	m averag
	standard bond enthalpies 199 - the Born-Haber cycle 2	200 - fre
	energy and entropy 207 - calculation of change in standar	d entrop
	208 - calculation of change in standard free energy 208	
14	Reaction Kinetics	22
14	Reaction rate 223 - the effect of concentration on rate of	
	224 - order of reaction 225 - first-order reactions 225	
	225 - pseudo-first-order reactions 226 - second-order react	
	reactants of equal concentration 227 - zero-order reaction	ns 229 -
	the effect of temperature on reaction rates 229	
15	Equilibria	24
	Chemical equilibrium 248 — the equilibrium law 248	
16	Organic Chemistry	26
10	,	
	Answers to Exercises	27
	Table of Relative Atomic Masses	29
	Periodic Table of the Elements	29
	Index	29
	iv	

The gas laws 115 – Boyle's law 115 – Charles' law 115 – the equation of state for an ideal gas 115 – Graham's law of diffusion 117 – the gas molar volume 119 – Dalton's law of partial pressures 120 – the ideal gas equation 122 – the kinetic theory of gases 123

List of Exercises

Practice with Calculations	15
	20
	23
Problems on Percentage Composition	25
Problems on the Mole	30
	33
	37
	38
	40
Problems on Formulae	43
Problems on Reacting Volumes of Gases	47
Problems on Finding Formulae by Combustion	51
Problems on Reactions Involving Solids and Gases	51
Questions from A-level papers	54
Problems on Concentration	61
Problems on Neutralisation	66
Problems on Oxidation Numbers	74
Problems on Redox Reactions	85
Problems on Complexometric Titrations	89
Problems on Precipitation Titrations	91
Questions from A-level Papers	92
Problems on Mass Spectrometry	105
Questions from A-level Papers	106
Problems on Nuclear Reactions	111
	112
	117
	118
	120
	121
Problems on the Kinetic Theory and the Ideal Gas Equation	123
Questions from A-level Papers	124
Problems on Molar Masses of Volatile Substances	130
Problems on Association and Dissociation	131
	132
	133
	136
	137
	140
	141
	151
	159
Problems on pH	164
	Problems on the Mole Problems on Beacting Masses of Solids Problems on Derving Equations Problems on Derving Hequations Problems on Percentage Vield Problems on Formulae Problems on Formulae Problems on Faceting Volumes of Gases Problems on Faceting Volumes of Gases Problems on Finding Formulae by Combustion Problems on Formulae Problems on Formulae Problems on Concentration Problems on Concentration Problems on Condition Numbers Problems on Condition Numbers Problems on Configuence trie Titrations Problems on Complexometric Titrations Problems on Complexometric Titrations Operations from Acked Papers Questions from Acked Papers

44	Problems on Solubility Products	172
45	Problems on Standard Electrode Potentials	178
46	Questions from A-level Papers	179
47	Problems on Standard Enthalpy of Neutralisation	192
48	Problems on Standard Enthalpy of Reaction and Average Standard	d
	Bond Enthalpies	202
49	Problems on Standard Entropy Change and Standard Free Energy	
	Change	209
50 51	Questions from A-level Papers	211
51	Problems on Finding the Order of Reaction	231
52	Problems on First-order Reactions	232
53	Problems on Second-order Reactions	234
54	Problems on Radioactive Decay	235
55	Problems on Rates of Reaction	236
56	Problems on Activation Energy	237
57	Questions from A-level Papers	237
58	Problems on Equilibria	252
59	Questions from A-level Papers	254
60	Problems on Organic Chemistry	262
61	Questions from A-level Papers	264

Some of the exercises are divided into an easier section (Section 1) and a more advanced section (Section 2). Questions from Al-evel papers are on the immediately preceding topic(s). Each question is appended with he name of the Examination Board and the year (90 = 1990 etc.). p indicates a part question, S an S-level question, AS an Advanced Supplementary question and N a Nutfield syllabus. The most difficult (often S-level) questions and N a Nutfield syllabus. The most difficult (often S-level) questions are also denoted by an asterisk.

ABBREVIATIONS OF EXAMINATION BOARDS

AEB	Associated Examining Board
C	University of Cambridge Schools Local Examinations
	Syndicate
JMB	Joint Matriculation Board
L	University of London Schools Examinations Council
NI	Northern Ireland Schools Examinations and Assessmen
	Council
0	Oxford Delegacy of Local Examination

Oxford and Cambridge Schools Examinations Board

WJEC Welsh Joint Education Committee

0 & C

Foreword

It is a common complaint of university and college teachers of physical sciences that many of their incoming students are unable to carry our even simple calculations, although they may appear to have a satisfactory grasp of the underlying subject matter. Moneover, this is by no means a trivial complaint, since inability to solve numerical problems nearly always stems from a failure to understand fundamental principles, rather than from mathematical or computational difficulties. This situation is more likely to arise in demittery than it is much more difficult to avoid quantitative problems and at the same time produce some semblance of understanding.

In attempting to remedy this state of affairs teachers in schools often feel the lack of a single source of well-chosen calculations covering all branches of chemistry. This gap is admirably filled by Dr Ramaden's collection of problems. The brief mathematical introduction serves to remind the student of some general principles, and the remaining sections cover the whole range of chemistry. Each section contains a theoretical introduction, followed by worked examples and a large number of problems, some of them from past examination papers. Since amsees are also given, the book will be equally useful in schools and in home study. It should make a real contribution towards and in home study. It should make a real contribution towards the contribution of the study of the study

R P Bell FRS Honorary Research Professor, University of Leeds, and formerly Professor of Chemistry, University of Stirling

Preface

Many topics in Chemistry involve numerical problems. Textbooks are not long enough to include sufficient problems to give students the practice which they need in order to acquire a thorough mastery of calculations. This book aims to fill that need.

Chapter I is a quick revision of mathematical techniques, with special reference to the use of the calculator, and some hints on how to tackle chemical calculations. With each topic, a theoretical background is given, leading to worked examples and followed by a large number of problems and a selection of questions from past examination papers. The theoretical section is not intended as full treatment, to the problems of the control of the problems of the subsent to use the book for individual study a make it easier for the student to use the book for individual study a make it can be considered as inclusion of answers is also an aid to private study.

The material will take students up to GCE A-and S-level examinations. It will also serve the needs of students preparing for the Ordinary National Diploma. A few of the topics covered are nor in the A-level syllabuses of all the Examination Roards, and it is expected that students will be sufficiently familiar with the syllabus they are following to omit material outside their course if they wish. S-level topics and the more difficult calculations are marked with an asterials.

Many students are now starting A-level work after GCSE Science. Double Award. The coverage of chemical calculations in the syllabuses for double award the coverage of chemical calculations in the syllabuses for GCE O-level Chemistry. and GCSE Chemistry. I have taken this into account in the Third Edition. In previous editions, I assumed that students had mastered some topics before and only an extension was needed for A-level. Since students who have done Double Award Science have spent little time on quantitative work. I have taken a more gradual approach in the Third Edition. I hope that this approach will also suit students with no previous experience of chemical calculations. In the Third Edition I have included more foundation work on formulac, the most, calculations based on chemical equations and are no longer included in A-level syllabuses have been dropped, and are no longer included in A-level syllabuses have been dropped, and are no longer included in A-level syllabuses have been dropped, and

EN Ramsden Oxford 1993

1 Basic Mathematics

INTRODUCTION

Calculations are a part of your chemistry course. The time you spend on calculations will be richly rewarded. Your perception of chemistry will become at the same time deeper and more precise. No one can come to an understanding of science without acquiring the sharp, logical approach that is needed for solving numerical problems.

To succeed in solving numerical problems you need two things. The first is an understanding of the chemistry involved. The second is some facility in simple mathematics. Calculations are a perfectly straightforward matter. A numerical problem give you some data and asks you to obtain some other numerical values. The connection between the data you are given and the information you are asked for is a chemical relationship. You will need to know your chemistry to recognise what that relationship is.

This introduction is a reminder of some of the mathematics which you studied earlier in your school career. It is included for the sake of students who are not studying mathematics concurrently with their chemistry course. A few problems are included to help you to brush up your mathematical skills before you go on to tackle the chemical problems.

USING EQUATIONS

Scientists are often concerned with measuring quantities such as pressure, volume, electric current and electric potential difference. Sometimes they find that when one quantity changes as a result. The related quantities are described as depondent avariables. The relationship between the variables can be written in the form of a mathematical equation. For example, when a mass of gas expands, its volume increases and its density decrease.

The sign \u03e4 means 'is proportional to', so the expression means 'density is proportional to I/volume' or 'density is inversely proportional to volume'.

The relationship between the volume and density of a mass of gas is:

Density =
$$\frac{Mass}{Volume}$$

This equation can also be written as:

and as: Density = Mass/Volume.

If you are given two quantities, mass and volume, you can use the

If you are given two quantities, mass and volume, you can use the equation to calculate the third, density.

For example, the mass of an aluminium bar is 21.4 g, and its volume is $7.92\,{\rm cm}^3$. What is the density of aluminium?

Using the equation

Density = Mass/Volume

Density =
$$21.4 g/7.92 \text{ cm}^3$$

= $2.70 g \text{ cm}^{-3}$
Notice the units. Since mass has the unit gram (g) and volume has the

unit cubic centimetre (cm³), density has the unit gram per cubic centimetre (g cm⁻³).

REARRANGING EQUATIONS

You might want to use the above equation to find the mass of an object when you know its volume and density. It would help to rearrange the above equation to put mass by itself on one side of the equation, that is in the form

$$Mass = ?$$

$$Density = \frac{Mass}{V_{abs}}$$

In the equation

mass is divided by volume, so to obtain mass by itself you must multiply the right-hand side of the equation by volume. Naturally, you must do the same to the left-hand side. Then

Density × Volume =
$$\frac{Mass}{Volume}$$
 × $\frac{Volume}{Volume}$

that is Mass = Density × Volume

Perhaps you need to use the equation to find the volume of an object when you know its mass and density. Then you rearrange the equation to put volume alone on one side of the equation. In the equation

Mass = Density × Volume
the term volume is multiplied by density. To obtain volume on its

own you must divide by density. Doing the same on both sides of the equation gives

or Volume = $\frac{M_i}{Den}$

A TRIANGLE FOR REARRANGING EQUATIONS

A short cut for rearranging equations is to put the quantities into a triangle. For the equation.

$$X = Y \times Z$$

the triangle is

Cover up the letter you want; then what you see is the equation you need to use. If you want Y, cover up Y; then you read X/Z, so you know that Y = X/Z. If you cover Z, you read X/Y, so you know that Z = X/Y is the equation you need.

PRACTICE 1

Draw a triangle to show the equation

Cover up Volume, and write the equation for Volume = ?

- The equation relating potential difference, V, resistance, R, and current, I, is V = R × I. The equation means just the same written without the multiplication sign as V = RI. Rearrange the equation a) in the form I = ?. b) in the form R = ?.
- Draw a triangle to show the relationship V = RI.
 a) Cover up R. Complete the equation R = ?
 b) Cover up I. Complete the equation I = ?

4. The concentration of a solution can be expressed

Volume of solution

Rearrange the equation a) into the form Mass of solute = ? and b) into the form Volume of solution = ?

5. Rearrange the equation P = QR a) into the form Q = ? and b) into the form R = ?

CROSS-MULTIPLYING

Once you have understood the ideas behind rearranging equations, you can try the method of cross-multiplying. If

$$\frac{a}{b} \times \frac{c}{b}$$

then by cross-multiplying, you obtain

ad = bc

How can you find out whether this is correct? First multiply both sides of the first equation by d:

$$\frac{ad}{b} = \frac{cd}{dt} = c$$

Next multiply both sides by b:

$$\frac{adk}{k} = bc$$

That is

$$d = 1$$

which is the equation you obtained by cross-multiplying. This shows that cross-multiplying only puts into practice the method of multiplying or dividing both sides of the equation by the same quantity.

Now that you have the equation ad = bc

to obtain an equation for a, divide both sides by d; then

$$a = bc/d$$

to obtain an equation for d, divide by a; then

and similarly,

$$d = bc/a$$

$$b = ad/c$$

 $c = ad/b$

PRACTICE 2

1. The pressure, volume and temperature of a gas are related to the gas constant, R, by the equation

$$\frac{P}{T} = \frac{R}{V}$$

Rearrange the equation by cross-multiplying to obtain equations for a) T and b) V

The resistance of an electrical conductor is given by

$$R = \rho \times UA$$

where R = resistance, $\rho = \text{resistivity}$, l = length and A = crosssectional area. Rearrange the equation to give a) an equation of the form $\rho = ?$ and b) an equation of the form A = ?

3. Rearrange the equation

$$\frac{a \times b}{c} = \frac{p}{q \times r}$$

to give a) an equation for p and b) an equation for q.

CALCULATIONS ON BATIO

Many of the calculations you meet involve ratios. You have met this type of problem in your maths lessons; do not forget how to solve them when you meet them in chemistry!

EXAMPLE 1 Nancy pays 78p for two toffee bars. How much does Nina have to pay for five of the same bars?

You can tackle this problem by the unitary method:

If 2 toffee bars cost 78p.

1 toffee bar costs 78/2p and 5 toffee bars cost $5 \times 78/2p = 195p = £1.95$.

EXAMPLE 2 Zinc reacts with dilute acids to give hydrogen. If 0.0400 g of hydrogen is formed when 1,30 g of zinc reacts with an excess of acid, what mass of zinc is needed to produce 6.00 g of hydrogen?

Again, the unitary method will help you.

If 0.0400 g of hydrogen is produced by 1.30 g of zinc, then 1.00 g of hydrogen is produced by 1.30/0.0400 g of zinc and 6.00 g of hydrogen are produced by 6.00 × 1.30/0.0400 g of zinc

PRACTICE 3

- If 0.020 g of a gas has a volume of 150 cm³ what is the volume of 32 g of the gas (at the same temperature and pressure)?
- 88 g of iron(II) sulphide is the maximum quantity that can be obtained from the reaction of an excess of sulphur with 56 g of iron.

What is the maximum quantity of iron(II) sulphide that can be obtained from 7.00 g of iron?

 A firm obtains 80 tonnes of pure calcium carbonate from 100 tonnes of limestone. What mass of limestone must be quarried to yield 240 tonnes of pure calcium carbonate?

WORKING WITH NUMBERS IN STANDARD FORM

You are accustomed to writing numbers in decimal notation, for example 123 677-54 and 0,001 678. In working with large numbers and small numbers, you will find it convenient to write them in a different way, known as scientific notation or standard form. This means writing a number as a product of two factors. In the first factor, the decimal point comes after the first factor, the decimal point comes of the first factor, the decimal point comes of the first factor, the decimal point of the first factor, the decimal point must be moved one place to the left.

$$2.5 \times 10^3 = 0.25 \times 10^4 = 25 \times 10^2 = 250 \times 10^1 = 2500 \times 10^0$$

Since $10^0 = 1$, this last factor is normally omitted.

When you multiply numbers in standard form, the exponents are added. The product of 2×10^4 and 6×10^{-2} is given by

$$(2 \times 10^4) \times (6 \times 10^{-2}) = (2 \times 6) \times (10^4 \times 10^{-2})$$

 $\approx 12 \times 10^2 = 1.2 \times 10^3$

In division, the exponents are subtracted:

$$\frac{1.44 \times 10^6}{4.50 \times 10^{-2}} = \frac{1.44}{4.50} \times \frac{10^6}{10^{-2}} = 0.320 \times 10^8 = 3.20 \times 10^7$$

In addition and subtraction, it is convenient to express numbers using the same exponents. An example of addition is

$$(6.300 \times 10^2) + (4.00 \times 10^{-1}) = (6.300 \times 10^2) + (0.00400 \times 10^2)$$

= 6.304×10^2

An example of subtraction is

$$(3.60 \times 10^{-3}) - (4.20 \times 10^{-4}) = (3.60 \times 10^{-3}) - (0.420 \times 10^{-3})$$

= 3.18×10^{-3}

How to enter exponents on a calculator

To enter 1.44×10^6 , you enter 1.44; then press the EXP key, then the 6 key.

To enter 4.50×10^{-2} , you enter 4.5; then press the EXP key, then the 2 key, and lastly the +/- key.

To enter 10⁻³, you enter 1; then press the EXP key, then the 3 key, and lastly the +/- key.

ESTIMATING YOUR ANSWER

One advantage of standard form is that very large and very small numbers can be entered on a calculator. Another advantage is that you can easily estimate the answer to a calculation to the correct order of magnitude (i.e. the correct power of 10).

For example,

$$\frac{2456\times0.0123\times0.004\ 14}{5\ 223\times60.7\times8.51}$$

Putting the numbers into standard form gives

$$\frac{2.456 \times 10^{3} \times 1.23 \times 10^{-2} \times 4.14 \times 10^{-3}}{5.223 \times 10^{3} \times 6.07 \times 10 \times 8.51}$$

This is approximately $2 \times 1 \times 4 \dots 10^3$

$$\frac{2 \times 1 \times 4}{5 \times 6 \times 8} \times \frac{10^{3} \times 10^{-2} \times 10^{-3}}{10^{3} \times 10} = \frac{1}{30} \times 10^{-6} = 3 \times 10^{-8}$$

By putting the numbers into standard form, you can estimate the answer very quickly. A complete calculation gives the answer 4.64 × 10⁻⁸. The rough estimate is sufficiently close to this to reassure you that you have not made any slips with exponents of ten.

LOGARITHMS

The logarithm (or 'log') of a number N is the power to which 10 must be raised to give the number.

If
$$N = 1$$
, then since $10^0 = 1$, $\lg N = 0$.

If
$$N = 100$$
, then since $10^2 = 100$, $\lg N = 2$.

If
$$N = 0.001$$
, then since $10^{-3} = 0.001$, $\lg N = -3$.

We say that the logarithm of 100 to the base 10 is 2 or
$$\lg 100 = 2$$
.

There is another widely used set of logarithms to the base e. They are called natural logarithms as e is a significant quantity in mathematics. It has the value 2,71828 . . . Natural logarithms are written as ln N. The relationship between the two systems is

$$\ln N = \ln 10 \times \lg N$$

Since In 10 = 2.3026, for most purposes it is sufficiently accurate to write

$$\ln N = 2.303 \lg N$$

Whenever scientific work gives an equation in which ln N appears, you can substitute 2.303 times the value of lg N.

To obtain the log of a number, enter the number on your calculator and press the log key. The value of the log will appear in the display. This will happen whether you enter the number in standard form or another form. For example, lg 12 345 = 4.0915, whether you enter the number as 12 345 or as 1.2345 × 104. However, there is a limit to the number of digits your calculator will accept, and you need to enter very large and very small numbers in standard notation.

Operations on logarithms are:

Multiplication. The logs of the numbers are added:

$$\lg (A \times B) = \lg A + \lg B$$

Division. The logs are subtracted:

$$\lg (P/Q) = \lg P - \lg Q$$

Powers. This is a special case of multiplication.

$$\lg A^2 = \lg A + \lg A = 2 \lg A$$

 $\lg A^{-3} = -3 \lg A$

Roots. It is easy to show that $\lg \sqrt{B} = \frac{1}{2} \lg B$.

 $B = B^{1/2} \times B^{1/2}$ Since

$$\lg B = \lg B^{\nu 2} + \lg B^{\nu 2}$$

 $\lg B^{\nu 2} = \frac{1}{2} \lg B$

 $\lg \sqrt[3]{B} = \frac{1}{3} \lg B$ Similarly,

ANTILOGARITHMS

Your calculator will give you the antilog of a number. You should consult the manual to find out the procedure for your own model of calculator.

Most calculators will give you reciprocals, squares and other powers, square roots and other roots directly. If you have a simpler form of calculator, you can obtain powers and roots by using logarithms.

ROUNDING OFF NUMBERS

Often your calculator will display an answer containing more digits than the numbers you feel into it. Suppose you are given the information that 18.6 cm² of sodium hydroxide solution exactly information that 18.6 cm² of sodium hydroxide solution exactly into the control of t

Since you read the burete to three figures, you quote your answer to three figures. In the number 0.1144086, the figures you are sure of are termed the significant figures. The significant figures are retained, and the insignificant figures are dropped. This operation is called and the insignificant figures are that been 0.1447086, it would have been supported by the operation of the control o

Some calculations involve several stages. It is sound practice to give one more significant figure in your answer at each stage than the number of significant figures in the data. Then, in the final stage, the answer is rounded off.

If the calculation were (25.0 × 0.100)/26.2 = 0.095419.84 mol dm⁻², would you still jound off to 3 significant figures 7 his would make the answer 0.0954 mol dm⁻². Stated in this way, the answer is claiming an accuracy of 1 part in 1954 — about 1 part in 1000. Since the hydrochloric acid concentration is known to about 1 part in 100, to the hydrochloric acid concentration is known to about 1 part in 100. The concentration is the state of the part in 100, to the concentration of the concentration is the concentration of the concentration in 100, to the concentration is the concentration of the concentration is the concentration of the concentration in 100, to the concentration is the concentration of the concentration is the concentration of the concentration is the concentration of the concentration of the concentration is the concentration of the concentration of the concentration is the concentration of the concentration of the concentration of the concentration of the concentration is the concentration of the concen

The number of significant figures is the number of figures which is accurately known. The number 123 has 3 significant figures. The number 1.23 × 10⁴ has 3 significant figures, but 12 300 has 5 significant figures because the final zeros mean that each of these digits is

known to be zero and not some other digit. The number 0.001 23 has 3 significant figures. The number 25.1 has 3 significant figures, and the number 25.10 has 4 significant figures as the final 0 states that the value of this number is known to an accuracy of 1 part in 2500.

In addition, the sum is known with the accuracy of the least reliable numbers in the sum. For example, the sum of

$$\begin{array}{r}
1.4167 \text{ g} \\
+100.5 \text{ g} \\
+7.12 \text{ g} \\
\hline
109.0367 \text{ g}
\end{array}$$

Since 1 figure is known to only 1 place after the decimal point, the sum also is known to 1 place after decimal point and should be written as 109.0 g. The same guideline is used for subtraction.

In multiplication and division the product or quotient is rounded off to the same number of significant figures as the number with the fewest significant figures. For example, 12340×2.7×0.00365 = 121.6107. The product is rounded off to 2 significant figures, 12.2×10².

CHOICE OF A CALCULATOR

is

The functions which you need in a calculator for the problems in this book are:

- Addition, Subtraction, Multiplication and Division
- Squares and other powers (x² and xy keys)
- Square roots and other roots (\(\setminus x\) and \(x^{1/y}\) kevs)
- Reciprocals
- Log₁₀ and antilog₁₀(10^x)
- Natural logarithms, ln_e and antiln_e(e^x)
- Exponent key and +/— key
- Brackets
 - Memory

A variety of scientific calculators have these functions and others (such as sin, cos, tan and Σx) which will be useful to you in physics and mathematics problems.

There are two sets of units currently employed in scientific work. One is the CGS system, based on the centimere, gram and second. The other is the Systeme Internationale (SI) which is based on the metre, kilogram, second and ampere. SI units were introduced in 1960, and in 1979 the Association for Science Education published a booklet called Chemical Nomenclature, Symbols and Terminology for Use in School Science that recommended that schools and colleges adopt this system.

Listed below are the SI units for the seven fundamental physical quantities on which the system is based and also a number of derived quantities and their units.

Chemists are still using some of the CGS units. You will find mass in g; volume in cm² and dm³; concentrations in mol dm³-5 or mol litrc¹¹; conductivity in Ω ¹-1 cm as well as Ω ¹-1 m. Pressure is sometimes given in mm mercury and temperatures in °C.

	Basic SI Units		
Physical Quantity	Name of Unit	Symbol	
Length	metre	m	
Mass	kilogram	kg	
Time	second	s	
Electric current	ampere	A	
Temperature	kelvin	K	
Amount of substance	mole	mol	
Light intensity	candela	cd	
	Derived SI Units		
Physical Quantity	Name of Unit	Symbol	Definition
Energy	joule	J	$kg m^2 s^{-2}$
Force	newton	N	J m ⁻¹
Electric charge	coulomb	C	As
Electric potential			
difference	volt	V	J A-1 s-1
Electric resistance	ohm	Ω	V A-1
Area	square metre		m ²
Volume	cubic metre		m ³
Density	kilogram per cubic		
_	metre		$kg m^{-3}$
Pressure	newton per square		
	metre or pascal		N m ⁻² or
Molar mass	1.21 1		Pa
Moiar mass	kilogram per mole		kg mol-1

With all these units, the following prefixes (and others) may be used:

Prefix	Symbol	Meanix
deci	d	10-1
centi	c	10-2
milli	m	10-3
micro	μ	10-6
nano	n	10-9
kilo	k	10 ³
mega	M	106
giga	G	109
tera	T	1012

It is very important when putting values for physical quantities into an equation to be consistent in the use of units. If you are, then the units can be treated as factors in the same way as numbers. Suppose you can be stated to alculate the volume occupied by 0.0110 kg of carbon dioxide at 27°C and a pressure of \$9.00 × 10°N m². You know that the gas constant is 8.31 mol "K-1 and that the molar mass of carbon dioxide is 440 gmd². Use thic ideal gas equation:

$$PV = nRT$$

The pressure $P = 9.80 \times 10^4 \,\mathrm{N \, m^{-2}}$

The constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

The temperature T = 27 + 273 = 300 K

The number of moles

n = Mass/Molar mass= 0.0110 kg/(44.0×10⁻³ kg mol⁻¹)

= 0.250 mol

Then $V = \frac{0.250 \text{ mol} \times 8.31 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{9.80 \times 10^4 \text{ N m}^{-2}}$ $= 6.34 \times 10^{-3} \text{ J N}^{-1} \text{m}^2$

Since J = Nm (1 joule = 1 newton metre) $V = 6.34 \times 10^{-3} Nm N^{-1} m^2$

 $= 6.34 \times 10^{-3} \,\mathrm{m}^3$

Volume has the unit of cubic metre. This calculation illustrates what people mean when they say that SI units form a coberent system of units. You can convert from one unit to another by multiplication and division, without introducing any numerical factors.

SOLUTION OF QUADRATIC EQUATIONS

A quadratic equation is the name for an equation of the type

$$av^2 + bv + c = 0$$

x is the unknown quantity, a and b are the coefficients of x, and c is a constant. The solution of this equation is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

There are two solutions to the equation. Often you will be able to decide that one solution is mathematically correct but physically impossible. You may be calculating some physical quantity that cannot possibly be negative so that you will ignore a negative solution and adout a positive solution.

DRAWING GRAPHS

Here are some hints for drawing graphs.

a) Whenever possible, data should be plotted in a form that gives a straight line graph. It is easier to draw the best straight line through a set of points than to draw a curve.

If the dimensions x and y are related by the expression y = ax + b, then a straight line will result when experimental values of y are plotted against the corresponding values of x. The values of x are plotted against the horizontal axis (the x-axis or abscisss), and the corresponding values of y x protocal along the vertical axis (the y-axis or ordinate). The gradient of the straight line obtained = a, and the intercent on the y-axis = b (see Fig. 1.1).

b) Choose a scale which will allow the graph to cover as much of the piece of graph paper as possible. There is no need to start at zero. If the points lie between 80 and 100, to start at zero would cramp your graph into a small section at the top of the page (see Fig. 1.2).

Choose a scale which will make plotting the data and reading the graph as simple as possible.

e) Label the axes with the dimensions and the units. Make the scale units as simple as possible. Instead of plotting as scale units 1×10⁻³ mol dm⁻³, 2×10⁻³ mol dm⁻³, 3×10⁻³ mol dm⁻³, etc., plot 1, 2 and 3, etc., and label the axis as (Concentration/mol dm⁻³)×10³ (see Fig. 1.3)

The solidus (/) is used because it means 'divided by'. The numbers, 1, 2 and 3, etc. (see Fig. 1.3) are the values of the physical quantity, concentration, divided by the unit, moldm⁻³, and multiplied by the factor 10³.

d) When you come to draw a straight line through the points, draw the best straight line you can, to pass through, or close to, as many points as possible (see Fig. 1.4). Owing to experimental error, not all the points will fall on the line. A graph of experimental results gives you a better accuracy than calculating a value from just one point. If you are drawing a curve, draw a smooth curve (see Fig. 1.5). Do not join up the points with straight lines. The curve may not pass through every point, but it is more reliable than any one of the points.

Fig. 1.2 Don't cramp your graph!

Fig. 1.4 Drawing the best line

ν1

A FINAL POINT

Always look critically at your answer. Ask yourself whether it is a reasonable answer. Is it of the right order of magnitude for the data? Is it in the right units? Many errors can be detected by an assessment of this kind.

EXERCISE 1 Practice with Calculations

- Convert the following numbers into standard form:
 23 678
 b) 437.6
 c) 0.0169
 - a) 23 678 b) 437.6 d) 0.000 345 c) 672 891
- Convert each of the following numbers into standard form, enter
- into your calculator, and multiply by 237. Give the answers in standard form.

 a) 246.8 b) 11 230 c) 267 831 d) 0,051 e) 0.567
- a) 246.8 b) 11230 c) 267831 d) 0.051 e) 0.567
- Find the following quotients:
 a) 2360/0.00071
 b) 28
 - a) 2360/0.000 71 b) 28 780/0.106 c) 85.42/460 000 d) 58/900 670 e) 0.000 88/0.144
- 4. Find the following sums and differences:
 - a) $(2.000 \times 10^4) + (0.10 \times 10^2)$ b) $48.0 + (5.600 \times 10^3)$
 - b) 48.0 + (5.600 × 10³) c) (1.23 × 10⁵) + (6.00 × 10³)
 - d) (4.80 × 10⁻⁴) (1.6 × 10⁻³)
 - e) (6.300 × 10⁴) (4.8 × 10²)
- Make an approximate estimate of the answers to the following: 4.0 × 10³ × 5.6 × 10⁻² × 7.1 × 10⁶
 - 1) $\frac{4.0 \times 10^{-2} \times 5.6 \times 10^{-2} \times 7.17}{8.2 \times 10^{-6} \times 4.9 \times 10^{3}}$
 - b) 567 × 4183 × 0.001 27 × 0.107
 - 496 × 7124 × 83 000 × 4.7
 - 7260 × 41 × 0.0075 1480 × 6730 × 0.173 × 0.0097
 - d) 0.15 × 0.0088 × 100 860 × 0.10 208 × 100 490
 - 560 × 0.005 5 × 0.000 49
- Find the logarithms of the following numbers:
 - a) 4735 b) 5.072 × 10³ c) 0.001 327 d) 10.076 e) 2.314 × 10⁻⁶

Formulae and Equations

Calculations are based on formulae and on equations. In order to tackle the calculations in this book you will have to be quite sure you can work out the formulae of compounds correctly, and that you can balance equations. This section is a revision of work on formulae and equations.

FORMULAE

Electrovalent compounds consist of oppositely charged ions. The compound formed is neutral because the charge on the positive ion (or ions) is equal to the charge on the negative ion (or ions). In sodium chloride. NaCl. one sodium ion, Na+, is balanced in charge by one chloride ion, Cl -.

This is how the formulae of electrovalent compounds can be worked out:

Compound Zinc chloride lons present are Zn2+ and C1-

Now balance the charges One Zn2+ ion needs two Cl- ions

Zn2+ and 2C1 lons needed are The formula is ZnCl.

Compound Sodium sulphate Na+ and SO₄2-Ions present are

Two Na+ balance one SO₄2-Now balance the charges

Ions needed are 2Na+ and SO₄2-The formula is Na₂SO₄

Aluminium sulphate Compound

Ions present are Al3+ and SO42-Two Al3+ balance three SO42-Now balance the charges

2Al3* and 3SO₄2-Ions needed are The formula is AL(SQ₄)₂

Compound Iron(II) sulphate Ions present are Fe2+ and SO42-

One Fe2+ balances one SO42-Now balance the charges Fe²⁺ and SO₄²⁻

Ions needed are The formula is FeSO.

Compound Iron(III) sulphate

Ions present are Fe³⁺ and SO₄²⁻

Now balance the charges Two Fe³⁺ balance three SO₄²⁻

In the formula is Fe₃(SO₄).

You need to know the charges of the ions in the table below. Then you can work out the formula of any electrovalent compound.

you can work out the formula of any electrovalent compound.

You will notice that the compounds of iron are named iron(II) sulphate and iron(III) sulphate to show which of its valencies iron is using in

the compound. This is always done with the compounds of elements of variable valency. For valency and oxidation number, see Chapter 8, p. 72.

Name Symbol Charge Name Symbol Charge Hydrogen H* + 1 Hydroxide OH* −1 Ammonium NH₄* + 1 Nitrate NO, −1 Portsetium K* + 1 Chloride C¹ −1

Hydrogen	H+	+1	Hydroxide	OH-	-1
Ammonium	NH ₄ ⁺	+1	Nitrate	NO ₃	-1
Potassium	K ⁺	+1	Chloride	Cl-	-1
Sodium	Na+	+1	Bromide	Br-	-1
Silver	Ag*	+1	Iodide	1-	-1
Copper(I)	Cu*	+1	Hvdrogen-		
			carbonate	HCO ₃	-1
Barium	Ba ²⁺	+ 2	Oxide	O2-	-2
Calcium	Ca ²⁺	+ 2	Sulphide	S2-	-2
Copper(II)	Cu ²⁺	+2	Sulphite	SO ₃ 2-	-2
Iron(II)	Fe ²⁺	+2	Sulphate	SO ₄ 2-	-2
Lead	Pb2+	+2	Carbonate	CO ₃ 2-	-2
Magnesium	Mg ²⁺	+2		-	
Zinc	Zn2+	+2			
Aluminium	Al3+	+ 3	Phosphate	PO ₄ 3-	-3
Iron(III)	Fe ³⁺	+ 3			

FOLIATIONS

Having symbols for elements and formulae for compounds gives us a way of representing chemical reactions.

EXAMPLE 1 Instead of writing 'Copper(II) carbonate forms copper(II) oxide and carbon dioxide', we can write

The atoms we finish with are the same in number and kind as the atoms we start with. We start with one atom of copper, one atom of carbon and three atoms of oxygen, and we finish with the same. This makes the two sides of the expression equal, and we call it an equation. A simple way of conveying a lot more information is to include state.

symbols in the equation. These are (s) = solid, (l) = liquid, (g) = gas, (aq) = in solution in water. The equation

$$CuCO_3(s)$$
 \longrightarrow $CuO(s) + CO_2(g)$

tells you that solid copper(II) carbonate dissociates to form solid copper(II) oxide and the gas carbon dioxide.

EXAMPLE 2 The equation

$$Zn(s) + H2SO4(aq)$$
 \longrightarrow $ZnSO4(aq) + H2(g)$

tells you that solid zinc reacts with a solution of sulphuric acid to give a solution of zinc sulphate and hydrogen gas. Hydrogen is written as H₂, since each molecule of hydrogen gas contains two atoms.

EXAMPLE 3 Sodium carbonate reacts with dilute hydrochloric acid to give carbon dioxide and a solution of sodium chloride. The equation could be

$$Na_2CO_3(s) + HCl(aq) \longrightarrow CO_2(g) + NaCl(aq) + H_2O(l)$$

but, when you add up the atoms on the right, you find that they are

not equal to the atoms on the left. The equation is not 'balanced', so the next step is to balance it. Multiplying NaCl by two gives

$$Na_2CO_3(s) + HCl(aq)$$
 \longrightarrow $CO_2(g) + 2NaCl(aq) + H_2O(l)$

This makes the number of sodium atoms on the right-hand side equal to the number on the left-hand side. But there are two chlorine atoms on the right-hand side, therefore the HCl must be multiplied by two:

$$Na_2CO_3(s) + 2HCl(aq)$$
 \longrightarrow $CO_2(g) + 2NaCl(aq) + H_2O(l)$

The equation is now balanced.

When you are balancing a chemical equation, the only way you do it is to multiply the number of atoms or molecules. You never try to alter a formula. In the above example, you got two chlorine atoms by multiplying HCl by two, not by altering the formula to HCl2, which does not exist

The steps in writing an equation are:

Write a word equation.

- 2. Put in the symbols and formulae (symbols for elements, formulae for compounds and state symbols).
- Balance the equation.

EVAMPLE 4 When methane hurns

Methane + Oxygen
$$\longrightarrow$$
 Carbon dioxide + Water
 $CH_4(g) + O_2(g) \longrightarrow$ $CO_2(g) + H_2O(g)$

20

There is one carbon atom on the left-hand side and one carbon atom on the right-hand side. There are four hydrogen atoms on the left-hand side, and therefore we need to put four hydrogen atoms on the right-hand side. Putting 2H₂O on the right-hand side will accomplish this:

$$CH_4(g) + O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

There is one molecule of O₂ on the left-hand side and four O atoms on the right-hand side. We can make the two sides equal by putting 2O₂ on the left shind side.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

This is a balanced equation. The numbers of atoms of carbon, hydrogen and oxygen on the left-hand side are equal to the numbers of atoms of carbon, hydrogen and oxygen on the right-hand side.

EXERCISE 2 Practice with Equations

- For practice, try writing the equations for the reactions:
 - a) Hydrogen + Copper oxide Copper + Water
 - b) Carbon + Carbon dioxide Carbon monoxide

 - d) Magnesium + Sulphuric acid Hydrogen + Magnesium sulphate
- e) Copper + Chlorine Copper(II) chloride
- Now try writing balanced equations for the reactions:
 a) Calcium + Water Hydrogen + Calcium hydroxide solution
 - b) Copper + Oxygen Copper(II) oxide
 - c) Sodium + Oxygen Sodium oxide
 - d) Iron + Hydrochloric acid ----- Iron(II) chloride solution
 - e) Iron + Chlorine Iron(III) chloride
- 3. Balance these equations:
- a) Na₂O(s) + H₂O(l) NaOH(aq)
- b) KClO₃(s) → KCl(s) + O₂(g)
- c) $H_2O_2(aq)$ \longrightarrow $H_2O(1) + O_2(g)$
- d) Fe(s) + O₂(g) → Fe₃O₄(s) e) Mg(s) + N₂(g) → Mg₃N₂(s)
- f) NH₃(g) + O₂(g) N₂(g) + H₂O(g)
- g) $Fe(s) + H_2O(g)$ \longrightarrow $Fe_3O_4(s) + H_2(g)$
- h) $H_2S(g) + O_2(g)$ \longrightarrow $H_2O(g) + SO_2(g)$ i) $H_2S(g) + SO_2(g)$ \longrightarrow $H_2O(l) + S(s)$

3 Relative Atomic Mass

RELATIVE ATOMIC MASS

Atoms are tiny: one atom of hydrogen has a mass of $1.66\times 10^{-26} \rm g$, one atom of carbon has a mass of $1.99\times 10^{-23} \rm g$. Numbers as small as one atom of carbon has a mass of $1.99\times 10^{-23} \rm g$. Numbers as small as this are awkward to handle, and, instead of the actual masses, we use relative atomic masses. Since hydrogen atoms are the smallest of all atoms, one atom of hydrogen was originally taken as the mass with which all other atoms would be compared. Then

Original relative atomic mass = $\frac{\text{Mass of one atom of the element}}{\text{Mass of one atom of hydrogen}}$

Thus, on this scale, the relative atomic mass of hydrogen is 1, and, since one atom of carbon is 12 times as heavy as one atom of hydrogen, the relative atomic mass of carbon is 12.

The modern method of finding relative atomic masses is to use a mass spectrometer. The most accurate measurements are made with volatile compounds of carbon, and it was therefore convenient to change the standard of reference to carbon. There are three isotopes of the standard carbon are the standard of the standard

Relative atomic mass = $\frac{\text{Mass of one atom of an element}}{(1/12) \text{ Mass of one atom of carbon-12}}$

On this scale, carbon-12 has a relative atomic mass of 12.000 000, carbon has a relative atomic mass of 12.011 11, and hydrogen has a relative atomic mass 1.007 97. Since relative atomic mass 1.007 97. Since relative atomic mass 1.007 97. Since relative atomic masses are ratios of two masses, they have no units, 3s this value for hydrogen is very of two masses of two masses are the second of two masses. The second is the second of two masses are t

RELATIVE MOLECULAR MASS

You can find the mass of a molecule by adding up the masses of all the atoms in it. You can find the relative molecular mass of a compound by adding the relative atomic masses of all the atoms in a molecule of the compound. For example, you can work out the relative molecular mass of carbon dioxide as follows: The formula is CO2.

22

1 atom of C, relative atomic mass 12 = 12

2 atoms of O, relative atomic mass 16 = 32

Total = 44

Relative molecular mass of CO₂ = 44

The symbol for relative molecular mass is M_r .

A vast number of compounds comist of ions, not molecules. The compound sodium chloride, for example, consists of sodium ions and chloride ions. You cannot correctly refer to a 'molecule of sodium chloride'. For ionic compounds, the term formula unit is used to describe the ions which make up the compound. A formula unit of coperful suplata-ef-sodium chloride is NaCl. A formula unit of coperful suplata-ef-water is CusCq. '8H₂O. It is still correct to use the term relative molecular mass for ionic compounds'.

Relative molecular mass = $\frac{\text{Mass of one formula unit}}{(1/12) \text{ Mass of one atom of carbon-12}}$

We work out the relative molecular mass of calcium chloride as follows:

The formula is CaCl2.

1 atom of Ca, relative atomic mass 40 = 40

2 atoms of Cl, relative atomic mass 35.5 = 71

Total = 111
Relative molecular mass of $CaCl_2 = 111$

We work out the relative molecular mass of aluminium sulphate as

The formula is Al₂(SO₄)₃,

follows:

2 atoms of Al, relative atomic mass 27 = 54

3 atoms of S. relative atomic mass 32 = 96

12 atoms of O, relative atomic mass 16 = 192

Total = 342

Total = 3+2Relative molecular mass of Al₂(SO₄)₂ = 342

EXERCISE 3 Problems on Relative Molecular Mass

Work out the relative molecular masses of these compounds:

SO ₂	NaOH	KNO ₃
$MgCO_3$	PbCl ₂	MgCl ₂
$Mg(NO_3)_2$	$Zn(OH)_2$	ZnSO ₄
H ₂ SO ₄	HNO ₃	MgSO ₄ ·7H ₂ O
CaSO ₄	Pb_3O_4	P_2O_5
Na ₂ CO ₃	Ca(OH) ₂	CuCO ₃
CuSO ₄	Ca(HCO ₃) ₂	CuSO ₄ ·5H ₂ O
$Fe_2(SO_4)_3$	Na ₂ CO ₃ ·10H ₂ O	FeSO ₄ •7H ₂ O

PERCENTAGE COMPOSITION

From the formula of a compound, we can work out the percentage by mass of each element present in the compound.

EXAMPLE 1 Calculate the percentage of silicon and oxygen in silicon(IV) oxide (silica).

метнов First, work out the relative molecular mass. The formula is SiO2.

1 atom of silicon, relative atomic mass 28 = 28 2 atoms of oxygen, relative atomic mass 16 = 32

Total = Relative molecular mass = 60 Percentage of silicon = $\frac{28}{60} \times 100 = \frac{7}{15} \times 100$

$$= \frac{7 \times 20}{3} = 47\%$$
Percentage of oxygen = $\frac{32}{60} \times 100 = \frac{8}{15} \times 100$
= $\frac{8 \times 20}{15} = 53\%$

ANSWER Silicon(IV) oxide contains 47% silicon and 53% oxygen by mass.

Since every formula unit of silicon(IV) oxide is 47% silicon, and all formula units are identical, bulk samples of pure silicon(IV) oxide all contain 47% silicon. This is true whether you are talking about silicon(IV) oxide found as outarts, or amethyst or crystoballite or sand.

In general,

Percentage of element A =

Relative atomic mass of $A \times No$, of atoms of A in formula $\times 100$

Relative molecular mass of compound

EXAMPLE 2 Find the percentage by mass of magnesium, oxygen and sulphur in magnesium sulphate.

METHOD First calculate the relative molecular mass. The formula is MgSO₄.

1 atom of magnesium, relative atomic mass 24 = 24

1 atom of sulphur, relative atomic mass 32 = 32

4 atoms of oxygen, relative atomic mass 16 = 64 Total = Relative molecular mass, M_e = 120

Percentage of magnesium = $\frac{A_t(Mg) \times \text{No. of } Mg \text{ atoms}}{M_t(MgSO_4)} \times 100$ = $\frac{24}{20} \times 100$

= 20%

Percentage of sulphur = $\frac{A_r(S) \times No. \text{ of S atoms}}{M_r(MgSO_4)} \times 100$

 $= \frac{32}{120} \times 100$ = 27%

Percentage of oxygen = $\frac{A_1(0) \times \text{No. of O atoms}}{M_1(\text{MgSO}_4)} \times 100$ = $\frac{16 \times 4}{120} \times 100$

= 120 × = 53%

AMSWER Magnesium 20%; sulphur 27%; oxygen 53%. You can check on the calculation by adding up the percentages to see whether they add up to 100. In this case 20 + 27 + 53 = 100.

EXAMPLE 3 Calculate the percentage of water in copper sulphate crystals.

METHOD Find the relative molecular mass. The formula is CuSO₄ 5H₂O.

1 atom of copper, relative atomic mass 64 = 64 (approx.)

1 atom of sulphur, relative atomic mass 32 = 32

4 atoms of oxygen, relative atomic mass 16 = 64

5 molecules of water, $5 \times [(2 \times 1) + 16] = 5 \times 18 = 90$

Total = Relative molecular mass = 250

Mass of water = 90

Percentage of water = Mass of water in formula | Relative molecular mass × 100

 $=\frac{90}{250}\times 100$ = 36%

ANSWER. The percentage of water in copper sulphate crystals is 36%.

EXERCISE 4 Problems on Percentage Composition

SECTION 1

Calculators are not needed for these problems.

- 1. Calculate the percentages by mass of
 - a) carbon and hydrogen in ethane, C₂H₆
 - b) sodium, oxygen and hydrogen in sodium hydroxide, NaOH
 - c) sulphur and oxygen in sulphur trioxide, SO₄
 - d) carbon and hydrogen in propyne, C₃H₄,
- 2. Calculate the percentages by mass of
 - a) carbon and hydrogen in heptane, C2H16
 - b) magnesium and nitrogen in magnesium nitride, Mg3N2
 - c) sodium and iodine in sodium iodide. NaI
 - d) calcium and bromine in calcium bromide, CaBr2.

SECTION 2

- 1. Calculate the percentage by mass of
 - a) carbon and hydrogen in pentene, C₅H₁₀
 - b) nitrogen, hydrogen and oxygen in ammonium nitrate c) iron, oxygen and hydrogen in iron(II) hydroxide
 - d) carbon, hydrogen and oxygen in ethanedioic acid, C₂O₄H₂.

- 2. Calculate the percentages of
 - a) carbon, hydrogen and oxygen in propanol, C₃H₂OH
 - b) carbon, hydrogen and oxygen in ethanoic acid, CH₃CO₃H
 - c) carbon, hydrogen and oxygen in methyl methanoate, HCO-CH₃
 - d) aluminium and sulphur in aluminium sulphide, Al-S2,
 - 3. Haemoglobin contains 0.33% by mass of iron. There are 2 Fe atoms in
- 1 molecule of haemoglobin. What is the relative molecular mass of haemoglobin? 4. An adult's bones weigh about 11 kg, and 50% of this mass is calcium
- phosphate, Ca₃(PO₄)₂. What is the mass of phosphorus in the bones of an average adult?

4 The Mole

THE MOLE

Looking at equations tells us a great deal about chemical reactions. For example,

$$Fe(s) + S(s)$$
 FeS(s)

tells us that iron and sulphur combine to form ironf(II) sulphide, and that one atom of iron combines with one atom of sulphur. Chemists are interested in the exact quantities of substances which react together in chemical reactions. For example, in the reaction between iron and sulphur, if you want to measure our just enough iron to combine with, to compare the sulphur, if you want to measure our just enough iron to combine with or common even and the sulphur is the sulphur is not come or compared to make the problem does not come or even all unturbers of a tome of from and sulphur. This sounds a formidable task, and it puzzled a chemist called Avogadro, working in Italy early in the ninterenth century. He managed to solve this problem with a piece of clear thinking which makes the problem look very simple once you have followed his argument.

Avogadro reasoned in this way:

We know from their relative atomic masses that an atom of carbon is 12 times as heavy as an atom of hydrogen. Therefore, we can say:

If 1 atom of carbon is 12 times as heavy as 1 atom of hydrogen, then 1 dozen C atoms are 12 times as heavy as 1 dozen H atoms, and 1 hundred C atoms are 12 times as heavy as 1 hundred H atoms, and 1 million C atoms are 12 times as heavy as 1 million H atoms,

and it follows that when we see a mass of carbon which is 12 times as heavy as a mass of hydrogen, the two masses must contain equal numbers of atoms. If we have 12 g of carbon and 1 g of hydrogen, we know that we have the same number of atoms of carbon and hydrogen. The same argument applies to any element. When we take the relative atomic mass of an element in grams:

all these masses contain the same number of atoms. This number is 6.022×10²³. The amount of an element which contains this number of atoms is called one mole of the element. (The symbol for mole is mol.) The ratio 6.022×10²³/mol is called the Avogadro constant. The mole is defined as the amount of a substance which contains as many elementary entities as there are atoms in 12 grams of carbon-12.

We can count out 6×10^{12} atoms of any element by weighing out its relative atomic mass in grams. If we want to react iron and sulphur to relative atomic iron and sulphur to that there is an atom of sulphur for every atom of iron, we can count out 6×10^{12} atoms of sulphur and weighing out 5×10^{12} or sulphur and weight can count out 6×10^{12} atoms of iron by weighing out 5×10^{12} or sulphur control formed in order of iron that which one atom of sulphur to form one formulat unit of iron(II) sulphide, one mole of sulphur to form on

$$Fe(s) + S(s) \longrightarrow FeS(s)$$

and 56g of iron react with 32g of sulphur to form 88g of iron(II) sulphide.

Just as one mole of an element is the relative atomic mass in grams, one mole of a compound is the relative molecular mass in grams. If you want to weigh out one mole of sodium hydroxide, you first work out its relative molecular mass.

The formula is NaOH.

If you weigh out 40g of sodium hydroxide, you have one mole of sodium hydroxide. The quantity 40g mol⁻¹ is the molar mass of sodium hydroxide. The molar mass of a compound is the relative molecular mass in grams per mole. The molar mass of an element is the relative atomic mass in grams per mole. The molar mass of sodium hydroxide is 40g mol⁻¹ and the molar mass of sodium is 23 g mol⁻¹.

Remember that most gaseous elements consist of molecules, not attended to the content of the content of the content of the content hydrogen as H₂ molecules, and so on. To work out the mass of a mole of chlorine molecules, you must use the relative molecular mass of Cl₂.

The noble gases, helium, neon, argon, krypton and xenon, exist as atoms. Since the relative atomic mass of helium is 4, the mass of 1 mole of helium is 4g.

```
30
        Calculations for A-level Chemistry
            What is the molar mass of glucose?
            Formula = C_6H_{12}O_6
            Relative molar mass = (6 \times 12) + (12 \times 1) + (6 \times 16) = 180
            The relative molar mass is 180, and the molar mass is 180 g mol-1.
ANSWED
```

EXERCISE 5 Problems on the Mole

SECTION 1

- 1. State the mass of each element in:
 - a) 0.5 mol chromium b) 1/7 mol iron
 - c) 1/3 mol carbon d) 1/4 mol magnesium
 - e) 1/7 mol nitrogen molecules f) 1/4 mol oxygen molecules. Remember that nitrogen and oxygen exist as diatomic molecules, N2 and Os.
- 2. Calculate the amount of each element in:
 - a) 46 g sodium b) 130 g zinc c) 10 g calcium
- d) 2.4 g magnesium
 e) 13 g chromium.
 - 3. Find the mass of each element in: a) 10 mol lead
 - b) 1/6 mol copper
 - c) 0.1 mol iodine molecules d) 10 mol hydrogen molecules e) 0.25 mol calcium f) 0.25 mol bromine molecules
 - g) 3 mol iron h) 0.20 mol zinc
 - i) † mol chlorine molecules j) 0.1 mol neon.
 - 4. State the amount of substance (mol) in:
 - a) 58.5 g sodium chloride
 - b) 26.5 g anhydrous sodium carbonate
 - c) 50.0 g calcium carbonate
 - d) 15.9 g copper(II) oxide
 - e) 8.00 g sodium hydroxide f) 303 g potassium nitrate
 - g) 9.8 g sulphuric acid

 - h) 499 g copper(II) sulphate-5-water.
- 5. Given Avogadro's constant is 6 × 1023 mol-1, calculate the number of atoms in:
 - a) 35.5 g chlorine

- b) 27 g aluminium h) 216 g silver.
- c) 3.1 g phosphorus d) 336 g iron e) 48 g magnesium f) 1.6 g oxygen
- g) 0.4 g oxygen

- 6. How many grams of zinc contain:
 - a) 6×10²³ atoms
 b) 6×10²⁰ atoms?
- 7. How many grams of aluminium contain:
- a) 2×10²³ atoms b) 6×10²⁰ atoms?
- What mass of carbon contains:
 a) 6×10²³ atoms
- b) 2 × 10²¹ atoms?

-
 - Write down:

 the mass of calcium which has the same number of atoms as 12g of magnesium
 - b) the mass of silver which has the same number of atoms as 3 g of
 - c) the mass of zinc with the same number of atoms as 1 g of helium
 - d) the mass of sodium which has 5 times the number of atoms in 39 g of potassium.

SECTION 2

Use Avogadro constant = $6 \times 10^{23} \text{ mol}^{-1}$.

- Imagine a hardware store is having a sale. The knock-down price of titanium is one billion (10°) atoms for 1p. How much would you have to pay for 1 milligram (1×10⁻³g) of titanium?
- Ethanol, C₂H₆O, is the alcohol in alcoholic drinks. If you have 9.2 g of ethanol, how many moles do you have of
 - a) ethanol molecules b) carbon atoms
 - c) hydrogen atoms d) oxygen atoms?
- A car releases about 5 g of nitrogen oxide, NO, into the air for each mile driven. How many molecules of NO are emitted per mile?
- 4. How many moles of H₂O are there in 1.00 litre of water?
- 5. How many moles of Fe₂O₃ are there in 1.00 kg of rust?
- 6. What is the mass of one molecule of water?
- 7. What is the amount (mol) of sucrose, $C_{12}H_{22}O_{11}, \ \mbox{in a one kilogram bag of sugar?}$

5 Equations and the Mole

You will find that the mole concept, which you studied in Chapter 4, helps with all your chemical calculations. In chemistry, calculations are related to the equations for chemical reactions. The quantities of substances that react together are expressed in moles.

CALCULATIONS BASED ON CHEMICAL EQUATIONS

Equations tell us not only what substances react together but also what amounts of substances react together. The equation for the action of heat on sodium hydrogenearbonate

$$2NaHCO_3(s)$$
 \longrightarrow $Na_2CO_3(s)$ + $CO_2(g)$ + $H_2O(g)$

tells us that 2 moles of NaHCO₃ give 1 mole of Na₂CO₃. Since the molar masses are NaHCO₃ = 84 g mol⁻¹ and Na₂CO₃ = 106 g mol⁻¹, it follows that 168 g of NaHCO₃ give 106 g of Na₂CO₃.

The amounts of substances undergoing reaction, as given by the balanced chemical equation, are called the stockiolmeteric amounts. Stockiolmetery is the relationship between the amounts of reactants and products in a chemical reaction. If one reactant is present in second of the stockiolmeteric amount required for reaction with unused at the end of the reaction.

EXAMPLE 1 How many moles of iodine can be obtained from a mole of potassium iodate(V)?

метноо The equation

ANSWER $\frac{1}{4}$ mol of KIO₃ gives $\frac{1}{4} \times 3$ mol of $I_2 = \frac{1}{2}$ mol of I_2 .

EXAMPLE 2 What is the maximum mass of ethyl ethanoate that can be obtained from 0.1 mol of ethanol?

tells us that 1 mol of KIO3 gives 3 mol of I2. Therefore:

METHOD Write the equation:

1 mol of C2H5OH gives 1 mol CH3CO2C2H5 0.1 mol of C₂H₂OH gives 0.1 mol CH₂CO₂C₂H₂

The molar mass of CH3CO3C3H5 is 88 g mol-1. Therefore:

ANSWER 0.1 mol of ethanol gives 8.8 g of ethyl ethanoate.

EXAMPLE 3 A mixture of 5.00g of sodium carbonate and sodium hydrogencarbonate is heated. The loss in mass is 0.31 g. Calculate the percentage by mass of sodium carbonate in the mixture.

METHOD On heating the mixture, the reaction

takes place. The loss in mass is due to the decomposition of NaHCO3. Since 2 mol NaHCO3 form 1 mol CO2 + 1 mol H2O 2 × 84 g NaHCO3 form 44 g CO2 and 18 g H2O

168 g NaHCO₃ lose 62 g in mass.

The observed loss in mass of 0.31 g is due to the decomposition of

$$\frac{0.31}{62} \times 168 \,\mathrm{g \, NaHCO_3} = 0.84 \,\mathrm{g}$$

The mixture contains 0.84 g NaHCO₃ The difference, 5.00 - 0.84 = 4.16 g Na₂CO₃.

Percentage of Na₂CO₃ = $\frac{4.16}{6.00} \times 100 = 83.2\%$.

ANSWER

Problems on Reacting Masses of Solids SECTION 1

EXERCISE 6

- 1. A sulphuric acid plant uses 2500 tonnes of sulphur dioxide each day. What mass of sulphur must be burned to produce this quantity of sulphur dioxide?
- 2. An antacid tablet contains 0.1 g of magnesium hydrogencarbonate, Mg(HCO3)2. What mass of stomach acid, HCl, will it neutralise?
- Aspirin, C₀H₂O₄, is made by the reaction:

Salicylic acid + Ethanoic anhydride - Aspirin + Ethanoic acid C2H6O2 + C4H6O2 CoHaOa + CoHaOa

How many grams of salicylic acid, C2H6O3, are needed to make one aspirin tablet, which contains 0.33g of aspirin?

4. Aluminium sulphate is used to treat sewage. It can be made by the reaction:

a) Balance this unbalanced equation for the reaction:

 $Al(OH)_3(s) + H_2SO_4(aq)$ \longrightarrow $Al_2(SO_4)_3(aq) + H_2O(l)$

- Say what masses of (i) aluminium hydroxide and (ii) sulphuric acid are needed to make 1.00 kg of aluminium sulphate.
- Washing soda, Na₂CO₃·10H₂O₄ loses some of its water of crystallisation if it is not kept in an air-tight container to form Na₂CO₃·H₂O.
 A grocer buys a 10 kg bag of washing soda at 30p/kg. While it is

standing in his store room, the bag punctures, and the crystals turn into a powder, Na₂CO₃·H₂O. The grocer sells this powder at 50p/kg. Does he make a profit or a loss?

- When you take a warm bath, the power station has to burn about 1.2 kg of coal to provide enough electricity to heat the water.
 - a) If the coal contains 3% sulphur, what mass of sulphur dioxide does the power station emit as a result?
 - Multiply your answer by the number of warm baths you take in a year.
 - c) This is only a part of your contribution to air pollution. What can be done to reduce this source of pollution — apart from taking cold baths?
 - Nitrogen monoxide, NO, is a pollutant gas which comes out of vehicle exhausts. One technique for reducing the quantity of nitrogen monoxide in vehicle exhausts is to inject a stream of ammonia, NH₃, into the exhaust. Nitrogen monoxide is converted into the harmless products nitrogen and water:

$$4NH_3(g) + 6NO(g)$$
 \longrightarrow $5N_2(g) + 6H_2O(l)$

An average vehicle emits 5 g of nitrogen monoxide per mile. Assuming a mileage of 10 000 miles a year, what mass of ammonia would be needed to clean up the exhaust?

8. Some industrial plants, for example aluminium smelters, emit fluorides. In the past, there have been cases of fluoride pollution affecting the teeth and joints of cattle. The Union Carbide Corporation has invented a process for removing fluorides from waste gases. It involves the reaction:

high temperature Fluoride ion (F")+ Charcoal (C) ← Carbon tetrafluoride (CF₄) The product, CF₄, is harmless. The firm claims that 1 kg of charcoal will remove 6.3 kg of fluoride ion. Do vou believe this claim? Explain your answer.

- 9. A factory makes a detergent of formula C12H25O4Na from lauryl alcohol, C10H20. To manufacture 11 tonnes of detergent daily, what mass of lauryl alcohol is needed?
- 10. A mass of 0.65 g of zinc powder was added to a beaker containing silver nitrate solution. When all the zinc had reacted, 2.16 g of silver were obtained

Calculate

- a) the amount of zinc used
- b) the amount of silver formed
- c) the amount of silver produced by 1 mol of zinc.
- d) Write a balanced ionic equation for the reaction.

SECTION 2

1. The element X has a relative atomic mass of 35.5. It reacts with a solution of the sodium salt of Y according to the equation

$$X_2 + 2NaY \longrightarrow Y_2 + 2NaX$$

If 14.2 g of X2 displace 50.8 g of Y2, what is the relative atomic mass of Y?

2. TNT is an explosive. The name stands for trinitrotoluene. The compound is made by the reaction

Calculate the masses of a) toluene and b) nitric acid that must be used to make 10.00 tonnes of TNT. (1 tonne = 1000 kg.)

3. A large power plant produces about 500 tonnes of sulphur dioxide in a day. One way of removing this pollutant from the waste gases is to inject limestone. This converts sulphur dioxide into calcium sulphate.

Another method of removing sulphur dioxide is to 'scrub' the waste gases with ammonia. The product is ammonium sulphate.

EXAMPLE 1 Iron burns in chlorine to form iron chloride. An experiment showed that 5.60 g of iron combined with 10.65 g of chlorine. Deduce the equation for the reaction.

METHOD 5.60 g of iron combine with 10.65 g of chlorine

Relative atomic masses are: Fe = 56, Cl = 35.5

Amount (mol) of iron = 5.60/56 = 0.10Amount (mol) of chloring molecules = 10.65/71.0 = 0.15

The equation must be: Fe + 1.5Cl₂

To balance the equation, the right-hand side must read 2FeCl₃. Therefore,

ANSWER
$$2Fe(s) + 3Cl_2(g) \longrightarrow 2FeCl_3(s)$$

EXAMPLE 2 17.0g of sodium nitrate react with 19.6g of sulphuric acid to give 12.6g of nitric acid. Deduce the equation for the reaction.

метнор Relative molecular masses are: NaNO₃ = 85, H₂SO₄ = 98, HNO₃ = 63

Number of moles of $NaNO_3 = 17.0/85 = 0.2$

Number of moles of $H_2SO_4 = 19.6/98 = 0.2$ Number of moles of $HNO_3 = 12.6/63 = 0.2$

0.2 mol NaNO₃ reacts with 0.2 mol H₂SO₄ to form 0.2 mol of HNO₃ 1 mol NaNO₃ reacts with 1 mol H₂SO₄ to form 1 mol of HNO₃

$$NaNO_3(s) + H_2SO_4(l)$$
 HNO₃(l)

The equation must be balanced by inserting NaHSO₄ on the righthand side:

ANSWER
$$NaNO_2(s) + H_2SO_4(l) \longrightarrow HNO_2(l) + NaHSO_4(s)$$

EXERCISE 7 Problems on Deriving Equations

- To a solution containing 2.975 g of sodium persulphate, Na₂S₂O₈, is added an excess of potassium iodide solution. A reaction occurs, in which sulphate ions are formed and 3.175 g of iodine are formed. Deduce the equation for the reaction.
- Aminosulphuric acid, H₂NSO₂H, reacts with warm sodium hydroxide solution to give ammonia and a solution which contains sulphate ions. 0.540g of the acid, when treated with an excess of alkali, gave 133 cm³ of ammonia at 60 °C and 1 atm. Deduce the equation for the reaction.

38

- 3. A solution containing 5.00 × 10⁻³ mol of sodium thiosulphate was shaken with 1g of silver chloride. 0.7175 g of silver chloride dissolved, and analysis showed that 5.00 × 10⁻³ mol of chloride ions were present in the resulting solution. Derive an equation for the reaction.
- An unsaturated hydrocarbon of molar mass 80g mol⁻¹ reacts with bromine. If 0.250g of hydrocarbon reacts with 1.00g of bromine, what is the equation for the reaction?
- Given that 1.00 g of phenylamine, C₆H₅NH₂, reacts with 5.16 g of bromine, derive an equation for the reaction.

PERCENTAGE YIELD

There are many reactions which do not go to completion. Reactions between organic compounds do not often give a 100% yield of product. The actual yield is compared with the yield calculated from the molar masses of the reactants. The equation

Percentage yield =
$$\frac{\text{Actual mass of product}}{\text{Calculated mass of product}} \times 100$$

is used to give the percentage yield.

EXAMPLE From 23g of ethanol are obtained 36g of ethyl ethanoate by esterification with ethanoic acid in the presence of concentrated sulphuric acid. What is the percentage yield of the reaction?

METHOD Write the equation:

23 g of
$$C_2H_5OH$$
 should give $\frac{23}{46} \times 88 g = 44 g$ of $CH_3CO_2C_2H_5$

Actual mass obtained = 36 g

$$Percentage \ yield = \frac{Actual \ mass \ of \ product}{Calculated \ mass \ of \ product} \times 100$$

NSWER Percentage yield =
$$\frac{36}{44} \times 100 = 82\%$$

EXERCISE 8 Problems on Percentage Yield

 Phenol, C₆H₂GH, is converted into trichlorophenol, C₆H₂Gl₂GH. If 488g of product are obtained from 250g of phenol, calculate the percentage yield.

- 29.5 g of ethanoic acid, CH₃CO₂H, are obtained from the oxidation of 25.0 g of ethanol, C₂H₂OH. What percentage yield does this represent?
- 0.8500 g of hexanone, C₆H₁₂O, is converted into its 2,4-dinitrophenylhydrazone. After isolation and purification, 2.1180 g of product, C₁₂H₁₈N₄O₄, are obtained. What percentage yield does this represent?
- Benzaldehyde, C₂H₆O, forms a hydrogensulphite compound of formula C₂H₂SO₄Na. From 1.210 g of benzaldehyde, a yield of 2.181 g of the product was obtained. Calculate the percentage yield.
- 5. 100 cm³ of barium chloride solution of concentration 0.0500 mol dm⁻³ were treated with an excess of sulphate ions in solution. The precipitate of barium sulphate formed was dried and weighed. A mass of 1.1558 g was recorded. What percentage yield does this represent?

LIMITING REACTANT

In a chemical reaction, the reactants are often added in amounts which are not stoichimentric. One or more of the reactants is in excess and is not completely used up in the reaction. The amount of product is determined by the amount of the reactant that is not in excess and is used up completely in the reaction. This is called the finiting you can calculate the amount of product formed.

EXAMPLE 5.00 g of iron and 5.00 g of sulphur are heated together to form iron(II) sulphide. Which reactant is present in excess? What mass of product is formed?

METHOD Write the equation:

```
Fe(s) + S(s) \longrightarrow FeS(s)
1 mole of Fe + 1 mole of S form 1 mole of FeS
```

There is insufficient Fe to react with 0.156 mol S; iron is the limiting

0.0893 mol Fe forms 0.0893 mol FeS = 0.0893 x 88 g = 7.86 g

ANSWER Mass formed = 7.86 g.

EXERCISE 9 Problems on Limiting Reactant

1. In the blast furnace, the overall reaction is

$$2Fe_2O_3(s) + 3C(s) \longrightarrow 3CO_2(g) + 4Fe(s)$$

What is the maximum mass of iron that can be obtained from 700 tonnes of iron(III) oxide and 70 tonnes of coke? (1 tonne = 1000 kg.)

2. In the manufacture of calcium carbide

What is the maximum mass of calcium carbide that can be obtained from 40 kg of quicklime and 40 kg of coke?

- In the manufacture of the fertiliser ammonium sulphate
 H₂SO₄(aq) + 2NH₁(g) → (NH₂)₂SO₄(aq)
 What is the maximum mass of ammonium sulphate that can be obtained from 2.0 kg of sulphuric acid and 1.0 kg of ammonia?
- 4. In the Solvay process, ammonia is recovered by the reaction 2NH₄Cl(s) + CaO(s) — CaCl₂(s) + H₂O(g) + 2NH₃(g) What is the maximum mass of ammonia that tao he recovered from 2.00 × 10³ kg of ammonium chloride and 500 kg of quicklime?
- 5. In the Thermit reaction

$$2Al(s) + Cr_2O_3(s) \longrightarrow 2Cr(s) + Al_2O_3(s)$$

Calculate the percentage yield when 180 g of chromium are obtained from a reaction between 100 g of aluminium and 400 g of chromium(III) oxide.

6 Finding Formulae

EMPIRICAL FORMULAE

The formula of a compound is determined by finding the mass of each element present in a certain mass of the compound.

Remember,

Amount (in moles) of substance =
$$\frac{\text{Mass of substance}}{\text{Molar mass of the substance}}$$

EXAMPLE 1 Given that 127 g of copper combine with 32 g of oxygen, what is the formula of copper oxide?

Elements		Copper			Oxygen
Symbols		Cu			O
Masses		127 g			32 g
Relative atomic masses		63.5			16
Amounts		127			32
		63.5			16
	22	2 mol		=	2 mol
Divide through by 2	200	1 mol	to		1 mol
Ratio of atoms	=	1 atom	to		1 atom
Formula			CuO		

We divide through by two to obtain the simplest formula for copper oxide which will fit the data. The simplest formula which represents the composition of a compound is called the empirical formula.

EXAMPLE When 127 g of copper combine with oxygen, 143 g of an oxide are formed. What is the empirical formula of the oxide?

METHOD You will notice here that the mass of oxygen is not given to you.

You obtain it by subtraction.

42 Calculations for A-level Chemistry

Now you can carry on as before:

Elements		Copper		Oxygen
Symbols		Cu		0
Masses		127 g		16 g
Relative atomic masses		63.5		16
		127		16
Amounts		63.5		16
	=	2	=	1
Ratio of atoms	m	2	to	1

ANSWER Empirical formula Cu₂O.

EXAMPLE 3 Find n in the formula MgSO₄·nH₂O. A sample of 7.38 g of magnesium sulphate crystals lost 3.78 g of water on heating.

METHOD	Compounds present	Magnesium sulphat	e	Water
	Mass	3.60 g		3.78 g
	Molar mass	120 g mol ⁻¹		18 g mol -1
	Amount	3.60/120		3.78/18
		= 0.030 mol	100	0.21 mol
	Ratio of amounts	0.030		0.21
		0.030		0.030
		- 1	_	7

ANSWER The empirical formula is MgSO₄·7H₂O.

MOLECULAR FORMULAE

The molecular formula is a simple multiple of the empirical formula. If the empirical formula is GH_2O , the molecular formula may be CH_2O or $C_2H_4O_2$ or $C_2H_6O_3$ and so on. You can tell which molecular formula is correct by finding out which gives the correct molar mass.

For methods of finding molar masses, see Chapters 9, 10 and 11. The molar mass is a multiple of the empirical formula mass.

EXAMPLE A compound has the empirical formula CH₂O and molar mass 180 g mol⁻¹. What is its molecular formula?

METHOD Empirical formula mass = 30 g mol⁻¹
Molar mass = 180 g mol⁻¹

The molar mass is 6 times the empirical formula mass. Therefore the molecular formula is 6 times the empirical formula. Therefore:

ANSWER The empirical formula is C6H12O6.

EXERCISE 10 Problems on Formulae

SECTION 1

0.72 g of magnesium combine with 0.28 g of nitrogen.

How many moles of magnesium does this represent?

How many moles of nitrogen atoms combine?

How many moles of magnesium combine with one mole of nitrogen

What is the formula of magnesium nitride?

1.68 g of iron combine with 0.64 g of oxygen.
 How many moles of iron does this mass represent?

How many moles of iron does this mass represer How many moles of oxygen atoms combine?

How many moles of iron combine with one mole of oxygen atoms? What is the formula of this oxide of iron?

 Calculate the empirical formula of the compound formed when 2.70 g of aluminium form 5.10 g of its oxide.

What is the mass of aluminium?

What is the mass of oxygen (not oxide)? How many moles of aluminium combine? How many moles of oxygen atoms combine?

What is the ratio of moles of aluminium to moles of oxygen atoms?
What is the formula of aluminium oxide?

Barium chloride forms a hydrate which contains 85.25% barium chloride and 14.75% water of crystallisation. What is the formula of the contains 1.25% barium chloride and 1.25% water of crystallisation.

this hydrate? What is the mass of barium chloride in 100 g of the hydrate?

What is the mass of water in 100 g of the hydrate? What is the relative molecular mass of barium chloride?

What is the relative molecular mass of barium of water?

How many moles of barium chloride are present in 100 g of the hydrate?

How many moles of water are present in 100 g of the hydrate? What is the ratio of moles of barium chloride to moles of water?

What is the formula of barium chloride to moles of wa What is the formula of barium chloride hydrate?

 Calculate the empirical formula of the compound formed when 414 g of lead form 478 g of a lead oxide.

What mass of lead is present?
How many moles of lead are present?

What mass of oxygen (not oxide) is present? How many moles of oxygen atoms are present? What is the formula of this oxide of lead?

Calculate the empirical formulae of the following compounds:
 a) 0.62 g of phosphorus combined with 0.48 g of oxygen

b) 1.4g of nitrogen combined with 0.4eg of hydrogen

c) 0.62 g of lead combined with 0.064 g of oxygen

- d) 3.5 g of silicon combined with 4.0 g of oxygen
 - e) 1.10g of manganese combined with 0.64g of oxygen
 - f) 4.2 g of nitrogen combined with 12.0 g of oxygen
 - g) 2.6 g of chromium combined with 5.3 g of chlorine
- 7. Find the molecular formula for each of the following compounds from the empirical formula and the relative molecular mass:

Empirical formula	M_r		Empirical formula	M_r
CF ₂	100	E	CH ₂	42
C ₂ H ₄ O	88	F	CH ₃ O	62
CH ₃	30	G	CH₂Cl	99
CH	78	Н	C ₂ HNO ₂	213
	CF ₂ C ₂ H ₄ O CH ₃	CF ₂ 100 C ₂ H ₄ O 88 CH ₃ 30	CF ₂ 100 E C ₂ H ₄ O 88 F CH ₃ 30 G	CF ₂ 100 E CH ₂ C ₂ H ₄ O 88 F CH ₅ O CH ₃ 30 G CH ₂ Cl

8. A metal M forms a chloride of formula MCl₂ and relative molecular mass 127. The chloride reacts with sodium hydroxide solution to form a precipitate of the metal hydroxide. What is the relative molecular mass of the hydroxide?

9. A porcelain hoat was weighed. After a sample of the oxide of a metal M, of A₁ = 119, was placed in the boat, the boat was reweighed. Then the boat was replaced in a reduction tube, and heated white a stream of hydrogen was passed over it. The oxide was reduced to the metal M. The boat was allowed to cool with hydrogen still passing and the property of the

Mass of boat + metal (1) =
$$9.67 g$$

Mass of boat + metal (2) = $9.67 g$

- Explain why hydrogen was passed over the boat while it was cooling.
- b) Explain why the boat + metal was reheated.
- c) Find the empirical formula of the metal oxide.
- d) Write an equation for the reaction of the oxide with hydrogen.

SECTION 2

- Find the empirical formulae of the compounds formed in the reactions described below:
 - a) 10.800 g magnesium form 18.000 g of an oxide

- b) 3.400 g calcium form 9.435 g of a chloride
- c) 3.528 g iron form 10.237 g of a chloride
 d) 2.667 g copper form 4.011 g of a sulphide
- e) 4.662 g lithium form 5.328 g of a hydride.
- Calculate the empirical formulae of the compounds with the following percentage composition:
 - percentage composition: a) 77.7% Fe 22.3% O b) 70.0% Fe 30.0% O
 - c) 72.4% Fe 27.6% O d) 40.2% K 26.9% Cr 32.9% O
 - e) 26.6% K 35.4% Cr 38.0% O f) 92.3% C 7.6% H
 - g) 81.8% C 18.2% H
- Samples of the following hydrates are weighed, heated to drive off the water of crystallisation, cooled and reweighed. From the results obtained, calculate the values of a-f in the formulae of the hydrates:
 - a) 0.869 g of CuSO₄·aH₂O gave a residue of 0.556 g
 - b) 1.173 g of CoCl₂·bH₂O gave a residue of 0.641 g
 c) 1.886 g of CaSO₄·cH₂O gave a residue of 1.492 g
 - d) 0.904 g of Pb(C₂H₃O₂)₂·dH₂O gave a residue of 0.774 g
 - e) 1.144 g of NiSO₄·cH₂O gave a residue of 0.673 g
 - f) 1.175 g of KAl(SO₄)₂·fH₂O gave a residue of 0.639 g.
- 4. An organic compound, X, which contains only carbon, hydrogen and oxygen, has a molar mass of about 85 g mol⁻¹. When 0.43 g of X is burnt in excess oxygen, 1.10 g of carbon dioxide and 0.45 g of water are formed.
 - a) What is the empirical formula of X?
 - b) What is the molecular formula of X?
- A liquid, Y, of molar mass 44 g mol⁻¹ contains 54.5% carbon, 36.4% oxygen and 9.1% hydrogen.
 - a) Calculate the empirical formula of Y, and
 - b) deduce its molecular formula.
- An organic compound contains 58.8% carbon, 9.8% hydrogen and 31.4% oxygen. The molar mass is 102 g mol⁻¹.
 - a) Calculate the empirical formula, and
 - b) deduce the molecular formula of the compound.
 - 7. An organic compound has molar mass 150 g mol⁻¹ and contains 72.0% carbon, 6.67% hydrogen and 21.33% oxygen. What is its molecular formula?

7 Reacting Volumes of Gases

GAS MOLAR VOLUME

A surprising feature of reactions between gases was noticed by a French chemist called Gay-Lusses in 1808. Gay-Lusses is law states that when gases combine they do so in volumes which bear a simple provided all the volumes are measured at the same temperature and pressure. For example, when hydrogen and chlorine combine, it dm² (or litre) of hydrogen will combine exactly with I dm² of chlorine to form 2 dm² of hydrogen control of the con

The Italian chemist Avogadro gave an explanation in 1811. His suggestion, known as Avogadro's byoptobesis, is that Equal columns of all gases (ast the same temperature and pressure) contain the same number of molecules. It follows from Avogadro's hyopthesis that, whenever we see an equation representing a reaction between gases, we can Thus:

$$N_2(g) + 3H_2(g)$$
 ---- $2NH_3(g)$

means that since

a molecule of nitrogen + 3 molecules of hydrogen form 2 molecules of ammonia

then 1 volume of nitrogen + 3 volumes of hydrogen form 2 volumes of ammonia.

For example, 1 dm³ of nitrogen + 3 dm³ of hydrogen form 2 dm³ of ammonia.

Since equal volumes of gases (at the same temperature and pressure) contain the same number of molecules, if you consider the Avogadro constant (L), L molecules of carbon dioxide, L molecules of hydrogen, L molecules of oxygen and so on, then all the gases will occupy the same volume. The volume occupied by L molecules of gas, which is one mole of each gas, is called the gas molar volume?

In stating the volume of a gas, one needs to state the temperature and pressure at which the volume was measured. It is usual to give the volume at 0°C and 1 atmosphere pressure (273 K and 1.01× 10⁵ N m⁻³). These conditions are called standard temperature and pressure (s.t.p.). Chapter 9 deals with calculating the volume of a gas at s.t.p. from the volume measured under experimental conditions.

One mole of gas occupies 22.4 dm3 at 0°C and 1 atmosphere.

Since one mole of gas occupies 22.4 dm³ at s.t.p., the gas molar volume is 22.4 dm³ at s.t.p.. This makes calculations on reacting volumes of gases very simple. An equation which shows how many moles of different gases react together also shows the ratio of the volumes of the different eases that react together. For example, the countion

tells us that 2 moles of NO + 1 mole of O₂ form 2 moles of NO₂

44.8 dm³ of NO + 22.4 dm³ of O₂ form 44.8 dm³ of NO₂

In general, 2 volumes of NO+1 volume of O2 form 2 volumes of NO3.

EXAMPLE 1 What is the volume of oxygen needed for the complete combustion of 2 dm³ of propane?

METHOD Write the equation:

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

1 mole of C₃H₈ needs 5 moles of O₂ 1 volume of C₄H₄ needs 5 volumes of O₂. Therefore:

SWEH 2 dm of propane need 10 dm of oxygen.

EXAMPLE 2 What volume of hydrogen is obtained when 3.00 g of zinc react with an excess of dilute sulphuric acid at s.t.p.?

METHOD Write the equation:

$$Zn(s) + H_2SO_4(aq)$$
 \longrightarrow $H_2(g) + ZnSO_4(aq)$
1 mole of Zn forms 1 mole of H_2

65 g of Zn form 22.4 dm³ of H₂ (at s.t.p.)

$$3.00 \text{ g of Zn form } \frac{3.00}{65} \times 22.4 \text{ dm}^3 = 1.03 \text{ dm}^3 \text{ H}_2$$

ANSWER 3.00 g of zinc give 1.03 dm³ of hydrogen at s.t.p.

EXERCISE 11 Problems on Reacting Volumes of Gases

SECTION 1

 The problem is to find the percentage by volume composition of a mixture of hydrogen and ethane. When 75 cm³ of the mixture was burned in an excess of oxygen, the volume of carbon dioxide produced was 60 cm³ (all volumes at s.t.p.).

- accomposition in America Columniatry
 - a) Write an equation for the combustion of ethane.
 b) Say what volume of ethane would give 60 cm³ of carbon dioxide.
 - c) Calculate the percentage of ethane in the mixture.
- 25 cm³ of carbon monoxide were ignited with 25 cm³ of oxygen. All gas volumes were measured at the same temperature and pressure. The reduction in the total volume was
 - a 2.5 cm³ b 10.0 cm³ c 12.5 cm³ d 15.0 cm³ e 25.0 cm³
- 3. Ethene reacts with oxygen according to the equation

$$C_2H_4(g) + 3O_2(g)$$
 \longrightarrow $2CO_2(g) + 2H_2O(l)$
15.0 cm³ of ethene were mixed with 60.0 cm³ of oxygen and the

mixture was sparked to complete the reaction. If all the volumes were measured at sit.p., the volume of the products would be:

- a 15 cm³ b 30 cm³ c 45 cm³ d 60 cm³ e 75 cm³
- The table gives the formulae and relative molecular masses of some gases.

Formula	Ne	C_2H_2	O_2	Ar	NO_2	SO_2	SO_3
$M_{\rm r}$	20	26	32	40	46	64	80

Volume (cm³) occupied

by 1 g of gas at s.t.p. 1120 861 700 560 485 350 280

- a) Plot a graph of volume (on the vertical axis) against M_t (on the horizontal axis).
 b) Use the graph to predict the volumes occupied at s.t.p. by
 - i) 1 g of fluorine, F₂
 - 1 g of Cl₂.
- c) What is the relative molecular mass of a gas which occupies 508 cm³ per gram at s.t.p.? If the gas contains only carbon and oxygen, what is its formula?

SECTION 2

- Ethene, H₂C=CH₂, and hydrogen react in the presence of a nickel catalyst to form ethane.
 - a) Write a balanced equation for the reaction.
 - b) If a mixture of 30 cm³ of ethene and 20 cm³ of hydrogen is passed over a nickel catalyst, what is the composition of the final mixture? (Assume that the reaction is complete and that all gas volumes are at s.t.p.)
- What volume of oxygen (at s.t.p.) is required to burn exactly:
 a) 1 dm³ of methane, according to the reaction

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

b) 500 cm³ of hydrogen sulphide, according to the reaction

c) 250 cm³ of ethyne, according to the equation

d) 750 cm³ of ammonia, according to the reaction

e) 1 dm³ of phosphine, according to the reaction
$$PH_3(g) + 2O_2(g) \longrightarrow H_4PO_4(s)$$
?

 1 dm³ of H₂S and 1 dm³ of SO₂ were allowed to react, according to the equation

$$2H_2S(g) + SO_2(g) \longrightarrow 2H_2O(1) + 3S(s)$$

What volume of gas will remain after the reaction?

- 100 cm³ of a mixture of ethane and ethene at s.t.p. were treated with bromine. 0.357 g of bromine was used up. Calculate the percentage by volume of ethene in the mixture.
- Hydrogen sulphide burns in oxygen in accordance with the following equation:

FINDING FORMULAE BY COMBUSTION

The formula of a hydrocarbon can be found from the results of a combustion experiment. A hydrocarbon in the vapour phase is burned in an excess of oxygen to form carbon dioxide and water vapour. When the mixture of gases is cooled to room temperature, water vapour condenses to occupy a very small volume. The gaseous mixture consists of carbon dioxide and unused oxygen. The volume of carbon consists of carbon dioxide and unused oxygen the volume of carbon carbon can be formed to the carbon can be found.

The combustion method can be used for other compounds also, e.g. ammonia (see Example 3).

EXAMPLE 1 When 100 cm³ of a hydrocarbon X burn in 500 cm³ of oxygen, 50 cm³ of oxygen are unused, 300 cm³ of carbon dioxide are formed, and 300 cm³ of steam are formed. Deduce the equation for the reaction and the formula of the hydrocarbon.

METHOD

$$X + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$$

 $100 \text{ cm}^3 + 450 \text{ cm}^3 - 300 \text{ cm}^3 - 300 \text{ cm}^3$

The volumes of gases reacting tell us that

s of gases reacting tell us that

$$X + 4\frac{1}{2}O_2(g) \longrightarrow 3CO_2(g) + 3H_2O(g)$$

 $C_3H_6(g) + 4\frac{1}{2}O_2(g) \longrightarrow 3CO_2(g) + 3H_2O(g)$

answer
$$2C_3H_6(g) + 9O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(g)$$

EXAMPLE 2 10 cm3 of a hydrocarbon, CaHa, are exploded with an excess of oxygen. A contraction of 35 cm³ occurs, all volumes being measured at room temperature and pressure. On treatment of the products with sodium hydroxide solution, a contraction of 40 cm3 occurs. Deduce the formula of the hydrocarbon.

METHOD Write the equation:

$$C_aH_b(g) + (a + b/4)O_2(g) \longrightarrow aCO_2(g) + b/2 H_2O(l)$$

Volume of hydrocarbon = 10 cm³

Volume of $CO_2 = a \times Volume of C_aH_b$

From reaction with NaOH, volume of $CO_2 = 40 \text{ cm}^3$

Therefore a = 4

Let the volume of unused oxygen be $c \text{ cm}^3$.

Final volume = Initial volume - 35 cm³

Note that H₂O(l) is a liquid at room temperature and pressure, and does not contribute to the final volume of gas.

$$40 + c = 10 + 40 + 5b/2 + c - 35$$
$$25 = 5b/2$$
$$b = 10$$

The formula is CaH10.

ANSWED

EXAMPLE 3 20 cm3 of ammonia are burned in an excess of oxygen at 110 °C. 10 cm³ of nitrogen and 30 cm³ of steam are formed. Deduce the formula for ammonia, given that the formula of nitrogen is N2, and the formula of steam is H₂O.

Let the formula of ammonia be NaHa. METHOD The equation for combustion is

```
Volume of N_a H_b = 20 \text{ cm}^3
```

```
Volume of N_2 = a/2 \times 20 = 10a \text{ cm}^3 = 10 \text{ cm}^3 \therefore a = 1

Volume of H_2O(a) = b/2 \times 20 = 10b \text{ cm}^3 = 30 \text{ cm}^3 \therefore b = 3
```

ANSWER The formula is NH3.

EXERCISE 12 Problems on Finding Formulae by Combustion

- 1. 10 cm² of a hydrocarbon C, H, were exploded with an excess of oxygen. There was a contraction of 30 cm². When the product was treated with a solution of sodium hydroxide, there was a further contraction of 30 cm². Deduce the formula of the hydrocarbon. All gas volumes are at s.t.p.
- 2. 10 cm² of a hydrocarbon C_aH_b were exploded with excess oxygen. A contraction of 25 cm³ occurred. On treating the product with sodium hydroxide, a further contraction of 40 cm² occurred. Deduce the values of a and b in the formula of the hydrocarbon. All measurements of gas volumes are at s.t.p.
- 3. 10 cm³ of a hydrocarbon C₄H₈ were exploded with an excess of oxygen. A contraction of a cm³ occurred. On adding sodium hydroxide solution, a further contraction of b cm³ occurred. What are the volumes, a and b? All gas volumes are at s.t.p.
- 4. When North Sea gas burns completely, it forms carbon dioxide and water and no other products, When 250 cm⁻² of North Sea gas burn, they need 500 cm² of castygen, and they form 250 cm² of carbon dioxide and 500 cm² of steam (the volumes being measured under the same conditions). Deduce the equation for the reaction and the formula of North Sea gas.

EXERCISE 13 Problems on Reactions Involving Solids and Gases SECTION 1

00011011

1. In the reaction between marble and hydrochloric acid, the equation is

```
CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)
```

What mass of marble would be needed to give 11.00 g of carbon dioxide?

What volume would this gas occupy at s.t.p.?

Zinc reacts with aqueous hydrochloric acid to give hydrogen.
 Zn(s) + 2HCl(aq) H₂(g) + ZnCl₂(aq)

```
What mass of zinc would be needed to give 100 g of hydrogen? What volume would this gas occupy at s.t.p.?
```

 Sodium hydrogenearbonate decomposes on heating, with evolution of earbon dioxide:

$$2NaHCO_3(s)$$
 \longrightarrow $Na_2CO_3(s) + CO_2(g) + H_2O(g)$

What volume of carbon dioxide (at s.t.p.) can be obtained by heating 4.20g of sodium hydrogen-carbonate? If 4.2g of sodium hydrogen-carbonate react with an excess of dilute hydrochloric acid, what volume of carbon dioxide (at s.t.p.) is evolved?

4. Many years ago, bicycle lamps used to burn the gas ethyne, C₂H₂. The gas was produced by allowing water to drip on to calcium carbide. The unbalanced equation for the reaction is:
Calcium carbide + Water Ethyne + Calcium hydroxide

Calcium carbide + Water Etnyne + Calcium nydroxide
$$C_2C_2(s) + H_2O(1)$$
 $C_2H_2(g) + C_3O(H_2(s))$

- a) Balance the equation.
- b) Calculate the mass of calcium carbide which would be needed to produce 467 cm³ of ethyne (at s.t.p.).
- Dinitrogen oxide, N₂O, is commonly called laughing gas. It can be made by heating ammonium nitrate, NH₄NO₃. The unbalanced countion for this reaction is:

$$NH_4NO_3(s)$$
 \longrightarrow $N_2O(g) + H_2O(l)$

a) Balance the equation.

b) Calculate the mass of ammonium nitrate that must be heated to give
 i) 8.8 g of laughing gas

ii) 11.2 dm³ of laughing gas (at s.t.p.).

SECTION 2

- a) Analysis of an oxide of potassium shows that 1.42 g of this oxide contains 0.64 g of oxygen. What is its empirical formula?
 - b) This oxide reacts with carbon dioxide to form oxygen and potassium carbonate, K₂CO₃. Write an equation for the reaction.
- c) This reaction is sometimes used as a means of regenerating oxygen in submarines. What volume of oxygen (at s.r.p.) could be obtained from 1,00 kg of this oxide of potassium?
- 2. A cook is making a small cake. It needs 500 cm³ (at s.t.p.) of carbon dioxide to make the cake rise. The cook decides to add baking powder, which contains sodium hydrogenearbonate. This generates carbon dioxide by thermal decomposition:

What mass of sodium hydrogencarbonate must the cook add to the cake mixture?

 A certain industrial plant emits 90 tonnes of nitrogen monoxide, NO, daily through its chimneys. The firm decides to remove nitrogen monoxide from its waste gases by means of the reaction

$$CH_4(g) + 4NO(g)$$
 \longrightarrow $2N_2(g) + CO_2(g) + 2H_2O(l)$

If methane (North Sea gas) costs 0.50p per cubic metre, what will this clean-up reaction cost the firm to run? (Ignore the cost of installing the process, which will in reality be high.)

(Hint Tonnes of NO ... moles of NO ... moles of CH_4 ... volume of CH_4 ... cost of CH_4 (1 m^3 = 1000 d m^3 .)

4. In the Solvay process

 $NaCl(aq) + NH_2(g) + H_2O(l) + CO_2(g)$ \longrightarrow $NaHCO_2(s) + NH_4Cl(aq)$ what volume of carbon dioxide (at s.t.p.) is required to produce 1.00 kg of sodium hydrogenearbonate?

5. Find the volume of ethyne (at s.t.p.) that can be prepared from $10.0\,\mathrm{g}$ of calcium carbide by the reaction

$$CaC_2(s) + 2H_2O(l)$$
 \longrightarrow $Ca(OH)_2(aq) + C_2H_2(g)$

 Find the mass of phosphorus required for the preparation of 200 cm³ of phosphine (at s.t.p.) by the reaction

$$P_4(s) + 3NaOH(aq) + 3H_2O(l)$$
 \longrightarrow $3NaH_2PO_4(aq) + PH_3(g)$

of oxygen at s.t.p.? The reaction is

2KClO.(s) -> 2KCl(s) + 3O₂(g)

 What volume of chlorine (at s.t.p.) can be obtained from the electrolysis of a solution containing 60.0 g of sodium chloride?

EXERCISE 14 Questions from A-level Papers

- a) Describe the chemistry involved in the rusting of iron, and explain two ways (different in principle) by which it may be prevented.
 - b) Aerials in portable radios are made of a mixed oxide of calcium and iron known as 'Ferrite'. It contains 18.5% calcium and 51.9% iron by mass. Calculate the empirical formula of 'Ferrite' and hence deduce the oxidation number of the iron it contains. (C92)
- *2. When chlorine is passed over heated sulphur in the absence of air, and orange liquid A that contains 47.5% of sulphur, by mass, is formed. Its relative molecular mass is about 135. When A is treated with ammonia dissolved in heatence, an explosive corrappeyellow solid B is obtained. Compound B contains 30.4% of nitrogen by mass, the remainder being sulphur. Its relative molecular mass is about 153. By Xray diffraction, it has been shown that all the bonds in this compound are the same length.
 - When B is reduced by tin(II) chloride in a methanol/benzene solution, a compound C that contains 29.8% of nitrogen and 68.1% of sulphur, by mass, is formed.
 - a) What is the likely formula of substance A? Draw a diagram to show the likely shape of its molecule.
 b) Suggest structures for substances B and C, explaining clearly how
 - Suggest structures for substances B and C, explaining clearly now you arrived at your conclusions.
 - e) Write an equation for the conversion of substance B into substance C.
 - d) Suggest a reason why substance B is explosive. (C91S)
- *3. A bright red solid A dissolves in water to give a highly acidic solution. When a solution of A is made alkaline with aqueous sodium hydroxide, the solution turns yellow. On heating 1.0g of A, 0.76g of a green powder B is formed and 168 cm³ of oxygen (measured at s.t.p.) are given off.

An orange solid C may be obtained from the solution made by dissolving 1.0 g of A in 5.0 cm³ of 2.0 mol dm⁻³ ammonia.

When 1.26 g of C are warmed, a violent reaction takes place, giving off

112 cm³ (measured at s.t.p.) of an inert gas, as well as steam, and leaving behind the same green powder B that was made by heating A.
If A is dissolved in cold, concentrated hydrochloric acid, and concen-

If A is dissolved in cold, concentrated hydrochloric acid, and concentrated sulphuric acid is then gradually added, a dark, red-brown oil D separates out, D has a boiling point of 117° C and rapidly reacts with water. D contains 45.8% of chlorine by mass.

Identify A, B, C and D, give equations for all the reactions involved and show that these equations are consistent with the quantitative data. (C92S) a) A number of compounds resulting from Man's chemical activities are known to cause atmospheric pollution.

In a copy of the table below, give the names and formulae of any four atmospheric pollutants, stating the effect of the pollution from each.

Name and formula of pollutant	Effect of pollutant
i)	
ii)	
iii)	
iv)	

- b) For one of the pollutants in your table suggest a method of reducing its release into the atmosphere.
- A farmer uses 2000 kg of ammonium nitrate fertiliser per annum.
 Of this, 5% is leached into neighbouring streams.
 Calculate the mass of ammonia required to produce 2000 kg of
 - ammonium nitrate, assuming ALL THE NITROGEN is derived from ammonia.
 - ii) If the Local Water Authority does not allow agricultural discharge of nitrogen as nitrate or ammonium ions to exceed the equivalent of 500 mg of NH₃ per dm², calculate the minimum volume of water required to take up the fertiliser leached into the streams.
- 5. a) Both silver nitrate solution and iron(III) chloride solution give brown precipitates when sodium hydroxide solution is added. In an investigation, the brown precipitates were filtered off but then were confused.
 - Write the formula for each of the brown precipitates.
 Devise a procedure for distinguishing between the precipitates.
 - using the same test on each precipitate. Give the reagent(s) used and state the observation(s) with each precipitate.

 b) The following method was used to determine the percentage by
 - mass of iodine in an iodoalkane. A 2.37 g sample of the iodoalkane was boiled with sodium hydroxide solution, the resulting mixture cooled, acidified with dilute nitric acid and treated with excess silver nitrate solution. The precipitate obtained was filtered off, washed and dried. It was found to weigh 3.28 g.

 1) Why was filture nitric acid added before adding silver nitrate
 - a) was quite nitric acid added before adding silver nitrate solution?
 - Calculate the percentage by mass of iodine in the iodoalkane.
 A different iodoalkane contains, by mass, 90.07% iodine.
 - 8.51% carbon and 1.42% hydrogen. It has a relative molecular mass of 282. Calculate its molecular formula. (IMB91, p)

- 6. a) When a hydrocarbon fuel is burned with the correct amount of air required for combustion, carbon monoxide is generally present in the exhaust gases.
 - i) Write the equation for the complete combustion of a hydrocarbon of formula C_rH_v.
 - ii) Suppest two reasons why the formation of carbon monoxide is undesirable
 - iii) Adding an excess of air successfully reduces the formation of carbon monoxide. Suggest an important disadvantage of doing this
 - b) Processes involving the roasting of a metal sulphide ore produce high concentrations of sulphur dioxide in the exhaust gas. Chemists have devised several ways of solving this pollution problem, and an extension to existing plant can produce saleable by-products from the sulphur dioxide.

How might political or economic factors interfere with the implementation of these pollution remedies in certain countries?

- c) One solution to the pollution problems referred to in (b) is to oxidise the sulphur dioxide catalytically and to use the resulting sulphur trioxide to make sulphuric acid. What mass of sulphuric acid (M, = 98) would be produced from one tonne of pyrites (FeS₂, $M_r = 120$) if all the sulphur were converted into sulphuric acid?
- d) There are other solutions to these pollution problems. In the Resox process, sulphur dioxide ($M_r = 64$) is reduced to sulphur by pulverised coal in the presence of steam as a catalyst. The sulphur produced can be sold. The consumable needs of the process are stated to be 'about 0.2 kg coal and 0.05 kWh electricity per kilogram of inlet sulphur dioxide'.
 - i) Write an equation for this chemical process.
 - ii) From this equation, estimate the coal consumption of the process per kilogram of sulphur dioxide, thus verifying (or otherwise) the stated claim. Assume for simplicity that the coal consists only of carbon.
 - iii) Suggest a reason why the electricity is needed. iv) The exhaust gases from roasting a metal sulphide ore contain
 - 10% by volume of sulphur dioxide. What volume of exhaust gas before treatment will contain '1 kg of inlet sulphur dioxide'? The molar volume under the conditions used is 60 litres mol⁻¹.

(IMR91)

- 7. Fertilisers often contain phosphorus compounds, the proportion of phosphorus being expressed in terms of % P2O5 by mass.
 - a) Why would this NOT be the actual phosphorus compound in the fertiliser?

- b) If a fertiliser was listed as 10% P₂O₅ by mass but actually contained calcium phosphate, Ca₃(PO₄)₂, what would the composition be if expressed as % calcium phosphate by mass? (Relative atomic masses: O = 16; P = 31; Ca = 40) (1,91,p)
- a) Compare and contrast the chemistry of aluminium(III) and chromium(III).
 - b) Draw the shapes of the ions, NO₂ and SO₄²⁻ and predict ways in which each of these ions could co-ordinate to a transition metal ion.
 - c) During an investigation of the reaction of cobalt(II) sulphare with aqueous ammonia and sodium nitrite, a research chemist isolated two isomers, A and B, with the following composition: Co, 20.6%, H, 3.2%, N, 29.4%, O, 33.6%; S, 1.1.2%. Furthermore, the reaction of 0.1 g of either A or B with a sight excess of an aspecous solution of barium chloride gave a precipitate of 0.0816 g of barium sulphate.
 - Propose structures for the isomers A and B and suggest a structure for another isomer. (JMB90,S)
- •a. Caesium iodide reacts with Chlorine at room temperature to give a compound, S, containing only caesium, iodine and chlorine. 3.781 g of S was dissolved in water, and sulphur dioxide was passed through the boiling solution until no further change took place. The resulting mixture was acidified with nitric acid, boiled to expel excess sulphur dioxide and cooled to room temperature. The addition of aqueous silver nitrate produced a precipitate of mass 5.22g which was partly soluble in concentrated aqueous ammonia, learing a pale yellow residue of mass 2.35g. The yellow residue gave off a purple vapour when heated with concentrated sulphuric acid.
 - a) Deduce the formula of S.
 - b) Draw a diagram to show the electronic structure of the anion in S.
 - c) Suggest, giving reasons, a shape for the anion in S.
 - d) What is the oxidation number of iodine in S?
 - e) Assuming sulphate ion to be one product, write a balanced redox equation for the reaction between the anion in S and sulphur dioxide.
 - f) Explain the fact that compounds similar to S with other iodides of Group 1 are less stable.
 - g) Write balanced equations to explain:
 - i) the partial solubility in aqueous ammonia of the precipitate formed with silver nitrate solution;

ii) the reaction which gave rise to the purple vapour.

Urbeharrachtlich naachütztas Matai

(L92,S)

- *10. a) Propose shapes for the molecules B(CH₃)₃, C(CH₃)₄, and O(CH₃)₂ and discuss their potential Lewis acid-base properties.
 - b) Identify the compounds A, B, C and D in the following reaction sequence. Deduce probable shapes for the compound A and for the two phosphorus species present in B.

c) Discuss how you would expect the solid B to interact with N(CH₃)₃.
 (JMB91,S)

8 Volumetric Analysis

CONCENTRATION

One way of stating the concentration of a solution is to state the mass of solute present in 1 cubic decimetre of solution. The mass of solute is usually expressed in grams. A solution made by dissolving 5 grams of solute and making up to 1 cubic decimetre of solution has a concentration of $5 \, \text{gd} \, \text{m}^{-3} \, (5 \, \text{gd} \, \text{m}^{-3}) \, (5 \, \text{gd} \,$

Other units of volume are the cubic centimetre, cm³, the cubic metre, m³, and the litre, l. The litre has the same volume as the cubic decimetre.

$$10^3 \text{ cm}^3 = 1 \text{ dm}^3 = 11 = 10^{-3} \text{ m}^3 \quad (10^3 = 1000; 10^{-3} = 0.001)$$

A more common way of stating concentration in chemistry is to state the molar concentration of a solution. This is the amount in moles of a substance present per cubic decimetre (litre) of solution.

What is the molar concentration of a solution of 80 g of sodium hydroxide in 1 dm³ of solution? The amount in moles of NaOH in 80 g of sodium hydroxide can be calculated from its molar mass.

Molar mass of NaOH =
$$23 + 16 + 1 = 40 \, g \, mol^{-1}$$

Amount of NaOH =
$$\frac{\text{Mass}}{\text{Molar mass}}$$

= $\frac{80 \text{ g}}{40 \text{ g mol}^{-1}}$
= 2 mol

The concentration of the solution is given by:

Concentration of solution (mol dm⁻³) =
$$\frac{\text{Amount of solute (mol)}}{\text{Volume of solution (dm}^3)}$$

For this solution.

Concentration =
$$\frac{2 \text{ mol}}{1 \text{ dec}^3}$$
 = 2 mol dm^{-3}

If 3 moles of sodium hydroxide are dissolved in 500 cm³ of solution,

Concentration =
$$\frac{3 \text{ mol}}{0.5 \text{ dm}^3}$$
 = 6 mol dm^{-3}

The symbol M is often used for moldm⁻³. This solution can be described as a 6 M sodium hydroxide solution.

The concentration in mol dm-3 used to be referred to as the molarity of a solution, (In strict SI units, concentration is expressed in mol m⁻³.)

Figure 8.1 gives more examples.

How to calculate concentration

A useful rearrangement of the expression in the box on the previous page is:

Amount of solute (mol) = Volume (dm³) × Concentration (mol dm⁻³) For example, the amount in moles of solute in 2.5 dm3 of a 2.0 mol

Amount of solute = $2.5 \text{ dm}^3 \times 2.0 \text{ mol dm}^{-3} = 5.0 \text{ mol}$

dm⁻³ solution is given by:

EXAMPLE 1 Calculate the concentration in mol dm-3 of a solution containing 36.5 g of hydrogen chloride in 4.00 dm3 of solution.

Molar mass of HCl = $(35.5 + 1.0) = 36.5 \text{ g mol}^{-1}$ METHOD

> Amount (mol) present in 36.5 g = 1.00 mol $Volume = 4.00 \,dm^3$

> > Amount of solute (mol) Concentration of solution =

Volume of solution (dm³) 1.00 mol

4.00 dm3

= 0.25 mol dm⁻³

ANSWER The concentration is 0.25 mol dm⁻³. (It is a 0.25 M solution.)

EXAMPLE 2 Calculate the amount of solute (mol) in 250 cm³ of a solution of sodium hydroxide which has a concentration of 2.00 mol dm⁻³.

METHOD

 $\label{eq:concentration} Concentration of solution = 2.00 \ mol \ dm^{-3}$ $Volume \ of \ solution = 250 \ cm^3 = 0.250 \ dm^3$

Amount of solute = Volume × Concentration (dm^3) $(mol dm^{-3})$ = 2.00×0.250

= 0.500 ml

ANSWER The solution contains 0.500 mol of solute.

EXERCISE 15 Problems on Concentration

- Calculate the concentration in mol dm⁻³ of
 - a) 3.65 g of hydrogen chloride in 2.00 dm³ of solution
 b) 73.0 g of hydrogen chloride in 2.00 dm³ of solution
 - e) 49.0 g of sulphuric acid in 2.00 dm³ of solution
 - 49.0 g of sulphuric acid in 2.00 cm³ of solution d) 49.0 g of sulphuric acid in 250 cm³ of solution
 - e) 2.80 g of potassium hydroxide in 500 cm³ of solution
 - f) 28.0 g of potassium hydroxide in 4.00 dm³ of solution
 - g) 5.30 g of anhydrous sodium carbonate in 200 cm3 of solution
 - h) 53.0 g of anhydrous sodium carbonate in 2.50 dm³ of solution.
- 2. Calculate the amount in moles of solute in
- a) 250 cm³ of sodium hydroxide solution containing 1.00 mol dm⁻³
- b) 500 cm³ of sodium hydroxide solution containing 0.250 mol dm⁻³
 - e) 250 cm³ of 0.0200 M calcium hydroxide solution
 - d) 2.00 dm³ of 1.25 M sulphuric acid (1.25 mol dm⁻³)
- e) 125 cm³ of aqueous nitric acid, having a concentration of 0.400 mol dm⁻³
- f) 200 cm³ of ammonia solution, having a concentration of 0.125 mol dm⁻³
- g) $123\,\mbox{cm}^3$ of aqueous hydrochloric acid of concentration $3.00\,\mbox{mol}\,\mbox{dm}^{-3}$
- h) 1500 cm³ of potassium hydroxide solution of concentration 0.750 mol dm⁻⁵.

- 3. What mass of the solute must be used in order to prepare the required solutions listed below?
 - a) 500 cm³ of 0.100 mol dm⁻³ H₆C₄O₄(aq) from H₆C₄O₄(s)
 b) 250 cm³ of 0.200 mol dm⁻³ Na₂CO₃(aq) from Na₂CO₃(s)
 - 250 cm² of 0.200 mol dm⁻² Na₂CO₃(aq) from Na₂CO₃(s)
 750 cm³ of 0.100 mol dm⁻³ H₂C₂O₄(aq) from H₂C₃O₄(s)
 - d) 2.50 dm³ of 0.200 mol dm⁻³ NaHCO₃(aq) from NaHCO₃(s)
 - d) 2.50 dm³ of 0.200 mol dm⁻³ NaHCO₃(aq) from NaHCO₃(s)
 e) 500 cm³ of 0.100 mol dm⁻³ Na₂B₂O₂(aq) from Na₂B₂O₂·10H₂O(s)
- 500 cm² of 0.100 mol dm⁻² Na₂B₄O₇(aq) from Na₂B₄O₇*10H₂O(s)
 What volumes of the following concentrated solutions are required to
 - give the stated volumes of the more dilute solutions?

 a) 2.00 dm³ of 0.500 mol dm⁻³ H₂SO₄(aq) from 2.00 mol dm⁻³
 - a) 2.00 dm³ of 0.500 mol dm⁻³ H₂SO₄(aq) from 2.00 mol dm⁻³ H₂SO₄(aq)
 - b) 1.00 dm³ of 0.750 mol dm⁻³ HCl(aq) from 10.0 mol dm⁻³ HCl(aq) c) 250 cm³ of 0.250 mol dm⁻³ NaOH(aq) from 5.50 mol dm⁻³ NaOH(aq)
 - d) 500 cm³ of 1.25 mol dm⁻³ HNO₃(aq) from 3.25 mol dm⁻³ HNO₃(aq)
 - e) 250 cm³ of 2.00 mol dm⁻³ KOH(aq) from 2.60 mol dm⁻³ KOH(aq)

TITRATION

A solution of known concentration is called a standard solution. Such a solution can be used to find the concentrations of solutions of other reagents.

In volumetric analysis, the concentration of a solution is found by measuring the volume of solution that will react with a known volume of a standard solution. The procedure of adding one solution to another in a measured way until the reaction is complete is identified titration. Volumetric analysis is often referred to as titrimetric analysis or titrimetry.

ACID-BASE TITRATIONS

A standard solution of acid can be used to find the concentration of a solution of Islalia. I A known volume of alkalia is taken by pipette, a suitable indicator is added, and the alkali is titrated against the standard acid until the equivalence point is reached. The number of moles of acid used can be calculated and the equation used to give the number of moles of alkali neutralised.

EXAMPLE 1 Standardising sodium bydroxide solution

What is the concentration of a solution of sodium hydroxide, 25.0 cm³ of which requires 20.0 cm³ of hydrochloric acid of concentration 0.100 mol dm⁻³ for neutralisation?

METHOD In tackling this calculation.

> a) Write the equation. Find the number of moles of acid needed to neutralise one mole of alkali

1 mole of NaOH needs 1 mole of HCl for neutralisation.

b) Use the expression

Amount of solute (mol) = Volume (dm³) × Concentration (mol dm⁻³) to find the number of moles of the reagent of known concentration. in this case HCl

 $= 20.0 \times 10^{-3} \times 0.100 = 2.00 \times 10^{-3} \text{mol}$ From equation: No. of moles of NaOH = No. of moles of HCl

= 2.00 x 10⁻³ mol

But: Amount (mol) of NaOH = Volume (dm3) × Conen (mol dm-3) = 25 0 × 10⁻³ × c

(where c = concn)

Equate these two values: $2.00 \times 10^{-3} = 25.0 \times 10^{-3} \times c$

 $c = (2.00 \times 10^{-3})/(25.0 \times 10^{-3})$ = 0.080 mol dm⁻³

ANSWED The concentration of sodium hydroxide is 0.080 mol dm⁻³.

EXAMPLE 2 Standardising bydrochloric acid

Sodium carbonate (anhydrous) is used as a primary standard in volumetric analysis. A solution of sodium carbonate of concentration 0.100 mol dm⁻³ is used to standardise a solution of hydrochloric acid. 25.0 cm3 of the standard solution of sodium carbonate require 35.0 cm3 of the acid for neutralisation. Calculate the concentration of the acid

METHOD a) Write the equation:

 $Na_2CO_3(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$ 1 mole of Na2CO3 neutralises 2 moles of HCl.

b) Find the amount (mol) of the standard reagent used.

Amount (mol) of Na₂CO₂(aq) = Volume (dm³) × Concn (mol dm⁻³)

```
64 Calculations for A-level Chemistry
```

From equation: No. of moles of HCl = 2 × No. of moles of Na-CO₃

But: Amount (mol) of HCl(aq) = Volume (dm²) × Concn (mol dm⁻³) = 35.0 × 10⁻³ × c

(where
$$c = concn$$
)

Equate these two values: $5.00 \times 10^{-3} = 35.0 \times 10^{-3} \times c$

$$c = (5.00 \times 10^{-3})/(35.0 \times 10^{-3})$$

= 0.143 mol dm⁻³

ANSWER The concentration of hydrochloric acid is 0.143 mol dm⁻³.

EXAMPLE 3 Calculating the percentage of sodium carbonate in washing soda

crystals 5.125 g of washing soda crystals are dissolved and made up to 250 cm³ of solution. A 25.0 cm³ portion of the solution requires 35.8 cm³ of 0.0500 mol dm⁻³ sulphuric acid for neutralisation. Calculate the percentage of sodium carbonate in the crystals.

METHOD a) Write the equation:

 $Na_2CO_3(aq) + H_2SO_4(aq)$ \longrightarrow $Na_3SO_4(aq) + CO_2(g) + H_2O(l)$ 1 mole of Na_2CO_3 neutralises 1 mole of H_2SO_4 .

b) Calculate the amount, in moles, of the standard reasent.

Amount (mol) of H-SO₄ = $35.8 \times 10^{-3} \times 0.0500 = 1.79 \times 10^{-3}$ mol

Amount (mol) of Na₂CO₃ = 1.79 × 10⁻³ mol

But: Amount of $Na_2CO_3 = 25.0 \times 10^{-3} \times c \text{ mol}$

(where c = concn)

Equate these two values: $1.79 \times 10^{-3} = 25.0 \times 10^{-3} \times c$

$$c = (1.79 \times 10^{-3})/(25.0 \times 10^{-3})$$

= 0.0716 mol dm⁻³

Amount (mol) of Na₂CO₃ in whole solution = Volume × Conen

Mass of Na₂CO₃ = Amount (mol) × Molar mass = $0.0179 \times 106 \text{ g}$ = 1.90 g ANSWED Washing soda crystals are 37.1% sodium carbonate.

EXAMPLE 4 Estimating ammonium salts

A sample containing ammonium sulphate was warmed with 250 cm³ of 0.800 mol dm-3 sodium hydroxide solution. After the evolution of ammonia had ceased, the excess of sodium hydroxide solution was neutralised by 85.0 cm3 of hydrochloric acid of concentration 0.500 mol dm⁻³. What mass of ammonium sulphate did the sample contain?

METHOD a) There are two reactions taking place:

i) the reaction between the ammonium salt and the alkali:

 $(NH_a)_sSO_a(s) + 2NaOH(aq)$ \longrightarrow $2NH_3(g) + Na_3SO_a(aq) + 2H_3O(l)$ ii) the reaction between the excess alkali and the hydrochloric acid:

$$NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H2O(l)$$

b) Pick out the substance for which you have the information you need to calculate the number of moles. As you know its volume and concentration, you can calculate the number of moles of HCl. This will tell you the number of moles of NaOH left over after reaction i). Subtract this from the number of moles of NaOH added to the ammonium salt to obtain the number of moles of NaOH used in reaction i). This will give you the number of moles of (NH4) SO4 with which it reacted.

Amount (mol) of HCl = $85.0 \times 10^{-3} \times 0.500 = 0.0425$ mol

Amount (mol) of NaOH left over from reaction i) = 0.0425 mol Amount (mol) of NaOH added = 250 × 10⁻³ × 0.800 = 0.200 mol

Amount (mol) of NaOH used in reaction i) = 0.200-0.0425 = 0.1575 mol = 0.0788 mol

No. of moles of $(NH_4)_2SO_4 = 0.5 \times No.$ of moles of NaOH

Molar mass of $(NH_4)_2SO_4 = 132 \text{ g mol}^{-1}$ Mass of ammonium sulphate = 0.0788 × 132 = 10.4 g

The sample contained 10.4 g of ammonium sulphate. ANSWED

EXERCISE 16 Problems on Neutralisation

SECTION 1

Calculators are not needed for these problems.

The following are problems on neutralisation. Show, giving your working, whether each of these statements is true or false.

1. 1 mol of HCl will neutralise

- a) 5 dm³ of KOH(aq) of concentration 0.2 mol dm⁻³. True or False?
 - b) 2 dm³ of NaOH(aq) of concentration 0.2 mol dm⁻³
 c) 2 dm³ of KOH(aq) of concentration 0.5 mol dm⁻³
 - d) 0.5 dm³ of NaOH(aq) of concentration 1 mol dm⁻³
 - d) 0.5 dm² of NaOH(aq) of concentration 1 mol dm²
 e) 250 cm³ of Na₂CO₃(aq) of concentration 2 mol dm⁻³
 - f) 200 cm3 of Na2CO3(aq) of concentration 4 mol dm-3

2. 1 mol of H2SO4 will neutralise

- a) 500 cm3 of NaOH(aq) of concentration 4 mol dm-3. True or False?
- b) 1 dm³ of KOH(aq) of concentration 1 mol dm⁻³
 c) 400 cm³ of NaOH(aq) of concentration 5 mol dm⁻³
- d) 500 cm³ of Na₂CO₂(aq) of concentration 1 mol dm⁻³
- e) 2 dm³ of Na₂CO₃(aq) of concentration 1.5 mol dm⁻³
- f) 4 dm3 of KOH(aq) of concentration 0.25 mol dm-3

3. 5 mol of NaOH will neutralise

- a) 2 dm³ of HCl(aq) of concentration 2 mol dm⁻³. True or False?
- b) 250 cm³ of HCl(aq) of concentration 10 mol dm⁻³
- e) 250 cm^3 of $H_2SO_4(aq)$ of concentration 10 mol dm^{-3}
- d) 500 cm³ of H₂SO₄(aq) of concentration 5 mol dm⁻³
- e) 2500 cm³ of HNO₃(aq) of concentration 2 mol dm⁻³
 f) 2 dm³ of HNO₃(aq) of concentration 2 mol dm⁻³
- t) 2 dm of HNO₃(aq) of concentration 2 mol dm

0.5 mol of Na₂CO₃ will neutralise

- a) 1 dm³ of HCl(aq) of concentration 1 mol dm⁻³. True or False?
 b) 1 dm³ of H₂SO₄(aq) of concentration 1 mol dm⁻³
- c) 500 cm³ of HCl(aq) of concentration 1 mol dm⁻³
- d) 250 cm³ of HNO₃(aq) of concentration 2 mol dm⁻³
- e) 200 cm3 of H2SO4(aq) of concentration 2.5 mol dm-3
- f) 500 cm3 of HNO3(aq) of concentration 2 mol dm-3
- Sodium hydroxide is sold commercially as solid lye. A 1.20 g sample of lye required 45.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid to neutralise it. Calculate the percentage by mass of NaOH in lye.

 Vinegar is a solution of ethanoic acid. A 10.0 cm³ portion of a certain brand of vinegar needed 55.0 cm³ of 0.200 mol dm⁻³ sodium hydroxide solution to neutralise the ethanoic acid in it.

- CH₃CO₂H(aq) + NaOH(aq) CH₃CO₂Na(aq) + H₂O(l)
 a) Calculate the concentration of ethanoic acid in the vinegar in mol dm⁻³.
- b) Given that the density of this vinegar is 1.06 g cm⁻³, calculate the concentration of ethanoic acid in percentage by mass.
- 7. Salt is a necessary ingredient of our diet. In certain illnesses, the salt balance can be lost, and a doctor or nurse must give salt intravenously. They inject normal saline, which is a 0.85% solution of sodium chloride in water (0.85g of solute per 100g of water). What is the molar concentration of normal saline?
- 8. A chip of marble weighing 2.50g required 28.0g of 1.50 mol dm⁻³ hydrochloric acid to react with all the calcium carbonate it contained. What is the percentage of calcium carbonate in this sample of marble?
 - Write the balanced equation for the reaction.
 - Find how many moles of HCl were used . . . then how many moles of CaCO₃ reacted . . . what mass of CaCO₃ . . . and finally the percentage of CaCO₃.
- A mixture of gases coming from a coke-producing plant contains ammonia. The mixture is bubbled through dilute sulphuric acid to remove the ammonia.
 - Write a balanced equation for the reaction which occurs.
 - b) What volume of ammonia (at s.t.p.) could be removed by 50 dm³ of 1.50 mol dm⁻³ sulphuric acid?
 - e) What use could be made of the product?
- Nitrosoamines can cause cancer at sufficiently high concentrations. In 1979, a brand of American beer was found to contain 6 p.p.b. (parts per billion) of dimethylnitrosoamine. By 1981, the firm had reduced the level to 0.2 p.p.b.
 - a) What was the mass of dimethylnitrosoamine in one 250 cm³ can of beer in 1979? (1 billion = 10°.)
 - b) What fraction of the 1979 level was still present in 1981?
- If a person's blood sugar level falls below 60 mg per 100 cm³, insulin shock can occur. The density of blood is 1.2 g cm⁻³.
 - a) What is the percentage by mass of sugar in the blood at this level?
 b) What is the molar concentration of sugar, C₆H₁₂O₆, in the blood?

- 12. A blood alcohol level of 150-200 mg alcohol per 100 cm² of blood produces intoxication. A blood alcohol level of 3004-400 mg per 100 cm² produces unconsciousness. At a blood alcohol level above 500 mg per 100 cm², a person may die. What is the molar concentration of alcohol (ethanol, C34, loH) at the lethal level?
- 13. An experiment was done to find the percentage composition of an alloy of sodium and lead. The alloy reacts with water:

5.00g of the alloy were added to about 100 cm² of water. When the reaction was complete, the sodium hydroxide formed was titrated against 1.00 mol dm² hydrochloric acid. The volume of acid required to neutralise the sodium hydroxide was 12.0 cm³. Calculate

- a) the amount in moles of HCl used
- b) the amount in moles of NaOH neutralised
- c) the amount in moles of Na in 3.00 g of the alloy
- d) the mass in grams of Na in 3.00 g of alloy
- e) the percentage composition by mass.

SECTION 2

- 1. 0.500g of impure ammonium chloride is warmed with an excess of sodium hydroxide solution. The ammonia liberated is absorbed in 25.0 cm³ of 0.200 mol dm⁻³ sulphuric acid. The excess of sulphuric acid requires 5.64 cm² of 0.200 mol dm⁻³ solution hydroxide solution for titration. Calculate the percentage of ammonium chloride in the original sample.
- 2. A 1.00 g sample of limestone is allowed to react with 100 cm³ of 0.200 mol dm⁻³ hydrochloric acid. The excess acid required 24.8 cm³ of 0.100 mol dm⁻³ sodium hydroxide solution. Calculate the percentage of calcium carbonate in the limestone.
- 3. An impure sample of barium hydroxide of mass 1.6524 g was allowed to react with 100 cm³ of hydrochloric acid of concentration 0.200 mol dm². When the excess of acid was tirrated against sodium hydroxide, 10.9 cm³ of sodium hydroxide solution were required. 25.0 cm³ of the bydrochloric acid in a separate titration. Calculate the percentage purity of the sample of barium hydroxide.
- 4. A household cleaner contains ammonia. A 25.37g sample of the cleaner is dissolved in water and made up to 250 cm³. A 25.0 cm³ portion of this solution requires 77.3 cm³ of 0.360 mold m³ sulphuric acid for neutralisation. What is the percentage by mass of ammonia in the cleaner.

- 5. A fertiliser contains ammonium sulphate and potassium sulphate. A sample of 0.225 g of fertiliser was warmed with sodium hydroxide solution. The ammonia evolved required 15.7 cm3 of 0,100 mol dm-3 hydrochloric acid for neutralisation. Calculate the percentage of ammonium sulphate in the sample.
- Calculate the number of carboxyl groups in the compound C₄H₈O₄. given that 0.440 g of it neutralised 37.5 cm3 of sodium hydroxide of concentration 0.200 mol dm⁻³
 - 7. Sodium carbonate crystals (27.8230g) were dissolved in water and made up to 1.00 dm3. 25.0 cm3 of the solution were neutralised by 48.8 cm3 of hydrochloric acid of concentration 0.100 mol dm-3. Find n in the formula Na₂CO₂nH₂O.

OXIDATION-REDUCTION REACTIONS

Oxidation-reduction (or 'redox') reactions involve a transfer of electrons. The oxidising agent accepts electrons, and the reducing agent gives electrons. In working out the equation for a redox reaction. a good method is to work out the 'half-reaction equation' for the oxidising agent and the 'half-reaction equation' for the reducing agent, and then add them together.

Examples of half-reaction equations

 a) Iron(III) salts are reduced to iron(II) salts. The equation is Ee3+ ____ Ee2+

For the equation to balance, the charge on the right-hand side (RHS) must equal the charge on the left-hand side (LHS). This can be accomplished by inserting an electron on the LHS: Fe3+ + e- -- Fe2+

b) When chlorine acts as an oxidising agent, it is reduced to chloride ions:

To obtain a balanced half-reaction equation, 2e must be inserted on the LHS:

c) Sulphites can be oxidised to sulphates:

LHS-

To balance the equation with respect to mass, an extra oxygen atom is needed on the LHS. If H2O is introduced on the LHS to supply this oxygen, the equation becomes

To balance the equation with respect to charge, 2e are needed on the RHS-

$$SO_3^{2-} + H_2O \longrightarrow SO_4^{2-} + 2H^+ + 2e^-$$

d) Potassium manganate(VII) is an oxidising agent. In acid solution, it is reduced to a manganese(II) salt:

To balance the equation with respect to mass, 8H+ are needed to combine with 4 oxygen atoms:

MnO₄⁻ + 8H⁺ → Mn²⁺ + 4H_{*}O

To balance the equation with respect to charge, 5e are needed on the

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

It is a good idea to make a final check, Charge on LHS = -1 + 8 - 5= +2. Charge on RHS = +2. The equation is balanced.

e) Potassium dichromate(VI) is an oxidising agent in acid solution, being reduced to a chromium(III) salt:

To balance the equation for mass, 14H+ are needed:

To balance the equation for charge, 6e are needed on the LHS: Cr₂O₂²⁻ + 14H⁺ + 6e⁻ → 2Cr³⁺ + 7H₂O

A final check shows that the charge on the LHS = -2 + 14 - 6 = +6. Charge on RHS = 2(+3) = +6, The equation is balanced.

You may like to practise with the half-reaction equations on p. 85.

Using half-reaction equations to obtain the equation for a redox reaction

 a) In the reaction between iodine and thiosulphate ions, the two halfreaction equations are

[4]

Adding [1] and [2] gives

$$I_2 + 2e^- + 2S_2O_3^2 \longrightarrow 2I^- + S_4O_6^2 + 2e^-$$

Deleting the 2e term from both sides of the equation gives

A check shows that the charges on the LHS and the RHS are both -4.

b) When potassium manganate(VII) oxidises an iron(II) salt to an iron (III) salt, the equations for the half-reactions are

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$
 [3]

One manganate(VII) ion needs 5 electrons, and one iron(II) ion gives only one. Equation [4] must therefore be multiplied by 5:

Equations [3] and [5] can now be added to give

$$MnO_4{}^- \ + \ 8H^* \ + \ 5Fe^{2*} \ --------- \ Mn^{2*} \ + \ 4H_2O \ + \ 5Fe^{3*}$$

e) When potassium manganate(VII) oxidises sodium ethanedioate, the equation for the manganate(VII) half-reaction is [3] as in Example 2, and the equation for the reduction of ethanedioate is

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$$
 [6]

d) One manganate(VII) ion needs 5e-, and one ethanedioate ion gives 2e-. Multiplying equation [3] by 2 and equation [6] by 5 and adding gives

e) Potassium dichromate(VI) oxidises iron(II) salt to iron(III) salts. The equations for the two half-reactions are

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$
 [7]
 $Fe^{2+} \longrightarrow Fe^{3+} + e^-$ [8]

One dichromate ion will oxidise six iron(II) ions:

Cr₂O₂- + 14H⁺ + 6Fe²⁺ - 2Cr³⁺ + 6Fe³⁺ + 7H₂O You may like to try the problem on balancing equations on p. 85

before going on to tackle the numerical problems. There is another method of balancing redox equations. It is explained in the following section on oxidation numbers.

Oxidation numbers

It is helpful to discuss oxidation-reduction reactions in terms of the change in the oxidation number of each reactant. In the reaction

$$Cu(s) + \frac{1}{2}O_2(g) \longrightarrow Cu^{2+}O^{2-}(s)$$

copper is oxidised and oxygen is reduced. It is said that the oxidation number of copper increases from zero to +2, and the oxidation number of oxygen decreases from zero to -2. The following rules are followed in assigning oxidation numbers:

a) The oxidation number of an uncombined element is zero.

b) In ionic compounds, the oxidation number of each element is the charge on its ion. In NaCl, the oxidation number of Na = ± 1 , and that of Cl=-1

- e) The sum of the oxidation numbers of all the elements in a compound is zero. In AlCl₃, the oxidation numbers are: Al = +3; Cl = -1, so that the sum of the oxidation numbers is +3 +3(-1) = 0.
- d) The sum of the oxidation numbers of all the elements in an ion is equal to the charge on the ion. In SO_4^{3-} , the oxidation numbers are S = +6, O = -2. The sum of the oxidation numbers for all the atoms is +6 + 4(-2) = -2, the same as the charge of the SO_4^{3-} ion.
 - e) In a covalent compound, one element must be given a positive covidation number and the other a negative oxidation number, such that the sum of the oxidation numbers for all the atoms is zero. The following elements always have the same oxidation numbers in all their compounds. A knowledge of their oxidation numbers helps one to assign oxidation numbers to the other elements combined with

Na, K +1 H +1, except in metal hydrides

Al +3 Cl-1, except in compounds with O and F

O -2, except in peroxides and compounds with F

The oxidation number method

A consideration of the changes in oxidation numbers which occur during a redox reaction helps you to decide which reactants have been oxidised and which have been reduced. It can also be very helpful when you need to balance the equation for the reaction. The following two points cover what is involved when you use the oxidation number method to balance the equation for a redox reaction: a) When an element is oxidised, its oxidation number increases; when an element is reduced, its oxidation number decreases. If x atoms (or ions) of an element A react with y atoms (or ions) of an element B, i.e.

then, if the oxidation number of A changes by a units, and the oxidation number of B changes by b units, you can see that

$$xa = yb$$

For example, in the reaction between tin(II) and iron(III) ions,

$$Sn^{2+}(aq) + 2Fe^{3+}(aq) \longrightarrow Sn^{4+}(aq) + 2Fe^{2+}$$

b) In a balanced equation

LHS sum of ox. nos. of elements = RHS sum of ox. nos. of elements In the reaction

 $KIO_1(aq) + 2Na_2SO_3(aq) \longrightarrow KIO(aq) + 2Na_2SO_4(aq)$ the elements K, Na and O keep the same oxidation states during the reaction, while I and S change.

Ox. no. of I in $KIO_3 = +5$; in KIO = +1

Ox. no. of S in
$$Na_2SO_3 = +4$$
; in $Na_2SO_4 = +6$
Sum of ox. nos. on LHS = $(+5) + 2(+4) = +13$

Sum of ox. nos. on RHS =
$$(+1) + 2(+6) = +13$$

When applying the oxidation number method to a reaction between A and B, remember:

EXAMPLE 1 What is the oxidation number of germanium in GeCL?

Chlorine is one of the elements with a constant oxidation number METHOD of -1.

(Oxidation number of Ge) + 4(-1) = 0. Oxidation number of Ge = +4

ANSWED

EXAMPLE 2 What is the oxidation number of manganese in Mn2O2?

```
74 Calculations for A-level Chemistry
```

METHOD Oxygen is one of the elements with a constant oxidation number of

$$2(Oxidation number of Mn) + 7(-2) = 0.$$

ANSWER Oxidation number of Mn = +7.

EXAMPLE 3 What is the oxidation number of iron in Fe(CN)₆3-?

METHOD Since the cyanide ion is CN⁻, it has an oxidation number of -1.

(Oxidation number of Fe) + 6(-1) = -3.

ANSWER Oxidation number of Fe = +3.

EXAMPLE 4 Use the oxidation number method to balance the equation

 $MnO_4^-(aq) + H^*(aq) + Fe^{2*}(aq) \longrightarrow Mn^{2*}(aq) + Fe^{2*}(aq) + H_2O(I)$ METHOD Hydrogen and oxygen have the same oxidation numbers on both sides

of the equation; only manganese and iron need be considered.

In MnO_4^- , the oxidation number of Mn = +7In Mn^{2+} , the oxidation number of Mn = +2

Thus, manganese decreases its oxidation number by 5 units, and iron must increase its oxidation number by 5 units.

From Fe²⁺ to Fe³⁺ is an increase of 1 unit; therefore the equation needs 5Fe^{2+} \longrightarrow 5Fe^{3+} . This makes the equation

 MnO_4 (aq) + $H^*(aq)$ + $5Fe^{2*}(aq)$ \longrightarrow $Mn^{2*}(aq)$ + $5Fe^{3*}(aq)$ + $H_2O(1)$ To combine with 4 oxygen atoms, $8H^*$ are needed:

 $MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(1)$

EXERCISE 17 Problems on Oxidation Numbers

1. What is the oxidation number of the named element in the following

C	ompounds?					
a)	Ba in BaCl ₂	b)	Fe in Fe(CN),4-	c)	Cl in Cl ₂	
ď	Li in Li ₂ O	e)	Fe in Fe(CN) ₆ 3-	f)	Cl in ClO	
g)	P in P ₂ O ₃	h)	Br in BrO3	i)	Q in QO ₃ ⁻	
i)	C in CCl ₄	k)	I in I ₂	1)	Cl in Cl ₂ O ₂	
m) C in CO	n)	I in I	0)	Cl in Cl ₂ O ₃	
P	Cr in CrO ₃	q)	I in IO ₃	r)	O in H ₂ O ₂	
s)	Cr in CrO ₄ 2-	t)	N in NO ₂	u)	H in LiH	
v)	Cr in Cr ₂ O ₂ ²⁻	w)	N in N ₂ O ₄	x)	H in HBr	
v	S in SO.2-	z)	P in PO ₄ 3-			

- a) Calculate the oxidation numbers of tin and lead on each side of the equation
 - PbO₂(s) + 4H⁴(aq) + Sn^{2*}(aq) and state which element has been oxidised and which has been reduced
 - b) In the redox reaction
 - 2Mn^{2*}(aq) + 5BiO₃ (aq) + 14H⁴(aq)

 ≥ 2MnO₄ (aq) + 5BiO₃ (aq) + 7H₂O(1) calculate the oxidation numbers of all the elements, and state which have been oxidised and which have been reduced.
 - c) Calculate the oxidation numbers of arsenic and manganese in each of the species in the reaction:
- 5As₂O₃(s) + 4MnO₄ (aq) +12H (aq) State which element has been oxidised and which has been reduced.
- In each of the following equations, one element is underlined. Calculate its oxidation number in each species, and state whether an oxidation or a reduction has occurred.
 - a) $2F_2(g) + 2OH^-(aq) \longrightarrow F_2O(g) + 2F^-(aq) + H_2O(l)$
 - b) $3\underline{\text{Cl}}_2(g) + 6OH^-(aq) \longrightarrow \underline{\text{ClO}}_3^-(aq) + 5\underline{\text{Cl}}^-(aq) + 3H_2O(l)$
 - c) NH₄⁴NO₃⁻(s) N₂O(g) + 2H₂O(l)
 - d) $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr_3^{3+}(aq) + 7H_2O(1)$
- 4. a) Only N and I alter in oxidation number in the reaction
 - $N_2H_0O(aq) + IO_3^-(aq) + 2H^*(aq) + CI^-(aq) \longrightarrow N_2(g) + ICI(aq) + 4H_2O(l)$ Calculate the oxidation number of N in N_2H_0O .
 - b) In the reaction below, only S and Br change in oxidation number.

 Na₂H₃S₂O₆(aq) + 4Br₂(aq)

 2H₂SO₄(aq) + 2NaBr(aq) + 6HBr(aq)
 - Calculate the oxidation number of S in Na₂H₁₀S₂O₈.
- 5. Use the oxidation number method to balance the equations
 - a) $IO_4^-(aq) + I^-(aq) + H^+(aq) \longrightarrow I_2(aq) + 4H_2O(I)$ b) $BrO_8^-(aq) + I^-(aq) + H^+(aq) \longrightarrow Br^-(aq) + I_8(aq) + H_8O(I)$
- b) $Br \cup_3 (aq) + I^-(aq) + H^-(aq) \longrightarrow Br^-(aq) + I_2(aq) + VO^{2+}(aq) + H^+(aq)$
 - d) $SO_2(g) + H_2O(1) + Br_2(aq) \longrightarrow H^+(aq) + SO_4^{2-}(aq) + Br^-(aq)$
 - e) $NH_3(g) + O_2(g) \longrightarrow N_2(g) + H_2O(g)$ f) $NH_3(g) + O_2(g) \longrightarrow N_2O(g) + H_2O(g)$
 - g) NH₃(g) + O₂(g) NO(g) + H₂O(g)
 - h) Fe²⁺C₂O₄²⁻(aq) + Ce³⁺(aq) \longrightarrow CO₂(g) + Ce²⁺(aq) + Fe³⁺(aq)

76

6. When potassium dichromate solution reacts with acidified potassium iodide solution, titration shows that 1 mole of potassium dichromate produces 3 moles of iodine. Use the oxidation number method to complete and balance the equation

$$Cr_2O_7^{2-}(aq) + I^{-}(aq) + H^{+}(aq) \longrightarrow 3I_2(aq)$$

POTASSIUM MANGANATE(VII) TITRATIONS

When potassium manganate(VII) acts as an oxidising agent in acid solution, it is reduced to a manganese(II) salt:

 $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \longrightarrow Mn^{2+}(aq) + 4H_2O(1)$

Potassium manganate(VII) is not sufficiently pure to be used as a primary standard, and solutions of the oxidant are standardised by titration against a primary standard such as sodium enhancedioate. This reductant can be primary as standard a big state of purity as crystals of formula Na₂C₂O₂*2H₂O, which are neither deliquescent nor efflorescent, and can be sufficiently only the property of the propert

Once it has been standardised, a solution of potassium manganate(VII) can be used to estimate reducing agents such as iron(II) salts. No indicator is needed as the oxidant changes from purple to colourless at the end point.

EXAMPLE 1 Standardising potassium manganate(VII) against the primary standard, sodium ethanedioate

A 25.0 cm³ portion of sodium ethanedioate solution of concentration 0.200 mol dm⁻³ is warmed and titrated against a solution of potassium manganate(VII). If 17.2 cm³ of potassium manganate(VII) are required, what is its concentration?

METHOD Let M = concentration of the manganate(VII) solution.Amount (mol) of ethanedioate = $25.0 \times 10^{-3} \times 0.200 \text{ mol}$

> Amount (mol) of manganate(VII) = $17.2 \times 10^{-3} \times M$ mol The equations for the half-reactions are

 $MnO_4^-(aq) + 8H^+(aq) + 5e^ \longrightarrow$ $Mn^{2+}(aq) + 4H_2O(1)$ [1] $C_2O_4^{2-}(aq)$ \longrightarrow $2CO_3(g) + 2e^-$ [2]

Multiplying [1] by 2 and [2] by 5, and adding the two equations gives

 $2MnO_4^-(aq) + 16H^*(aq) + 5C_2O_4^{2-}(aq)$ \longrightarrow $2Mn^{2+}(aq) + 8H_2O(1) + 10CO_2(g)$ No. of moles of $MnO_4^- = \frac{2}{3} \times No$, of moles of $C_2O_4^{2-}$.

$$\therefore 17.2 \times 10^{-3} \times M = \frac{2}{3} \times 25.0 \times 10^{-3} \times 0.200$$

$$M = \frac{2 \times 25.0 \times 10^{-3} \times 0.200}{5 \times 17.2 \times 10^{-3}} = 0.116 \,\text{moi Jm}^{-3}$$

ANSWER The potassium manganate(VII) solution has a concentration of

EXAMPLE 2 Oxidising iron(II) compounds

Ammonium iron(II) sulphate crystals have the following formular (NH₂)SO₂FeSO₂wH₂O. In an experiment to determine n, 8.492 g of the sail were dissolved and made up to 250 cm⁻¹ of solution with distilled water and dilute sulphuric acid. A 25.0 cm⁻¹ portion of the solution was further acidified and tirated against porassium manganate(VII) solution of concentration 0.0150 mold dm⁻². A volume of 22.5 cm² was required.

METHOD The equations for the two half-reactions are

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(1)$$
 [1]
 $Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + e^-$ [2]

Multiplying [2] by 5 and then adding it to [1] gives

$$MnO_a^{-}(aa) + 8H^{+}(aa) + 5Fe^{2+}(aa) \longrightarrow Mn^{2+}(aa) + 5Fe^{2+}(aa) + 4H_aO(1)$$

No. of moles of iron(II) = $5 \times No$. of moles of manganate(VII)

Concn of iron(II) =
$$\frac{1.69 \times 10^{-3}}{25.0 \times 10^{-3}}$$
 = 0.0674 mol dm⁻³

Concn of
$$(NH_4)_2SO_4*FeSO_4*nH_2O = \frac{Mass in 1 dm^3 of solution}{Molar mass}$$

$$0.0674 = \frac{4 \times 8.492}{\text{Molar mass}}$$

Molar mass of
$$(NH_4)_2SO_4$$
FeSO₄ $nH_2O = 284 + 18n = 504 \text{ g mol}^{-1}$
 $\therefore n = 12$

ANSWER The formula of the crystals is (NH₄)₂SO₄• 12H₂O

EXAMPLE 3 Oxidising bydrogen peroxide

A solution of hydrogen peroxide was diluted 20.0 times. A 25.0 cm3 portion of the diluted solution was acidified and titrated against 0.0150 mol dm⁻³ potassium manganate(VII) solution. 45.7 cm³ of the oxidant were required. Calculate the concentration of the hydrogen peroxide solution a) in mol dm⁻³ and b) the 'volume concentration'. (This means the number of volumes of oxygen obtained from one volume of the solution.)

The equations for the half-reactions are METHOD

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(1)$$
 [1
 $H_7O_2(aq) \longrightarrow O_2(g) + 2H^+(aq) + 2e^-$ [2

Multiplying [1] by 2 and [2] by 5, and adding the two equations gives $2MnO_a^{-}(aq) + 6H^{+}(aq) + 5H_sO_s(aq) \longrightarrow 2Mn^{2+}(aq) + 8H_sO(l) + 5O_s(g)$

Amount (mol) of
$$MnO_4^-$$
 (aq) = $45.7 \times 10^{-3} \times 0.0150$
= 0.685×10^{-3} mol

No. of moles of
$$H_2O_2 = \frac{5}{2} \times No.$$
 of moles of MnO_4^-

$$= \frac{5}{2} \times 0.685 \times 10^{-3} = 1.71 \times 10^{-3} \text{ mol}$$
Conc. of H₂O₂ = $(1.71 \times 10^{-3})/(25.0 \times 10^{-3}) = 0.0684 \text{ mol dm}^{-3}$

Concn of original solution =
$$20.0 \times 0.0684 = 1.37 \text{ mol dm}^{-3}$$
.

When hydrogen peroxide decomposes.

$$2H_2O_2(aq) \hspace{0.2in} \longrightarrow \hspace{0.2in} 2H_2O(l) \hspace{0.2in} + \hspace{0.2in} O_2(g)$$

2 moles of hydrogen peroxide form 1 mole of oxygen. Therefore a solution of hydrogen peroxide of concentration 2 mol dm⁻³ is a 22.4 volume solution (the volume of 1 mole of oxygen).

The concentration of hydrogen peroxide is: a) 1.37 mol dm⁻³, and ANSWER b) 15.4 volume.

EXAMPLE 4 Finding the percentage of iron in ammonium iron(III) sulphate Iron(III) ions can be estimated by first reducing them to iron(II) ions, and then, after destroying the excess of reducing agent, oxidising them to iron(III) ions with a standard solution of potassium manganate(VII). Zinc amalgam and sulphuric acid are used as the reducing agent. Note that hydrochloric acid cannot be used, and the reducing agent tin(II) chloride cannot be used as potassium manganate(VII) oxidises chloride ions to chlorine

7.418 g of ammonium iron(III) sulphate are dissolved and made up to 250 cm3 after the addition of dilute sulphuric acid, 25.0 cm3 of the solution are pipetted into a bottle containing zinc amalgam, and shaken until a drop of the solution gives no colour when tested with a solution of a thiocyanate (which turns deep red in the presence of iron(III) ions). The aqueous solution is then separated by decantation from the zinc amalgam. On addition of more dilute sulphuric acid and titration against standard potassium manganate(VII) solution, 18.7 cm3 of 0.0165 mol dm⁻³ solution are required. Calculate the percentage of iron in ammonium iron(III) sulphate.

METHOD

Amount (mol) of manganate(VII) = $18.7 \times 10^{-3} \times 0.0165$

= 0.0309 × 10⁻³ mol

in volume used From the equation

 $MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(1)$

Amount (mol) of $Fe^{2+}(aq)$ in 25.0 cm³ = $5 \times 0.309 \times 10^{-3}$ = 1.55 × 10⁻³ mol

Amount (mol) of Fe2+(aq) in whole solution = 1.55 × 10-2 mol

Mass of iron in sample = Amount (mol) × Relative atomic mass $= 1.55 \times 10^{-2} \times 55.8 = 0.865 g$

Percentage of iron = $\frac{0.865}{7.418} \times 100 = 11.7\%$. ANSWER

POTASSIUM DICHROMATE(VI) TITRATIONS

Potassium dichromate(VI) can be obtained in a high state of purity, and its aqueous solutions are stable. It is used as a primary standard. The colour change when chromium(VI) changes to chromium(III) in the reaction

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$$

is from orange to green. As it is not possible to see a sharp change in colour, an indicator is used, Barium N-phenylphenylamine-4sulphonate gives a sharp colour change, from blue-green to violet, when a slight excess of potassium dichromate has been added. Phosphoric(V) acid must be present to form a complex with the Fe3+ ions formed during the oxidation reaction; otherwise Fe3+ ions affect the colour change of the indicator.

Since dichromate(VI) has a slightly lower redox potential than manganate(VII), it can be used in the presence of chloride ions, without oxidising them to chlorine.

.

EXAMPLE Determination of the percentage of iron in iron wire

A piece of iron wire of mass 2,225 g was put into a conical flask contaning dilute sulphuric acid. The flask was fitted with a bung carrying a Bunsen valve, to allow the hydrogen generated to escape but prevent air from entering. He mixture was warmed to speed up reaction. When all the iron had reacted, the solution was cooled to room temperature and made up to 250 cm² in a gaduated flask. With all these precautions, iron is converted to Fe² ions only, and no Fe² ions sur formed. 250 cm² in the solution were acidified and itrated against a 0.0185 mol dm² solution of potassium dichromate (VI). The volume required was \$1.0 cm². Calculate the percentage of fron in the

METHOD Amount (mol) of $Cr_2O_7^{2-}(aq)$ used = $31.0 \times 10^{-3} \times 0.0185$ = 0.574×10^{-3} mol

The equations for the two half-reactions are

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$$
 [1]

Multiplying [2] by 6 and adding gives

$$Cr_2O_2^{2-}(aq) + 14H^{4}(aq) + 6Fe^{24}(aq)$$
 \longrightarrow $2Cr_2^{3+}(aq) + 6Fe^{3+}(aq) + 7H_2O(1)$

$$Cr_2O_1^*$$
 (aq) + 14H (aq) + 6Fe* (aq) \longrightarrow 2Gr* (aq) + 6Fe* (aq) + 7H₂O(I.
Amount (mol) of Fe²⁺ in 25.0 cm³ = 6 × 0.574 × 10⁻³

=
$$3.45 \times 10^{-3}$$
 mol
Amount (mol) of Fe²⁺ in the whole solution = 3.45×10^{-2} mol

Amount (moi) of Fe² in the whole solution =
$$3.45 \times 10^{-2}$$
 moi
Mass of Fe in the whole solution = $3.45 \times 10^{-2} \times 55.8 = 1.93$ g

Percentage of Fe in wire =
$$\frac{1.93}{2.225} \times 100 = 86.7\%$$

ANSWER The wire is 86.7% iron.

SODIUM THIOSULPHATE TITRATIONS

Sodium thiosulphate reduces iodine to iodide ions, and forms sodium tetrathionate, Na₂S₄O₆:

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

Sodium thiosulphate, Na,5,0,3-1H,D, is not used as a primary standard as the water content of the crystals is variable. A solution of sodium thiosulphate can be standardised against a solution of iodine, or a solution of potassium iodate(V) or potassium dichromate or potassium manganate(VII). EXAMPLE 1 Standardisation of a sodium thiosulphate solution, using iodine Iodine has a limited solubility in water. It dissolves in a solution of potassium iodide because it forms the very soluble complex ion, I₃.

$$I_2(s) + I^-(aq) = I_3^-(aq)$$

An equilibrium is set up between iodine and tri-iodide ions, and if iodine molecules are removed from solution by a reaction, tri-iodide ions dissociate to form more iodine molecules. A solution of iodine in potassium iodide can thus be titrated as though it were a solution of iodine in water.

When sufficient of a solution of thiosulphate is added to a solution of iodine, the colour of iodine fades to a pale yellow. Then 2 cm³ of starch solution are added to give a blue colour with the iodine. Addition of thiosulphate is continued drop by drop, until the blue colour disappears.

 $2.835\,g$ of iodine and $6\,g$ of potassium iodide are dissolved in distilled water and made up to $250\,cm^3$. A $25.0\,cm^3$ portion titrated against sodium thiosulphate solution required $17.7\,cm^3$ of the solution. Calculate the concentration of the thiosulphate solution.

METHOD Molar mass of iodine = $2 \times 127 = 254 \,\mathrm{g \, mol^{-1}}$

Concn of iodine solution = $2.835 \times 4/254 = 0.0446 \text{ mol dm}^{-3}$ Amount (mol) of I₂ in $25.0 \text{ cm}^3 = 25.0 \times 10^{-3} \times 0.0446$

From the equation

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

No. of moles of 'thio' = 2 × No. of moles of I2

Amount (mol) of 'thio' in volume used = 2.23×10^{-3} mol

Concn of 'thio' =
$$\frac{2.23 \times 10^{-3}}{17.7 \times 10^{-3}}$$
 = 0.126 mol dm⁻³

ANSWER The concentration of the thiosulphate solution is 0.126 mol dm⁻³.

EXAMPLE 2 Standardisation of thiosulphate against potassium iodate (V) Potassium iodate(V) is a primary standard. It reacts with iodide ions in the presence of acid to form iodine:

in the presence of acid to form iodine:

$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \longrightarrow 3I_2(aq) + 3H_2O(1)$$

A standard solution of iodine can be prepared by weighing out the necessary quantity of potassium iodate(V) and making up to a known volume of solution. When a portion of this solution is added to an excess of potassium iodide in acid solution, a calculated amount of iodine is liberated 1.015 g of potassium iodate(V) are dissolved and made up to 250 cm. To a 250 cm portion are added an excess of potassium iodide and dilute sulphuric acid. The solution is titrated with a solution osodium thionulphate, starch solution being added near the end-point. 29.8 cm³ of thiosulphate solution are required. Calculate the concentration of the thiosulphate solution.

Метноо Molar mass of KIO₃ = 39.1 + 127 + (3 × 16.0) = 214 g mol⁻¹ Concn of KIO₃ solution = 1.015 × 4/214 = 0.0189 mol dm⁻³ Amount (mol) of KIO₃ in 25 cm³ = 25.0 × 10⁻³ × 0.0189

 $= 0.473 \times 10^{-3} \text{mol}$

Since

ANSWER

$$1O_3^-(aq) + 51^-(aq) + 6H^+(aq) \longrightarrow 3I_2(aq) + 3H_2O(I)$$

and $2S_2O_3^{-2}(aq) + I_2(aq) \longrightarrow 21^-(aq) + S_4O_6^{-2}(aq)$
No. of moles of 'thio' = 6 × No. of moles of $1O_3^-$

The sodium thiosulphate solution has a concentration 0.0950 mol dm⁻³.

 $= 6 \times 0.473 \times 10^{-3} = 2.84 \times 10^{-3} \text{ mol}$

Concn of 'thio' = $(2.84 \times 10^{-3})/(29.8 \times 10^{-3}) = 0.0950 \text{ mol dm}^{-3}$

EXAMPLE 3 Standardisation of thiosulphate solution with potassium dichromate(VI)

anceronizate v17.

A standard solution is made by dissolving 1.015 g of petassium of the control of the control

METHOD Molar mass of $K_2Cr_2O_7 = 294 \text{ g mol}^{-1}$

Concn of dichromate solution = 1.015 × 4/294 = 0.0138 mol dm⁻³

Amount (mol) of dichromate in 25 cm³ = $25.0 \times 10^{-3} \times 0.138$ mol

 $= 0.345 \times 10^{-3} \,\text{mol}$

The equations for the half-reactions are $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{2+}(aq) + 7H_2O(1)$ [1]

Multiplying [2] by 3, and adding to [1] gives the equation $Cr_2O_7^{-2}(aq)+14H^4(aq)+6I^2(aq)$ \longrightarrow $2Cr^{3+}(aq)+7H_2O(I)+3I_2(aq)$ No. of moles of $I_2 = 3 \times No$. of moles of $Cr_2O_7^{2-}$

Amount (mol) of I_2 in $25 \text{ cm}^3 = 3 \times 0.345 \times 10^{-3}$ = $1.035 \times 10^{-3} \text{ mol}$

No. of moles of 'thio' = 2 × No. of moles of 1₂ (see Example 1) Amount (mol) of 'thio' in volume used = 2.07 × 10⁻³ mol

Conen. of 'thio' = (2.07 × 10⁻³)/(19.2 × 10⁻³) = 0.108 mol dm⁻³

ANSWER The concentration of the thiosulphate solution is 0.108 mol dm⁻³.

EXAMPLE 4 Estimation of chlorine
Chlorine displaces iodine from iodides. The iodine formed can be
determined by titration with a standard thiosulphate solution.
Chlorate(1) solutions are often used as a source of chlorine as they
liberate chlorine readily on reaction with acid:

$$ClO^{-}(aq) \ + \ 2H^{+}(aq) \ + \ Cl^{-}(aq) \ \xrightarrow{\quad \ \ } \ Cl_{2}(aq) \ + \ H_{2}O(l)$$

The amount of chlorine available in a domestic bleach which contains sodium chlorate(1) can be found by allowing the bleach to react with an iodide solution to form iodine, and then titrating with thiosulphate solution:

 $CO^{-}(aq) + 2H^{+}(aq) + 2T^{-}(aq) \longrightarrow_{-} I_{+}(aq) + C^{-}(aq) + H_{2}OI)$. A domestic bleach in solution is diluted by piperting $10.0 \, \mathrm{cm}^{2}$ and making this volume up to $250 \, \mathrm{cm}^{2}$ portion of the solution is added to an excess of potassium iodide and ethanoic acid and tirzated against sodium thiosulphate solution of concentration $0.0950 \, \mathrm{nm}$ dum $I_{-}(aq) \, \mathrm{mm}$ and indicator. The volume required is $21.3 \, \mathrm{cm}^{2}$. Calculate the percentage of available chlorine in the

METHOD Amount (mol) of 'thio' = $21.3 \times 10^{-3} \times 0.0950 = 2.03 \times 10^{-3}$ mol

Since $2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$

Amount (mol) of $I_2 = 1.015$ mol

Since iodine is produced in the reaction

 $ClO^{-}(aq) + 2l^{-}(aq) + 2H^{+}(aq) \longrightarrow I_{2}(aq) + Cl^{-}(aq) + H_{2}O(l)$ Amount (mol) of ClO^{-} in 25 cm³ of solution = 1.015 × 10⁻³ mol

Since chlorate(I) liberates chlorine in the reaction

$$ClO^{-}(aq) + 2H^{+}(aq) + Cl^{-}(aq) \longrightarrow Cl_{2}(aq) + H_{2}O(l)$$

No. of moles of $Cl_{2} = No.$ of moles of chlorate(I)

 $= 1.015 \times 10^{-3} \text{mol}$

Mass of chlorine = $71.0 \times 1.015 \times 10^{-3} = 0.0720 g$

- How many moles of the following reductants will be oxidised by 3.0 × 10⁻³ mol of potassium manganate(VII) in acid solution?
 a) Fe²⁺ b) Sn²⁺ c) (CO₂), d) H₂O₂ e) I⁻
- a) Fe^{4*}
 b) Sn^{2*}
 c) (CO₂⁻)₂
 d) H₂O₂
 e) I⁻
 5. How many moles of the following will be oxidised by 1.0 × 10⁻⁴ mol
 - of potassium dichromate(VI)?

 a) Fe²⁺ b) SO₃²⁻ c) Br⁻ d) (CO₂⁻)₂ e) Hg₂²⁺?
- a) Fe² b) SO₃² c) Br d) (CO₂)₂ c) Hg₂²?

 6. How many moles of the following will be reduced by 2.0 × 10⁻³ moles
 - of Sn²⁺?

 a) Fe(CN),³⁻
 b) Cl,
 c) Mn⁴⁺ (to Mn²⁺)
 - a) Fe(CN)₆³ b) Cl₂ c) Mn^{4*} (to Mn^{2*})
 d) Ce⁴⁺ (to Ce³⁺) e) BrO₃^{*} (to Br⁻)?
- What volumes of the following solutions will be oxidised by 25.0 cm³ of 0.0200 mol dm⁻³ potassium manganate(VII) in acid solution?
 - a) 0.0200 mol dm⁻³ tin(II) nitrate
 - b) 0.0100 mol dm⁻³ iron(II) sulphate c) 0.250 mol dm⁻³ hydrogen peroxide
 - d) 0.200 mol dm⁻³ chromium(II) nitrate
 - e) 0.150 mol dm⁻³ sodium ethanedioate
- 8. What volumes of the following solutions will be oxidised by 20.0 cm³
- 8. What volumes of the following solutions will be oxidised by 20.0 cm of 0.0150 mol dm⁻³ potassium dichromate(VI) in acid solution?
 - a) 0.0200 mol dm⁻³ tin(II) chloride
 - b) 0.150 mol dm⁻³ iron(II) chloride
 c) 0.125 mol dm⁻³ sodium ethanedioate
 - d) 0.300 mol dm⁻³ sodium sulphite (sulphate(IV))
 - e) 0.100 mol dm⁻³ mercury(l) nitrate, Hg₂(NO₃)₂
- 9. 25.0 cm³ of a sodium sulphite solution require 45.0 cm³ of 0.0200 mol dm⁻³ potassium manganate(YII) solution for oxidation. What is the concentration of the sodium sulphite solution?
- 35.0 cm³ of potassium manganate(VII) solution are required to oxidise
 a 0.2145 g sample of ethanedioic acid-2-water, H₂C₂O₄*2H₂O. What is the concentration of the potassium manganate(VII) solution?
- 37.5 cm³ of cerium(IV) sulphate solution are required to titrate a 0.2245 g sample of sodium ethanedioate, Na₂C₂O₄. What is the concentration of the cerium(IV) sulphate solution?
- 12. A piece of iron wire weighs 0.2756 g. It is dissolved in acid, reduced to the Fe²⁺ state, and titrated with 40.8 cm³ of 0.0200 mol dm⁻³ potassium dichromate solution. What is the percentage purity of the iron wire?
- 13. A piece of limestone weighing 0.1965 g was allowed to react with an excess of hydrochloric acid. The calcium in it was precipitated as calcium ethanedioate. The precipitate was dissolved in sulphuric acid, and the ethanedioate in the solution neceded 3.5 cm⁻³ of a 0.0200 mol dm⁻³ solution of potassium manganate(VII) for titration. Calculate the percentage of CaCO₂ in the limestone.

- 14. A solution of potassium dichromate is standardised by titzation with sodium ethanedioate solution. If 47.0 cm³ of the dichromate solution were needed to oxidise 25.0 cm³ of ethanedioate solution of concentration 0.0925 mol dm⁻³, what is the concentration of the potassium dichromate solution?
- 15. 2.4680 g of sodium ethanedioate are dissolved in water and made up to 250 cm³ of solution. When a 25.0 cm³ portion of the solution is titrated against cerium(IV) sulphate, 35.7 cm³ of the cerium(IV) sulphate solution are required. What is its concentration?
- 16. A 250 cm² portion of a solution containing Fe² ions and Fe² ions was acdifiefd and tirated against potassium manganate(VII) solution. 15.0 cm² of a 0.0200 mol dm² solution of potassium manganate(VII) were required. A second 25.0 cm² portion was reduced with zinc and tirated against the same manganate(VIII) solution. 19.0 cm² of the oxidiary solution were required. Calculate the concentrations of
- a) What volume of acidified potassium manganate(VII) of concentration 0.0200 mol dm⁻³ is decolourised by 100 cm³ of hydrogen peroxide of concentration 0.0100 mol dm⁻³?
 - b) What volume of oxygen is evolved at s.t.p.?
- 18. A 0.6125g sample of potassium iodate(V), KIO₂ is dissolved in water and made up to 250 cm² A 25.0 cm² portion of the solution is added to an excess of potassium iodide in acid solution. The iodine formed requires 22.5 cm² of sodium thiosulphate solution for titration. What is the concentration of the thiosulphate solution?
- 19. 25/0 cm³ of a solution of X₂O₂ of concentration 0.100 mol dm³ is reduced by sulphur dioxide to a lower oxidation state. To reoxidise X to its original oxidation number required 50.0 cm³ of 0.0200 mol dm³ potassium manganate(VII) solution. To what oxidation number was X reduced by sulphur dioxide?
- 20. Manganese(II) sulphate is oxidised to manganese(IV) oxide by porassium manganate(VII) in acid solution. A flocculant's added to settle the solid MnO₂ so that it does not obscure the colour of the manganate(VII). If 250,0m² of manganese(II) sulphate solution require 22.5 cm² of 0.0200 mol dm⁻² potassium manganate(VII) solution, what is the concentration of MnSO₂?
- *21. A solution of hydroxylamine hydrochloride contains 0.1240g of NH₂OH-HGL. On boiling, it is oxidised by an excess of acidified iron[III] sulphate. The iron salt formed is titrated against potassium manganate(VII) solution of concentration 0.0160 mol dm⁻³. A volume of 44.6 cm³ of the oxidant is required.
 - a) Find the ratio of moles NH2OH: moles Fe3+.
 - b) State the change in oxidation number of Fe.
 - c) State the oxidation number of N in NH2OH.

- d) Deduce the oxidation number of N in the product of the reaction.
 - Decide what compound of nitrogen in this oxidation state is likely to be formed in the reaction.
 - f) Write the equation for the reaction.
- 22. A piece of impure copper was allowed to react with dilute nitric acid. The copperf(I) nitrate solution formed liberated iodine from an excess of potassium iodide solution. The iodine was estimated by titration with a solution of sodium thiosulphate. If a 0.877 g sample of copper was used, and the volume required was 23.7 cm³ of 0.480 mol dm⁻³ thiosulphate solution, what is the percentage of copper in the sample?
- 23. A household bleach contains sodium chlorate(I), NaOCl. The chlorate(I) ion will react with potassium iodide to give iodine, which can be estimated with a standard thiosulphate solution.
 - a) Write the equations for the reaction of ClO⁻ and I⁻ to give I₂ and for the reaction of iodine and thiosulphate ions.
 - b) A 25.0 cm² sample of household bleach is diluted to 250 cm². A 25.0 cm² portion of the solution is added to an excess of potassium iodide solution and titrated against 0.200 mol dm² sodium thio sulphate solution. The volume required is 18.5 cm². What is the concentration of sodium chlorate(1) in the bleach?

COMPLEXOMETRIC TITRATIONS

The complexes formed by a number of metal ions with

bis[bis(carboxymethyl)amino] ethane, (HO-CCH₂)-NCH-CH₂N(CH-CO₂H)₂.

which is usually referred to as edia (short for its old name) are very stable, and can be used for the estimation of metal ions by titration. The endpoint in the titration is shown by an indicator which forms a coloured complex with the metal ion being titrated. If Eriochrome Black T is used as indicator, the metal-indicator colour of red is seen as the beginning of the titration. As the titrant is added, the metal ions are removed from the indicator and complex with oldra. At the end-point, the colour of the free indicator, blue, is sent.

Metal-indicator (red) + edta —— Metal-edta + Indicator (blue)

EXAMPLE Determination of the bardness of tap water

Hardness in water is caused by the presence of calcium ions and magnesium ions. Both these ions complex strongly with edut. The amounts of temporary hardness and permanent hardness can be determined separately by performing complexometric titrations on tap water and boiled up water, 100 cm³ of rap water are measured into a flask. An alkaline buffer and Ericorhrome Black T are added, and the solution is titrated against 0.100 mol dm⁻³ edta solution. The volume required is 2.10 cm³.

A second 100 cm3 of tap water are measured into a 250 cm3 beaker. and boiled for 30 minutes. After cooling, the water is filtered into a 100 cm3 graduated flask, and made up to the mark by the addition of distilled water. On titration as before, the volume of edta needed is 1.25 cm3. Calculate the concentration of calcium and magnesium present as permanent hardness and the concentration of calcium and magnesium present as temporary hardness.

METHOD Total hardness requires

2.10 cm3 of 0.100 mol dm-3 edta 1.25 cm3 of 0.100 mol dm-3 edta Permanent hardness requires

 $0.85 \, \mathrm{cm^3}$ of $0.100 \, \mathrm{mol} \, \mathrm{dm^{-3}}$ edta Temporary hardness requires

Amount (mol) of metal as permanent hardness

= 1.25 × 10⁻³ × 0.100 mol

= 0.125 × 10⁻³ mol in 100 cm³ water

= 1.25 × 10⁻³ mol dm⁻³

Amount (mol) of metal as temporary hardness

= 0.85 × 10⁻³ × 0.100 mol

= 0.085 × 10⁻³ mol in 100 cm³ water

 $= 0.85 \times 10^{-3} \text{ mol dm}^{-3}$

ANSWER The concentration of calcium and magnesium present as temporary hardness is 8.5 × 10⁻⁴ mol dm⁻³; the concentration of calcium and magnesium present as permanent hardness is 1.25 × 10⁻³ mol dm⁻³.

EXERCISE 19 Problems on Complexometric Titrations

1. Calculate the concentration of a solution of zinc sulphate from the following data. 25.0 cm3 of the solution, when added to an alkaline buffer and Eriochrome Black T indicator, required 22.3 cm3 of a 1.05 × 10⁻² mol dm⁻³ solution of edta for titration. The equation for the reaction can be represented as

$$Zn^{2+}(aq) + edta^{4-}(aq) \longrightarrow Znedta^{2-}(aq)$$

- 2. To a 50.0 cm3 sample of tap water were added a buffer and a few drops of Eriochrome Black T. On titration against a 0.0100 mol dm⁻³ solution of edta, the indicator turned blue after the addition of 9.80 cm³ of the titrant. Calculate the hardness of water in parts per million of calcium, assuming that the hardness is entirely due to the presence of calcium salts. (1 p.p.m. = 1 g in 106 g water.)
- 3. A 0.2500g sample of a mixture of magnesium oxide and calcium oxide was dissolved in dilute nitric acid and made up to 1.00 dm3 of solution with distilled water. A 50.0 cm3 portion was buffered and, after addition of indicator, was titrated against 0.0100 mol dm-3 edta solution, 25.8 cm3 of the titrant were required. Find the percentage by mass of calcium oxide and magnesium oxide in the mixture.

- 8. A solution contains sodium chloride and hydrochloric acid. A 25.0 cm³ aliquot required 38 c.m³ of a 0.9325 mol dm³ solution of silver nitrate for titration. A second 25.0 cm³ aliquot required 7.2 cm³ of a 0.9559 mol dm³ solution of sodium hydroxide for neutralisation. Calculate the concentrations of a) sodium chloride, and b) hydrochloric acid in the solution.
- Find the percentage by mass of silver in an alloy from the following information. A sample of 1.245g of the alloy was dissolved in dilute nitric acid and made up to 250 cm². A 25.0 cm³ portion required 29.8 cm³ of a 0.0214 mol dm⁻³ solution of potassium thiocyanate for titration.

EXERCISE 21 Questions from A-Level Papers

- Ammonia is produced from its elements on a large scale using the Haber process.
 - a) Write an equation for the formation of ammonia from its elements.
 - b) The formation of ammonia is an exothermic reaction. In choosing the conditions under which the reaction is to be performed, decisions as to pressure and temperature must be made on economic grounds. State the arguments which influence such decisions.
 - i) Argument in favour of using a high pressure
 - ii) Argument against using a high pressure
 - iii) Argument in favour of using a high temperature
 - iv) Argument against using a high temperature.
 - e) For reasons of environmental safety the concentration of ammonia in the air downwind of an ammonia production plant was measured by the following procedure.
 A 20 000 litre (measured at s.t.p.) sample of the air was slowly
 - bubbled through an excess of dilute hydrochloric acid. The resulting solution was made alkaline and heated, the ammonia liberated being dissolved in exactly 50 cm³ of 0.1 M hydrochloric acid, which is a large excess. 40.00 cm³ of 0.1 M sodium hydroxide solution were required to neutralise the excess of acid.
 - Calculate the concentration of ammonia in the air in units of moles of ammonia per litre of air. (JMB91)
- 'Nitrochalk' is a widely used fertiliser which contains a mixture of ammonium nitrate and calcium carbonate.
 - animonium intrace and calcular caroniate.

 A student attempted to determine the percentage by mass of nitrogen in Nitrochalk by the following titrimetric procedure.
 - 2.00 g of Nitrochalk was heated with 25.0 cm³ of 2.00 mol dm⁻³ sodium hydroxide (that is, excess alkali) until no more ammonia gas was evolved. The mixture was filtered to remove the calcium carbonate. The filtrate was then made up to 250 cm³ by adding distilled

water and 25.0 cm3 portions were titrated against 0.100 mol dm-3 hydrochloric acid. It was found that 30.0 cm3 of acid was required to neutralise the NaOH left over.

- a) Describe briefly a chemical test to show that Nitrochalk contains calcium carbonate
- b) Explain why it is desirable to add the calcium carbonate to the ammonium nitrate.
 - c) The equation for ammonium nitrate reacting with sodium hydroxide

Construct the ionic equation for this reaction and give state symbols.

- d) Give two reasons why excess sodium hydroxide is used.
- e) How might the student test to find out when no more ammonia was evolved?
- f) How would you determine the end-point of the titration in the experiment?
- g) From the data given, calculate the number of moles of ammonium nitrate present in the original sample of fertiliser.
 - h) Hence calculate:

ing cations:

ions

- i) the percentage by mass of nitrogen in the fertiliser
- ii) the percentage by mass of calcium carbonate in Nitrochalk. (O90.AS)
- 3. a) Describe what you would expect to observe on the gradual addition of excess dilute sodium hydroxide to separate dilute (approximately 0.1 mol dm⁻³) solutions each containing one of the follow-

which occur b) In acidified aqueous solution iron(II) ions, Fe²⁺, are oxidised at room temperature by manganate(VII) ions, MnO2. Above 60°C ethanedioate ions, C₂O₄², are also oxidised by manganate(VII)

Write appropriate ion/electron half equations for:

- i) the reduction of the oxidising agent, MnO.
- ii) the oxidation of the reducing agent, Fe2+
- iii) the oxidation of the reducing agent, C2O4.

By combining (i), (ii) and (iii) write a balanced equation for the redox reaction which occurs between MnO2 and iron(II) ethanedioate. FeC2O4 (Fe2+ and C2O4- ions in acid solution) above 60°C in acid solution. Use this equation to calculate the volume of a manganate(VII) solution of concentration 0.0200 mol dm⁻³, required for complete reaction with 0.2000 g of iron(II) ethanedioate under the above conditions.

 $A_r(C) = 12.01, A_r(Fe) = 55.85, A_r(O) = 16.00$ (WJEC90)

- a) Write down the oxidation state of iodine in the IO₁ anion.
 - b) Write down the two ion/electron half equations for the reaction of the IO₂ anion with iodide ion (17) in acidic solution. Hence
 - write down the stoichiometric equation for the overall reaction.

 c) An unknown mass of KIO₂ was treated in aqueous solution with excess of iodide ion and acidified. The resulting solution, on titration against 0.2000 mol dm⁻³ sodium thiosulphate solution,
 - tion against 0.2000 moldm⁻³ sodium thiosulphate solution, required 53.70 cm³ thereof for complete reaction. Find the mass of KIO₃ used.

 $(A_r(K) = 39.10, A_r(I) = 126.90, A_r(O) = 16.00)$ (WJEC91,p)

- 5. Moss in lawns is treated with a mixture consisting of sand and ammonium iron(II) sulphate-6-water (Ferrous ammonium sulphate), (NH_d)₂SO₄*FeSO₄*6H₂O. When 3.000g of the mixture were shaken with dilute sulphatric acid and the resulting mixture titrated with 0.02 M KMnO₄ solution, 2.500 cm² of KMnO₄ were decolourised.
 - a) Describe briefly the essential steps necessary to isolate, from the solid mixture, a pure sample of ammonium iron(II) sulphate-6water.
 - b) By stating necessary reagent(s) and observation(s), give one test which would show the presence of sulphate ions in the pure sample. Give an equation for the reaction involved in the test.
 c) Construct an ionic equation for the reaction between Fe²⁺ ions and
 - MnO₄ ions in acid solution by writing two half-equations (one for Fe²⁺ and one for MnO₄ with H*) and combining them to give the overall equation.
- d) Using the information given at the start of the question, calculate the percentage by mass of Fe²⁺ ions in the mixture. (JMB91)
- 6. Iodine monochloride, ICI, is used to determine the degree of unsaturation in oils. The ICI adds rapidly to the carbon-carbon double bonds present. In an experiment, 0.127 g of an unsaturated oil was treated with 250 cm² of 0.100M iodine monochloride solution. The mixture was kept in the dark until the reaction was complete. The unreacted ICI was then treated with an excess of aqueous postassim iodide, forming 1₅. The liberated iodine was found to react with 40.0 cm² of 0.100M sodium thiosulphate.
 - Suggest why it is necessary to keep the mixture of oil and iodine monochloride in the dark.
 - Write an equation for the reaction between iodine monochloride and potassium iodide.
 - and potassium iodide.

 c) Calculate the number of moles of sodium thiosulphate which were used in the titration.

d) Calculate the number of moles of iodine liberated, given that iodine reacts with sodium thiosulphate according to the equation

Hence, calculate the number of moles of unreacted iodine monochloride.

- c) Calculate the number of moles of iodine monochloride which reacted with the 0.127 g of unsaturated oil.
 - f) Direct addition of iodine to an unsaturated oil is slow. However, unsaturation is quoted as the iodine number. The iodine number is the number of grams of iodine which in theory can be added to 100 g of oil. Calculate the iodine number of this oil, given that 1 mole of IG is equivalent to 1 mole of IG.
- 7. a) Indicate simple test-tube experiments you could do to show the formation of one complex of copper(II) and one complex of cobalt(II) starting from solutions containing their usual hydrated ions. State what you would observe, and give the formulae of the complex ions produced.
 - b) Brass is a mixture of copper and zinc. It dissolves in nitric acid to give a mixture of $Cu^{2*}(aq)$ and $Zn^{2*}(aq)$ ions. For example

$$3Cu(s) + 2NO_3(aq) + 8H^*(aq)$$
 \longrightarrow $3Cu^{2*}(aq) + 2NO(g) + 4H_2O(l)$

The copper ions may be analysed by means of iodide and sodium thiosulphate. The zinc ions do not react during this analysis. 1.00 g of brass was dissolved in nitric acid and, after boiling off oxides of nitrogen and neutralisation, excess potassium iodide was

The iodine reacted with 0,0100 moles of sodium thiosulphate

$$I_2(aq) + 2S_2O_3^2(aq) \longrightarrow 2I^*(aq) + S_4O_6^2(aq)$$
Calculate the percentage by mass of copper in the brass. (O90, AS)

a) Sodium peroxide, Na₂O₂, reacts with chlorine dioxide, ClO₂, to give a single solid compound, P₁ containing only sodium, chlorine

give a single solid compound, P, containing only sodium, chlorine and oxygen. An aqueous solition of P did not give a white precipitate on treatment with aqueous silver nitrate. When 1.00 g of P was beated for an hour at 280°C there was no change in mass. The resulting solid was dissolved in 100 cm³ of water and titrated with aqueous silver nitrate of concentration 0.100 md m². After the addition of 36.80 cm³ of the aqueous silver nitrate no more silver chloride was precipitated.

The mixture was heated to boiling, then treated with sulphur dioxide to reduce all chlorine-containing species to chloride ion. Subsequent titration with the silver nitrate solution required a further 73.60 cm 3 to precipitate all the chloride ion present. Deduce the formula of P and give an equation for the reaction which occurs when P is heated at 260 $^{\circ}$ C.

(Relative atomic masses: Cl = 35.5, Na = 23.0, O = 16.0.)

- b) In the complete absence of air 10.00 cm³ of an aqueous solution of sodium intrite (NaNO₂) of concentration 1.00 mod m³ were added to the same volume of acidified potassium iodide solution of concentration 0.500 mol m³. The liberated iodine was titrated with sodium thiosulphate solution (Na₂S₂O₂) of concentration 0.100 mod lam³, 10.00 cm³ being required to reach the end-point.
 - In a second experiment, using the same volume of the aqueous solution of soldium nitric but with free access of air, 30.00 cm³ of sodium thiosulphate solution were required to reach the end-point. Obtain an equation for the reaction between nitrate ions and iodide ions and explain the reasons for the differences between the first and second experiments. (1.92,8)
- a) Give the electronic structures of:
 i) a zinc atom

same conditions as before.

- ii) a zinc atom
- ii) a zinc ion.
- b) Zinc is an element in the d-block which forms colourless ions in aqueous solution.
 i) Explain why zinc ions are colourless whereas those of many
 - d-block metals are coloured.

 ii) Give the formula of the ion of another metal in the d-block
- which is colourless in aqueous solution.
 c) State with a reason whether you would expect ruthenium (Ru) compounds to be coloured or colourless in solution.
- 4) 250 cm³ of an aqueous solution containing 0.050 mol dm⁻³ of an on M³⁺(ag) was reduced using excess rine, and the uncreated zine removed. The resulting solution required 5.0 cm³ of an aqueous solution of potassium manganate(VII) of the same molar concentration to restore M to its original +3 oxidation state. To what oxidation states was M³⁺ reduced by the zine/5 bow vour working.

- *10. Consider the following information about the yellow-orange paramagnetic gas, A, which is an oxide of chlorine.

 A given volume, v. of A is decomposed into its elements by spark
 - ing and the resulting gases occupy a volume $\frac{3v}{2}$, measured under the same conditions. When the chlorine gas is absorbed in potassium iodide solution, the residual gas occupies a volume, v, under the

- When 0.1250g of A reacts under slightly alkaline conditions with a small excess of hydrogen peroxide, H₂O₂, solution, 20.76 cm³ of oxygen gas is evolved, measured at 273 K and 1.01 x 10⁵ Pa.
- 3. When the solution resulting from 2. above was boiled to destroy excess H₂O₂ and reacted under slightly acidic conditions with excess potassium iodide solution, iodine was liberated which required 74.12 cm³ of 0.1000 mol dm⁻³ sodium thiosulphate (Na₂S₂O₂) solution for a complete reaction.
- 4. When the solution resulting from 3, above was boiled with nitric acid (to remove excess iodide ion as volatile iodine) and titrated against 0.0500 mol dm⁻³ silver nitrate (AgNO₃) solution, 37.06 cm³ thereof was required to precipitate all the chloride ion present. (No chlorine containing compounds remained in solution thereafter.)
- 5. When a further O.1200 g of A is allowed to react with water at 0°C in the dark, a slow reaction ensure requiring some weeks for completion. Thereafter the resulting solution is found to require 6.18 cm² of 0.0500 mod lum² silver nitrate solution to precipitate all the chloride ion present. The silver stalt of the other product of acidifical and treated with excess potassium iodifies solution, the liberated iodine required 92.65 cm² of 0.1000 mol dm⁻² sodium thiosulphate for complete reaction.
- a) Use the information in 1, to obtain an empirical formula for A and to deduce a probable identity. Use the information in 4, to confirm your conclusion.
- Use your conclusions in a) and the information in 2., 3., 4. and 5. to suggest identities for all the oxochloro species which are formed and react therein.
 - e) i) Write balanced stoichiometric equations for all the redox processes in 2, 3, 4, and 5, above. State the changes in oxidation state undergone by chlorine and by the other species involved. Write balanced pairs of ion/electron half equations as appropriate.
 - Demonstrate the consistency of all the quantitative information with your conclusions.
 - (1 mole of a gas occupies 2.24×10^4 cm³ at 273 K and 1.01×10^5 Pa, $A_2(0)=16.00$, $A_2(Cl)=35.45$, one mole of I_2 reacts with two moles of $S_2Q_1^2$.
 - Hint For the formulation of ion/electron half equations, the addition of species such as H⁺, H₂O, OH⁻ to one side or other of the equation is frequently of assistance.) (WJEC92,S)
- a) When an acidified solution of potassium dichromate(VI) is added to a solution of an iron(II) compound, the Fe²⁺ ions are oxidised to Fe³⁺ ions.
 - Write an equation to show the ionic half reaction involving the iron(II).

- ii) Give the formula and colour of the chromium ion formed in
 - the redox reaction.

 b) A sample of steel weighing 0.200 g is dissolved in dilute aqueous sulphuric acid. The resulting solution requires 34.0 cm² of potassium manganate(VII) of concentration 0.02 mol dm⁻² in a titration. The reactions which take olace are represented by the countions

Fe(s) + 2H*(aq) - Fe^{2*}(aq) + H_{*}(g)

$$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \longrightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_{-}O(1)$$

- i) Explain why no indicator is required in this titration.
 ii) Calculate the percentage of iron in the steel.
- c) i) Give a simple test and its result to show that a sample of a mineral contains the element calcium.
 - ii) When aqueous sodium hydroxide is added to a solution of an iron(III) compound, iron(III) hydroxide is formed. Classify the type of reaction which takes place. Write an equation to represent the reaction.
- d) Discuss some of the environmental problems that can arise in the quarrying of minerals. (AEB90,AS)
- 12. This question concerns the determination of the amount of preservative, sodium sulphite (Na₂SO₂), in a sample of berchurgers. In an experiment it kg of meat was boiled with an excess of dilute hydrochloric acid (Step 1). The sulpher dioxide gas released was (Step 2). The resulting solution was then acidified with dilute sulphuric acid and titrated with 0.02 M KMnO₂, solution (Step 3); 30.00 cm³ were required to reach the ord-opint.

Use the following equations to answer the questions below.

Step 1

Step 2 SO₂ + 2OH⁻ H₂O + SO₂⁻

- i) How many moles of Na₂SO₃ are equivalent to 1 mol of MnO₄?
 ii) How many moles of MnO₄ were used in the titration?
 - How many moles of Na₂SO₃ were present in 1 kg of the meat?
 Government chemists often express the amount of Na₂SO₃ in meat as parts per million (1 ppm = 1 g of Na₂SO₃ in 10° g of
 - meat). Express the amount of Na₂SO₃ in the meat as ppm.

 b) i) In Step 1, why is it necessary to use an excess of dilute hydrochloric acid and to boil the solution?

- ii) In Step 3, why is it essential not to use dilute hydrochloric acid to acidify the solution?
- iii) In Step 3, what colour change would you observe at the endpoint? (JMB92)
- 13. a) i) State the conditions under which magnesium and calcium will
 - react with water, and write balanced equations for the reactions.

 ii) Explain any differences between the two reactions in terms of the atomic properties of the two metals.
 - b) Compare the chemistries of magnesium and calcium with reference to the following:
 - i) the solubilities of their sulphates in water
 - ii) the thermal stabilities of their carbonates
 - iii) the reactions of their oxides with water.
 - A mineral, which can be represented by the formula Mg_xBa_y(CO₃)_z, was analysed as described below.

From the results, calculate the formula of the mineral.

A sample of the mineral was dissolved in excess hydrochloric acid and the solution made up to 100 cm³ with water. During the process 48 cm³ of carbon dioxide, measured at 25 °C and 1 atmosphere pressure, were evolved.

A 25.0 cm² portion of the resulting solution required 25.0 cm² of clas solution of concentration 0.02 mol dm² for reach an end-point. A further 25.0 cm² portion gave a precipitate of barium sulphare of mass 0.0585 on treatment with excess dilute sulphuric acid. You may assume that Group 2 metal ions form 11 complexes

(Molar volume of any gas at 25 °C and 1 atmosphere pressure = 24 dm^3 .) (AEB90)

- 14. Zinc sulphate can be used as a dietary supplement in cases of suspected zinc deficiency. The compound crystallises as a hydrated salt, and is readily water-soluble.
 - a) In a simple experiment to determine the extent of hydration, a technician carefully heated 3.715 g of the crystals to a moderate temperature until no further loss in mass occurred.

The anhydrous salt had a mass of 2.086 g.

Relative atomic masses are included in the Periodic Table on pp. 294-5.

- i) How many moles of zinc sulphate are there in 2.086g of anhydrous zinc sulphate?
- ii) How many moles of water were lost?
 iii) What is the value of x in the formula ZnSO₄-xH₂O?
- b) The daily recommended intake of zinc in the USA is 15 mg.
 - i) What mass of zinc sulphate crystals would need to be taken to obtain this intake?

100

- ii) If this is taken via a 5 cm³ dose of aqueous zinc sulphate, calculate the concentration of this solution in mol dm⁻³ of the hydrated salt.
 The exemple ligand athylaned in mine terrococcie acid (edta) can be
- c) The organic ligand ethylenediamine tetra-acetic acid (edta) can be used to titrate Zn²⁺ in solution. The edta complexes the zinc, releasing hydrogen ions: edta works best in this experiment at about pH 10.
 - 5.932 g of hydrated zine sulphate was dissolved in water and made up to 200 cm³ of solution, 20.00 cm³ aliquots of this solution required 20.65 cm³ of 0.1000 mol dm⁻³ edta for com-
 - plete reaction. In what mole ratio do Zn²⁺ and edta react?

 ii) Explain why this titration is done in the presence of aqueous
 - ammonia containing dissolved ammonium chloride.

 iii) Why would an attempt to determine the concentration of zinc
 ions in solution by precipitating zinc hydroxide with excess
 sodium hydroxide and weighing it be an unsatisfactory method?
- (L92)
 *15. This question concerns a hydrated potassium manganese ethane-
- dioate complex, and experiments to determine its composition.

 Stage 1

 5.000 g of a pure sample of the complex were dissolved in dilute

5.000g of a pure sample of the complex were dissolved in dilute sulphurie said to make 100 cm² of ofision 100 cm² of this solution were placed in a conical flask, warmed to 60°C, and directed with pink colour was observed in the clear solution. This was repeated, and a consistent titre of 23.5 cm³ of the potassium manganate(VII) solution was obtained.

Stage 2

A 50 cm³ portion of the same solution of the complex was treated with excess sodium carbonate solution, and the brown precipitate formed was filtered off. After washing and drying, the precipitate was heated strongly in air until there was no further change in mass; the brownish-black residue of manganeses(IV) solide weighed 0.425 g.

Stage 3

Another pure sample of the complex weighing 5.000 g was dehydrated carefully by gentle warming; the residue weighed 4.648 g.

 a) i) Write a balanced equation for the reaction of ethanedioate ions with manganate(VII) ions in acidic solution in Stage 1, given the half equation

 ii) Calculate the mass of ethanedioate ions in the original sample of the complex.

b) i) Explain the chemistry of the steps in Stage 2.

 Calculate the mass of manganese in the original sample of the complex.

- c) Using your answers to a) and b), and the results from Stage 3, calculate the formula of the complex.
- d) i) What is the oxidation number of manganese in the complex?
 ii) Draw a diagram of the displayed structure of the anhydrous complex.
 (1.92.N.S)
- 16. a) Describe what you would expect to observe on the gradual addition of excess of the following reagents to separate samples of a solution containing copper(II) ions, Cu³: i) aqueous ammonia; ii) potassium iodide solution. Give the formulae for all the succies produced.
 - Explain the nature of the reaction with potassium iodide solution, giving also a balanced overall chemical equation. *Briefly* indicate also how this reaction could be used as a basis for the volumetric estimation of copper.
 - b) i) Describe the nature of the bonding in lead(IV) chloride, PbCl₂, and compare it with that in lead(II) chloride, PbCl₃. Similarly, compare these two compounds with respect to I) physical properties, 2) thermal stability, and 3) behaviour on treatment with water. Give balanced chemical equations wherever appropriate the properties of the prop
 - Show clearly how your answers in b) i) 2) and 3) above are consistent with the following numerical data.
 - Gentle heating of 0.5000 g of lead(IV) chloride, allowing volatile products to escape, results in a weight loss of 0.1016 g.
 Treatment of a further 0.5000 g of lead(IV) chloride with
 - water yields a solid product and a solution which requires 28.65 cm³ of 0.2000 mol dm³ silver nitrate solution for complete reaction with the chloride ion present. (Here Ag*(aq) + Cl*(aq) → AgCl(s).)
 - $(A_r(Pb) = 207.21, A_r(Cl) = 35.45.)$

riste

- c) You are provided with a solution which is known to contain either a chloride or a bromide or an iodide. Describe and explain one test only which would allow you unambiguously to identify the halide present. (WJEC92)
- Hydrogen peroxide (H₂O₂) may be prepared in the laboratory by treating barium peroxide (BaO₂) with dilute sulphuric acid. Pure hydrogen peroxide is a pale blue syrupy liquid m.pt. -1°C and b.pt. 150°C.
 - a) i) Write a balanced equation for the reaction of barium peroxide with sulphuric acid.
 - ii) How would you remove the barium sulphate produced in the reaction?

b) Hydrogen peroxide decomposes on heating. The dilute solution of hydrogen peroxide, obtained from the reaction of barium peroxide with sulphuric acid, may be concentrated using the apparatus helow.

- Explain why a filter pump is connected to the desiccator.
 What is the purpose of the concentrated sulphuric acid?
- The structure of hydrogen peroxide may be represented by either of the following structures.

- Using the outer electrons draw a dot and cross diagram for hydrogen peroxide.
- Using the dot and cross diagram suggest which of the structures I or II is more likely for hydrogen peroxide. Explain your reasoning.
- d) The hydrogen peroxide sold in shops is usually described as '20-volume'. This means that 1 cm³ of hydrogen peroxide solution produces 20 cm³ of oxygen. Hydrogen peroxide decomposes on standing and faster with a catalyst.

- of a 20-volume solution. (One mole of a gas occupies 24 dm³ at room temperature and pressure.)

 ii) Hydrogen perovide liberates indine quantitatively from solu-
- ii) Hydrogen peroxide liberates iodine quantitatively from solutions of acidified potassium iodide.

$$H_2O_2 + 2I^- + 2H^* \longrightarrow I_2 + 2H_2O$$

The liberated iodine may be titrated with sodium thiosulphate solution.

$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^{-}$$

A bottle, labelled '20-wolume hydrogen peroxide', had been standing on the shelf of a pharmacy for some time. 25.0 cm³ of this solution were diluted to a total volume of 250 cm³. A 25.0 cm³ portion of the diluted solution was acidified and excess potassium iodide added. This treated 25.0 cm³ portion was titrated against 0.1 M sodium thiosulphate solution and gave and polyon of 34.0 cm³.

Calculate the actual strength, by 'volume', of the solution labelled 20-volume hydrogen peroxide.

 e) Describe how a solution of hydrogen peroxide may be used to identify the presence of Mn²⁺ in aqueous solution. State the result expected. (NI90,p)

9 The Atom

MASS SPECTROMETRY

In a mass spectrometer, an element or compound is vaporised and them ionised. The ions are accelerated, collimated into a beam and deflected by a magnetic field. The amount of the deflection depends on the ratio of mass/charge of the ions, as well as the values of the accelerating voltage and the magnetic field. The magnetic field is kept constant while the accelerating voltage is varied continuously to focus species as a pask on a trace. From the value of the voltage associated with a particular peak the ratio of mass/charge for that ionic species can be found. Since each ion has a charge of +1, the ratio mass/charge calibrated to read out ionic masses directly. The heights of the peaks are proportional to the relative abundance of the different ions.

EXAMPLE 1 The mass spectrum of borom shows two peaks, one at 10.0 u, and the other at 11.0 u. The heights of the peaks are in the ratio 18.7% - 81.3%. Calculate the relative atomic mass of boron

METHOD The relative heights of the peaks show that the relative abundance of ¹⁰R and ¹¹R is 18.7% ¹⁰R, 81.3% ¹¹R.

In 1000 atoms, there are 187 of mass $10.0 \, \text{u} = 1870 \, \text{u}$

and 813 of mass 11.0 u = 8943 u The mass of 1000 atoms = 10.813 u

The average atomic mass = 10.8 u

EXAMPLE 2 The mass spectrum of neon shows three peaks, corresponding to masses of 22, 21 and 20u. The heights of the peaks are in the ratio

11.2:0.2:114. Calculate the average atomic mass of neon.

Multiplying the relative abundance (the height of the peak) by the mass to find the total mass of each isotope present gives

Mass of neon-22 = 11.2 × 22.0 = 246.4 u

Mass of neon-22 = 11.2 x 22.0 = 246.4 u Mass of neon-21 = 0.2 x 21.0 = 4.2 u

Mass of neon-20 = 114 × 20.0 = 2280 u

Totals are 125.4 = 2530.6 u

Average mass of neon atom = 2530.6/125.4 = 20.18 u.

ANSWER The average atomic mass of neon is 20.2 u.

ANSWER The average atomic mass of neon is 2

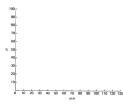
- The mass spectrum of rubidium consists of a peak at mass 85 and a peak at mass 87 u. The relative abundance of the isotopes is 72:28. Calculate the mean atomic mass of rubidium.
 - If ⁶⁹Ga and ⁷¹Ga occur in the proportions 60: 40, calculate the average atomic mass of gallium.
 - Fig. 9.1 shows the mass spectrum of magnesium. The heights of the three peaks and the mass numbers of the isotopes are shown in Fig. 9.1. Calculate the relative atomic mass of magnesium.

Fig. 9.1 Mass spectrum of magnesium

- 4. The mass spectrum of chlorine shows peaks at masses 70, 72 and 74 u. The heights of the peaks are in the ratio of 9 to 6 to 1. What is the relative abundance of ³⁶Cl and ³⁷Cl? What is the average atomic mass of chlorine?
- Calculate the relative atomic mass of lithium, which consists of 7.4% of ⁶Li and 92.6% of ⁷Li.
- A sample of water containing ¹H, ²H and ¹⁶O was analysed in a mass spectrometer. The trace showed peaks at mass numbers 1, 2, 3, 4, 17, 18. 19 and 20. Suggest which ions are responsible for these peaks.
- Calculate the average atomic mass of potassium, which consists of 93% ³⁹K and 7.0% ⁴¹K.
- Fig. 9.2 shows a mass spectrometer trace for copper nitrate. Each of the eight peaks is produced by a different species of ion. Suggest what these ions are.

Fig. 9.2 The mass spectrum of copper nitrate

EXERCISE 23 Questions from A-level Papers


- a) i) State the main natural source of alkanes.
 - a) 1) State the main natural source of alkanes.
 ii) State two important uses of alkanes.
 - b) i) State the conditions under which methane reacts with chlorine.
 - Name the type of reaction which occurs in this case.
 Write the mechanism of this reaction (in b) i)) excluding steps which produce CHCl₃ or CCl₄.
 - c) The main peaks in the mass spectrum of an alkane, a ketone, and a carboxylic acid are listed below but it is not known which is which. I) Assign each molecule to its correct mass spectrum and also write its structural formula. (If somers exist, only one formula is wanted) (A(H) = 1, A(C) = 16, A(O) = 16.)

Mass spectrum	m/e	Type of molecule	Structural formula
A	60, 45, 15		
В	58, 43, 28, 15		
С	58, 43, 29, 15		

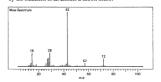
ii) Give reasons in each case for your assignments in c) i).

- d) The boiling points of the alkane, ketone and carboxylic acid in c) are 0, 56 and 118 °C respectively. Explain why these differ despite the fact that the molecules have very similar relative molecular masses. (WJEC92)
- Two isomeric aromatic compounds X and Y have the following percentage composition by mass: C = 66.4%; H = 5.5%; CI = 28.1%.
 The relative molecular mass of the compounds is 126.5.
 - a) Show that the molecular formula for X and Y is C₇H₇Cl.
 - i) One of the compounds, X, yields a white precipitate when warmed with aqueous silver nitrate, whereas Y does not. What can you deduce from this?
 - Suggest a structure for X and give one of the possible structures for Y
 - c) Compounds related to Y are used as insecticides. What property leads to these compounds causing environmental damage?

d) Sketch a possible mass spectrum for compound Y on a copy of the axes below and explain, using your sketch, how it would enable you to distinguish between compound X and compound Y (there is no need to draw a possible mass spectrum for X). (L91)

- a) Identify, and give the main characteristics of, the particles contained in atomic nuclei.
 - b) Relative atomic and molecular masses are measured on a scale in which ¹²C = 12 exactly. Explain what this means and indicate why relative atomic mass is a more useful concept than atomic mass.
 - c) Chlorine is essentially a mixture of two isotopes, ³⁵Cl and ³⁷Cl. By reference to chlorine explain what is meant by the term isotope.
 - d) The following is the mass spectrum of chlorine, Cl₂.

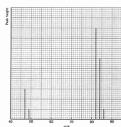
- i) Identify each peak in the spectrum.
- ii) Suggest a reason why the peaks are not all the same height.



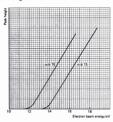
- *4. a) Outline the principles of mass spectrometry and indicate some of of its applications to modern chemistry.
 - Bromine consists of two isotopes with mass numbers 79 and 81 which have percentage abundance of 50.5 and 49.5 respectively.
 Calculate the relative atomic mass of bromine.
 What term the wife way that for the Bettings in the mass constraint.

ii) What are the m/e values for the Br⁺₂ ions in the mass spectrum of bromine and what are the relative heights of the corresponding peaks?

c) Both ¹⁴C and ⁴⁶K are radioactive and decay by β-mission. Briefly state how ¹⁴C is used to date archaeological items of animal or vegetable origin. Comment on the fact that the age of certain minerals may be inferred from the ⁴⁶K/⁴⁶Ar ratio. (AEB91,S) (For part c), see Chapter 14.)


- How are the procedures of i) refluxing and ii) distillation carried out in the laboratory? Explain the purpose of carrying out the
 - procedures by reference to two different chemical reactions.
 b) What do you understand by the term relative atomic mass?
 - The mass spectrum of an organic compound which can be obtained by the oxidation of an alcohol is shown below.

The compound has the following composition by mass:


Calculate the empirical formula of the compound and by interpreting the labelled peaks on the mass spectrum determine the molecular formula of the compound. (L92,AS)

- *6. a) Give a detailed account of the design and operation of a mass spectrometer.
 - b) The figure below shows part of the mass spectrum of CCla.

- i) Assign the peaks shown to the appropriate ions.
- ii) Explain the observed relative peak heights within the groups of m/e 82-84-86 and 47-49.
- iii) Very small additional peaks (not shown) include those at m/e 83 and 48 which are about 1% of the height of the 82 and 47 peaks respectively. Suggest a reason for these peaks.
- iv) A small peak is also seen at m/e 41; suggest a reason for this.
- N.B. The peaks in b) iii) and b) iv) are not caused by impurities. $(A_{*}(C) = 12.01, A_{*}(Cl) = 35.45,)$

 If methane is leaked into the mass spectrometer and the electron beam energy slowly increased from zero, the ionisation curves shown in the figure below are obtained.

i) Explain the origin and shape of the curves.

- ii) Given that the ionisation energy of the methyl radical (CH₃* — CH₃*+ e) is 9.8 eV, use the figure to calculate the bond dissociation energy D (H₃C-H) in methane.
- N.B. 1. 1 electron volt (eV), the energy gained by an electron when accelerated through 1 volt, is equivalent to 96.5 kJ mol⁻¹.
 - Only single events occur in the mass spectrometer; electrons do not strike a species twice.
- d) High resolution mass spectrometry measures m/e values to several places of decimals. Since isotopic masses differ from whole numbers by different amounts, it is possible to find the molecular formula of a fragment without knowing which elements are present.

The molecular ion of a solid organic molecule, important in living systems, has an m/e value of 75.032 015 and contains all of the isotopes whose exact relative atomic masses are listed below. Deduce the molecular formula and suggest a structure.

N.B. The m/e value given is corrected for the loss of mass of the electron.

 $A_{\bullet}(^{14}N) = 14,003\,07, A_{\bullet}(^{16}O) = 15.994\,91.$

electron.

$$(A_c(^{1}H) = 1.007 825, A_c(^{12}C) = 12.000 000,$$

(WJEC92,S)

NUCLEAR REACTIONS

In a nuclear reaction, a rearrangement of the protons and neutrons in the nuclei of the atoms takes place, and new elements are formed.

The atomic number or proton number, Z, of an element is the number of protons in the nucleus of an atom of the element. The mass number or nucleon number, A, is the number of protons and neutrons in the have the same atomic number. So topes are represented as ½ Symbol that have the same atomic number. Isotopes are represented as ½ Symbol neutrons in the number of the number of

For practice in balancing nuclear equations, study the following examples.

EXAMPLE 1 Complete the equation

ANSWER

METHOD Consider mass numbers: 16 = a + 0 $\therefore a = 16$ Consider atomic numbers: 7 = b + (-1) $\therefore b = 8$

EXAMPLE 2 Find the values of a and b in the equation

$$^{27}_{13}$$
Al + $^{1}_{6}$ n \longrightarrow $^{4}_{2}$ He + $^{4}_{6}$ X

METHOD Consider mass numbers: $27 + 1 = 4 + a$ $\therefore a = 24$

Consider atomic numbers:
$$13 + 0 = 2 + b$$
 : $b = 11$

ANSWER
$$a = 24$$
 and $b = 11$.

EXERCISE 24 Problems on Nuclear Reactions

Complete the following equations, supplying values for the missing mass numbers (nucleon numbers) and atomic numbers (proton numbers).

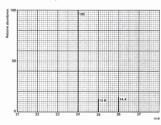
1. a)
$${}_{1}^{2}Be + \gamma \longrightarrow {}_{2}^{4}Be + {}_{5}^{6}X$$

b) ${}_{1}^{2}N + {}_{2}^{4}He \longrightarrow {}_{1}^{4}H + {}_{5}^{6}Y$
c) ${}_{2}^{2}Be + {}_{1}^{4}H \longrightarrow {}_{3}^{4}Li + {}_{5}^{6}Z$
d) ${}_{2}^{20}Bi + {}_{2}^{2}D \longrightarrow {}_{2}^{6}X + {}_{1}^{4}H$

EXERCISE 25 Questions from A-level Papers

- a) Complete the following table:
 - $(m_p = \text{mass of a proton}, e = \text{charge of a proton.})$

	Mass relative to m _p	Charge relative to e
Alpha particle		
Beta particle		


- b) Complete the following table which relates to the changes in the mass number and atomic number of an atomic nucleus when it emits
 - i) an alpha particle
 - a beta particle.

Particle emitted	Change in mass number	Change in atomic number
Alpha particle		
Beta particle		

- c) An isotope of the element uranium, ²³⁵U, emits successively seven alpha particles and four beta particles to form a stable isotope of another element X. Deduce:
 - i) the mass number of X
 - ii) the atomic number of X
 - iii) the identity of X.

(090)

- 2. a) i) Distinguish clearly between mass number and relative atomic
 - Calculate the relative atomic mass of the element magnesium from its mass spectrum below.

 i) Particles lost in radioactive decay are of two types; alpha particles (helium nuclei) and beta particles (high energy electrons). Identify Q and R in the following equations.

- 49K may lose an electron by a completely different process. Name this process and write an equation to represent the change. (AEB,90)
- a) The relative atomic mass of antimony is 121.75. Explain carefully the meaning of this statement.
 - b) A radioactive isotope of the element thorium ²³²₉₉Th decays according to the following scheme:

$$\frac{^{232}\text{Th}}{\text{emission}} \times \frac{\beta \text{-particle}}{\text{emission}} \times \frac{\beta \text{-particle}}{\text{emission}} Z$$

10 Gases

THE GAS LAWS

The behaviour of gases is described by the Gas Laws: Boyle's law, Charles' law, the equation of state for an ideal gas, Graham's law of diffusion, Gay-Lussac's law, Avogadro's law, Dalton's law of partial pressures and the ideal gas equation. We look at each of these in turn. equation. We look at each of these in turn.

BOYLE'S LAW

Boyle's law states that the pressure of a fixed mass of gas at a constant temperature is inversely proportional to its volume:

where P = pressure, V = volume.

CHARLES' LAW

Charles' law states that the volume of a fixed mass of gas at constant pressure is directly proportional to its temperature on the Kelvin scale:

$$\frac{V}{T}$$
 = Constant

where T = temperature in kelvins.

Temperature on the Kelvin scale (called the absolute temperature) is obtained by adding 273 to the temperature on the Celsius scale.

THE EQUATION OF STATE FOR AN IDEAL GAS

Gases which obey Boyle's law and Charles' law are called ideal gases. By combining these two laws, the following equation can be obtained. It is called the equation of state for an ideal gas:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

ANSWER

A gas has a volume of V, at a temperature T, and pressure P, if the conditions are changed to a pressure P, and a temperature T, a then evolume as the calculated from the equation, it is usual to compare gas volumes at 0°C and 1 atmosphere (abbreviated as 1 atm). These conditions are referred to as standard temperature and pressure (s.t.p.) come or normal temperature and pressure (n.t.p.). Some authors calculated volumes at room temperature (n.t.p.). Some authors calculated the pressure is the pascal.

- = 1.01 × 105 newtons per square metre (N m⁻²)
- = 760 mm mercury

Volumes can be measured in the SI unit, the cubic metre (m³) or in cubic decimetres (dm³) or cubic centimetres (cm³).

$$10^{3} \, \text{cm}^{3} = 1 \, \text{dm}^{3} = 10^{-3} \, \text{m}^{3}$$

Temperatures must be in kelvins.

EXAMPLE A volume of gas, 265 cm³, is collected at 70 °C and 1.05 × 10⁵ N m⁻². What volume would the gas occupy at s.t.p.?

METHOD The experimental conditions are

$$P_1 = 1.05 \times 10^5 \,\mathrm{N}\,\mathrm{m}^{-2}$$

 $T_1 = 273 + 70 = 343 \,\mathrm{K}$

$$V_1 = 265 \, \text{cm}^3$$

Standard conditions are $P_2 = 1.01 \times 10^5 \,\mathrm{N \, m^{-2}}$ $T_2 = 273 \,\mathrm{K}$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{1.05 \times 10^5 \times 265}{343} = \frac{1.01 \times 10^5 \times V_2}{273}$$

 $V_2 = 219 \, \text{cm}^3$

The volume of gas at s.t.p. would be 219 cm³.

(Note that the pressure and volume are in the same units on both sides of the equation.)

FXFRCISE 26 Problems on Gas Volumes

- 1. Correct the following gas volumes to s.t.p.:
 - a) 205 cm³ at 27 °C and 1.01 × 10⁵ N m⁻²
 - a) 205 cm² at 27 C and 1.01 x 10 N m²
 b) 355 cm³ at 310 K and 1.25 x 10⁵ N m²
 - c) 5.60 dm³ at 425 K and 1.75×10⁵ N m⁻²
 - d) 750 cm³ at 308 K and 2.00 × 10⁴ N m⁻²
 - e) 1.25 dm³ at 25 °C and 2.14 × 10⁵ N m⁻²
 - A certain mass of an ideal gas has a volume of 3.25 dm³ at 25 °C and 1.01 × 10⁵ N m⁻². What pressure is required to compress it to 1.88 dm³ at the same temperature?
 - 3. An ideal gas occupies a volume 2.00 dm³ at 25 °C and 1.01 \times 10 5 N m $^{-2}$. What will the volume of gas become at 40 °C and 2.25 \times 10 5 N m $^{-2}$?
 - An ideal gas occupies 2.75 dm³ at 290 K and 8.70 × 10⁴ N m⁻². At what temperature will it occupy 3.95 dm³ at 1.01 × 10⁵ N m⁻²?
 - An ideal gas occupies 365 cm³ at 298 K and 1.56 × 10⁵ N m⁻². What will be its volume at 310 K and 1.01 × 10⁵ N m⁻²?
 - 6. Correct the following gas volumes to s.t.p.:
 - a) 256 cm³ of an ideal gas measured at 50 °C and 650 mm Hg
 - b) 47.2 cm³ of an ideal gas measured at 62 °C and 726 mm Hg
 - c) 10.0 dm³ of an ideal gas measured at 200 °C and 850 mm Hg
 - d) 4.25 dm³ of an ideal gas measured at 370 °C and 2.12 atm e) 600 cm³ of an ideal gas measured at 95 °C and 0.98 atm
 - .

GRAHAM'S LAW OF DIFFUSION

At constant temperature and pressure, the rate of diffusion of a gas is inversely proportional to the square root of its density:

$$r \propto \frac{1}{\sqrt{\overline{\rho}}}$$

where $r = \text{rate of diffusion and } \rho = \text{density}$.

Comparing the rates of diffusion of two gases A and B gives

$$\frac{r_A}{r_B} = \sqrt{\frac{\rho_B}{\rho_A}}$$

118

This expression applies to rates of effusion (passage through a small aperture) as well as to diffusion (passage from a region of high concentration to a region of low concentration). It provides a method of measuring molar masses. The molar mass of a gas is proportional to its density (see p. 8.1 : Density = Molar mass/Gas molar voluntal).

Graham's law can therefore be written as

$$\frac{r_{\rm A}}{r_{\rm B}} = \sqrt{\frac{M_{\rm B}}{M_{\rm A}}}$$

where M_A and M_B are the molar masses of A and B.

EXAMPLE 1 A gas, A, diffuses through a porous plug at a rate of 1.43 cm³ s⁻¹. Carbon dioxide diffuses through the plug at a rate of 0.43 cm³ s⁻¹. Calculate the molar mass of A.

метноо Molar mass of carbon dioxide = 44.0 g mol⁻¹

$$\frac{r_{\text{CO}_3}}{r_{\text{A}}} = \sqrt{\frac{M_{\text{A}}}{M_{\text{CO}_2}}}$$

$$\frac{0.43}{1.43} = \sqrt{\frac{M_{\text{A}}}{44.0}}$$

$$M_{\text{A}} = 4.0$$

The molar mass of A is 4.0 g mol⁻¹.

EXAMPLE 2 It takes 54.4 seconds for 100 cm³ of a gas, X, to effuse through an aperture, and 36.5 seconds for 100 cm³ of oxygen to effuse through the same aperture. What is the molar mass of X?

METHOD Since

EXERCISE 27

ANSWER

$$\frac{r_{O_1}}{r_X} = \sqrt{\frac{M_X}{M_{O_1}}}$$

$$\frac{100/36.5}{100/54.4} = \sqrt{\frac{M_X}{32}}$$

$$M_X = 71$$

ISWER The molar mass of X is 71 g mol⁻¹.

 A certain volume of hydrogen takes 2 min 10s to diffuse through a porous plug, and an oxide of nitrogen takes 10 min 23 s. What is: a) the molar mass, b) the formula of the oxide of nitrogen?

Problems on Diffusion and Effusion

- 2. Plugs of cotton wool, one soaked in concentrated ammonia solution and the other soaked in concentrated hydrochloric acid, are inserted into opposite ends of a horizontal glass tube. A disc of solid ammonium chloride forms in the tube. If the tube is 1 m long, how far from the ammonia plug is the solid deposit?
- A certain volume of sulphur dioxide diffuses through a porous plug in 10.0 min, and the same volume of a second gas takes 15.8 min. Calculate the relative molecular mass of the second gas.
- Nickel forms a carbonyl, Ni(CO)_n. Deduce the value of n from the fact that carbon monoxide diffuses 2.46 times faster than the carbonyl compound.
 A certain volume of oxygen diffuses through an apparatus in 60.0
- seconds. The same volumes of gases A and B, in the same apparatus under the same conditions, diffuse in 15.0 and 73.5 seconds respectively. Gas A is flammable and gas B turns starch-iodide paper blue. Identify A and B.
 - 25 cm³ of ethane effuses through a small aperture in 40 s. What time is taken by 25 cm³ of carbon dioxide?
- Xenon diffuses through a pin-hole at a rate of 2.00 cm³ min⁻¹. At what rate will hydrogen effuse through the same hole at the same temperature and pressure?
- 8. In 3.00 minutes, 7.50 cm³ of carbon dioxide effuse through a pinhole. What volume of helium would effuse through the same hole under the same conditions in the same time?
- 9. A mixture of carbon monoxide and carbon dioxide diffuses through a porous diaphragm in one half of the time taken for the same volume of bromine vapour. What is the composition by volume of the mixture?
- 10. In 4.00 minutes, 16.2 cm³ of water vapour effuse through a small hole. In the same time, 8.1 cm³ of a mixture of NO₂ and N₂O₄ effuse through the same hole. Calculate the percentage by volume of NO₂ in the mixture.

THE GAS MOLAR VOLUME

Avogadro's law (see Chapter 7) states that equal volumes of gases, measured at the same temperature and pressure, contain equal numbers of molecules. It follows that the volume occupied by a mole of gas is the same for all gases. It is called the gas molar volume and measures 2.2 4 dm² at s.t. 0, (2.4) dm² at 2.9 C² and 1 arm).

If the volume occupied by a known mass of gas is known, the molar mass of the gas can be calculated.

METHOD

11.0 g of a gas occupy 5.60 dm3 at s.t.p. What is the molar mass of the gas?

Mass of $5.60 \,\mathrm{dm^3}$ of gas = $11.0 \,\mathrm{g}$ Mass of 22.4 dm³ of gas = $11.0 \times 22.4/5.60 = 44.0 g$

ANSWER The molar mass of the gas is 44.0 g mol-1.

EXERCISE 28 Problems on Gas Molar Volume

Use $R = 8.314 \text{ I K}^{-1} \text{ mol}^{-1}$; $GMV = 22.41 \text{ dm}^3 \text{ at s.t.p.}$

- Calculate the molar mass of a gas which has a density of 1.798 g dm⁻³ at 298 K and 101 kN m⁻².
- 2. At 273 K and $1.01 \times 10^5 \, \text{N m}^{-2}$, 2.965 g of argon occupy 1.67 dm³. Calculate the molar mass of the gas.
- 3. Calculate the volume occupied by 0.250 mol of an ideal gas at 1.01 × 105 N m⁻² and 20 °C.
- A volume, 500 cm³ of krypton, measured at 0 °C and 9.8 × 10⁴ N m⁻². has a mass of 1.809 g. Calculate the molar mass of krypton.
- 5. What amount (number of moles) of an ideal gas occupies 5.80 dm3 at 2.50 × 105 N m⁻² and 300 K? Propage has a density of 1.655 g dm⁻³ at 323 K and 1.01 × 10⁵ N m⁻².
- Calculate its molar mass 7. What volume is occupied by 0.250 mole of an ideal gas at 373 K and
- 1.25 × 10⁵ N m⁻²? 8. An ideal gas occupies 1.50 dm3 at 300 K and 1.25 × 105 N m-2. What

is the amount (in moles) of gas present?

DALTON'S LAW OF PARTIAL PRESSURES

In a mixture of gases, the total pressure is the sum of the pressures that each of the gases would exert if it alone occupied the same volume as the mixture. The contribution that each gas makes to the total pressure is called the partial pressure.

3.0 dm3 of carbon dioxide at a pressure of 200 kPa and 1.0 dm3 of EXAMPLE nitrogen at a pressure of 300 kPa are introduced into a 1.5 dm3 vessel. What is the total pressure in the vessel?

- A mixture of gases at a pressure 7.50 × 10⁴ N m⁻² has the volume composition 40% N₂; 35% O₂; 25% CO₂.
 - a) What is the partial pressure of each gas?
 - b) What will the partial pressures of nitrogen and oxygen be if the carbon dioxide is removed by the introduction of some sodium hydroxide pellets?
 - A mixture of gases at 1.50 × 10⁵ N m⁻² has the composition 40% NH₃; 25% H₃: 35% N₃ by volume.
 - a) What is the partial pressure of each gas?
 - b) What will the partial pressures of the other gases become if the ammonia is removed by the addition of some solid phosphorus(V) oxide?

THE IDEAL GAS EQUATION

Gases which obey Boyle's law and Charles' law are called ideal gases. Combining these two laws gives the equation:

$$\frac{P \times V}{T}$$
 = Constant for a given mass of gas

It follows from Avogadro's law that, if a mole of gas is considered, the constant will be the same for all gases. It is called the universal gas constant, and given the symbol R, so that the equation becomes

$$PV = RT$$

This equation is called the $ideal\ gas\ equation$. For n moles of gas, the equation becomes

$$PV = nRT$$

The value of the constant R can be calculated. Consider 1 mole of gas at s.t.p. Its volume is 22.414 dm³. Inserting values of P, V and T in SI units into the ideal gas equation.

$$P = 1.0132 \times 10^5 \,\mathrm{N \, m^{-2}}$$
 $T = 273.15 \,\mathrm{K}$
 $V = 22.414 \times 10^{-3} \,\mathrm{m^3}$ $n = 1 \,\mathrm{mol}$

gives
$$1.0132 \times 10^5 \times 22.414 \times 10^{-3} = 1 \times 273.15 \times R$$

$$R = 8.314$$

The units of R are PV/nT, i.e.

$$\frac{N m^{-2} m^3}{\text{mol } K} = N m \text{ mol}^{-1} K^{-1} = J K^{-1} \text{mol}^{-1}$$

Thus, $R = 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$ (joules per kelvin per mole).

THE KINETIC THEORY OF GASES

To explain the gas laws, the kinetic theory of gases was put forward. The kinetic theory considers that the molecules of gas are in constant motion in straight lines. The pressure which the gas exerts results from the bombardment of the walls of the container by the molecules.

The kinetic energy of a molecule $= \frac{1}{2}mc^2$ (m = mass, c = velocity). The kinetic energy of the $ms = \frac{1}{2}mN^{-2}$ (N = number of molecules

The kinetic energy of the gas = $\frac{1}{2}mNc^2$ (N = number of molecules, $\overline{c^2}$ = average value of the square of the velocity for all the molecules; $\sqrt{c^2}$ = root mean square velocity).

From the kinetic theory can be derived the equation

$$PV = \frac{1}{3}mN\overline{c^2}$$

Since the kinetic energy of the molecules is proportional to T (kelvins) $PV = Constant \times T$

This is the ideal gas equation. The agreement between theory and experimental results is good support for the kinetic theory.

The kinetic theory can be used to calculate the root mean square velocity of gas molecules.

EXAMPLE Calculate the root mean square velocity of hydrogen molecules at s.t.p.

METHOD 1 Use $M(H_2) = 2.02 \text{ g mol}^{-1}$. In the equation $PV = \frac{1}{4}mNc^2$, substitute PV = RT for 1 mole of gas, and mN = M, the molar mass of gas in kg. Substituting $mN = 2.02 \times 10^{-3} \text{ kg mol}^{-1}$ in $\frac{1}{4}mNc^2 = RT$, gives

$$\overline{c^2} = 3 \times 8.31 \times 273/(2.02 \times 10^{-3})$$

 $\sqrt{c^2} = 1.84 \times 10^3 \, \text{m s}^{-1}$ ANSWER The root mean square velocity of hydrogen molecules at s.t.p. is $1.84 \times 10^3 \, \text{m s}^{-1}.$

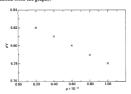
1.84 × 10° m s⁻¹.
METHOD 2 Use the density of hydrogen (9.00 × 10⁻² kg m⁻³ at s.t.p.). Since mN/V = p, the density of the gas, substituting in P = ½pc² gives

$$\sqrt{c^2} = \sqrt{\frac{3 \times 1.01 \times 10^5}{9.00 \times 10^{-2}}} = 1.84 \times 10^3 \,\mathrm{m \, s^{-1}}$$

ANSWER As before, the root mean square velocity is 1.84 × 10³ m s⁻¹.

Calculate its molar mass

EXERCISE 30 Problems on the Kinetic Theory and the Ideas Gas Equation


Use $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$. 1. Krypton has a density of 3.44 g dm^{-3} at $25 \,^{\circ}\text{C}$ and $1.01 \times 10^{5} \text{ N m}^{-2}$.

- The density of hydrogen at 273 K and 1.01 × 10⁵ N m⁻² is 8.96 × 10⁻² g dm⁻³. Calculate the root mean square velocity of the hydrogen molecules under these conditions.
 Using the equation PV = {mNc² calculate the kinetic energy of the
- molecules in one mole of an ideal gas at 0 °C.
- Calculate the root mean square velocity for argon at s.t.p. (M_r(Ar) = 40.0).
- A volume of 1.00 dm³ is occupied by 1.798 g of a gas at 298 K and 101 kPa. Calculate the molar mass of the gas.
- Calculate the ratio of the root mean square velocities of oxygen and xenon molecules at 27 °C, (A_t(O) = 16.0, A_t(Xe) = 131.)
- Calculate the root mean square velocity of hydrogen iodide molecules at 27 °C. (A.(1) = 127.)
- a) Calculate the ratio of the root mean square velocity of hydrogen molecules to the root mean square velocity of argon molecules at the same temperature.
 - b) At what temperature will argon molecules have the same root mean square velocity as hydrogen molecules at 0 °C? (A.(Ar) = 40.0.)

EXERCISE 31 Questions from A-level Papers

- On decay one atom of the radium isotope ²²⁸/₂₈Ra emits one α particle
 which forms an atom of helium gas. A sample of ²²⁸/₂₈Ra produced
 4.48×10⁻⁶ dm³ of helium measured at 273 K and 1 atm (1.01×10⁹ Pa)
 pressure, in a given time.
 - Calculate the mass of ^{22}Ra which decayed in that time if 1 mol of helium occupies $22.4\,\mathrm{dm}^3$ at $273\,\mathrm{K}$ and 1 atm pressure. (WJEC90,p)
- a) State the ideal gas equation.
 b) Gas X has a density of 0.714 g dm⁻³ at 273 K and 101.3 kPa, and diffuses twice as quickly as gas Y under identical conditions.
 - i) Calculate the relative molecular mass of gas X.
 ii) Name and state the law which relates the rate of diffusion to
 - relative molecular mass.
 - iii) Calculate the relative molecular mass of Y.
 - i) State van der Waals' equation for a real gas.
 ii) Give two properties of real gases for which van der Waals' equation attempts to compensate, stating which term in the equation is responsible for the compensation. (AEB90)
- The ideal gas equation can be written as pV = nRT.
 Use this equation to calculate the volume occupied by one mole of an ideal gas at 300 K and 100 kPa pressure.

- b) An organic compound, X, contains carbon, hydrogen and oxygen only. When vaporised at 101 kPa and 373 K, 0.100 g of X occupied a volume of 66.7 cm³. Calculate the relative molecular mass of X.
- c) On combustion in excess oxygen, 1 mol of X produced 2 mol of carbon dioxide and 3 mol of water.
 - i) What is the molecular formula of X?
 - Write structures for two compounds with this molecular formula.
- Write a balanced equation for the complete combustion of X in oxygen.
- d) X is a liquid at room temperature. When X is treated with metallic sodium, hydrogen is evolved.
 - Use this information to deduce the structure of X.
 - Write a balanced equation for the reaction of X with metallic sodium. (AEB91)
- 4. a) Calculate the value of the product pV (where p is the pressure and V is the volume of gas at a fixed temperature T) for one mole of an ideal gas at 300 K. State the units of this product.
 - b) The graph shows experimental values of the product pV for a mass m of a certain gas G at a fixed temperature T (the units have been omitted from the graph).

- Give two properties of molecules which could lead to the product pV for one mole of a real gas being different from that for an ideal gas.
- ii) Which one of these properties results in pV decreasing as p increases as shown in the graph above?
- iii) Using the variables, p, V and T, write an expression for the relative molecular mass M, which applies to a mass m of an ideal gas. Use the data in the graph above to calculate the

relative molecular mass of the gas G, given that the experimental results were obtained with a sample of $100 \, g$ of G at $300 \, K$ and that the pressure and volume were measured in kPa and m^3 , respectively. (JMB91)

- A gaseous hydrocarbon has the composition, by mass: C, 85.7%;
 H. 14.3%.
 - a) Calculate the empirical formula of the hydrocarbon.
 - A 0.25 g sample of the hydrocarbon has a volume of 100 cm³ at s.t.p. Calculate the relative molecular mass and the molecular formula of the hydrocarbon.
 - c) i) Draw three possible full structural formulae for the hydrocarbon.
 At least one of the structures in c) i) is that of an alkene.
 - Draw two repeat units of the addition polymer that could be obtained from one of the alkenes. (C91)

11 Liquids

DETERMINATION OF MOLAR MASS

The gas syringe method

The gas syringe method can be used to find the molar mass of a liquid with a low boiling point. A small weighed quantity of liquid is injected into a gas syringe. The volume of vapour formed is measured, and its temperature and pressure are noted. From the values of mass and volume, the molar mass can be calculated.

EXAMPLE 1 A gas syringe contains 18.4 cm3 of air at 57 °C. 0.187 g of a volatile liquid is injected into the syringe. The volume of gas in the syringe is then 54.6 cm3 at 57 °C and 1.01 × 105 Pa. Calculate the molar mass of the liquid

Using the values $P = 1.01 \times 10^5 \text{ Pa}$ METHOD $V = 36.2 \, \text{cm}^3 = 36.2 \times 10^{-6} \, \text{m}^3$ T = 273 + 57 = 330 K $R = 8.314 \, \text{I K}^{-1} \, \text{mol}^{-1}$

in the equation $PV = \frac{m}{L}RT$ gives

$$1.01 \times 10^{5} \times 36.2 \times 10^{-6} = \frac{0.187}{M} \times 8.314 \times 330$$

The molar mass is 140 g mol-1. ANSWER

The values of molar mass obtained by this method are not very accurate. A knowledge of the empirical formula enables the value to be corrected. For example, if the compound has the empirical formula CH-O and an experimental value of 57 g mol-1 for the molar mass, one can see that C₂H₄O₂ is the molecular formula, and 60 g mol⁻¹ is the correct molar mass.

ANOMALOUS RESULTS FROM MEASUREMENTS OF MOLAR MASS

Sometimes, an unexpectedly low result for molar mass is obtained. This happens when the molecules of the vapour on which measurements are being made dissociate, causing an increase in the actual number of particles present. If 1 mole of molecules of XY dissociate partially into X and Y, and α is the degree of dissociation, then

formed.

METHOD

Species: XY —— x + v Number of moles: $(1 - \alpha)$

 $\alpha \quad \alpha \quad \text{Total} = (1 + \alpha)$ (1-α) moles of XY remain, and α moles of X and α moles of Y are

 $\frac{\text{Actual number of moles}}{\text{Expected number of moles}} = \frac{1 + \alpha}{1}$ Thus

Since the volume occupied by a gas is proportional to the number of moles of gas,

$$\frac{\text{Actual volume of gas}}{\text{Expected volume of gas}} = \frac{1 + \alpha}{1}$$

Since we are finding molar mass from the equation, given on p. 80,

$$PV = nRT = \frac{m}{M}RT$$

where m = mass of substance, and M = its molar mass, if the volume, V, is greater than expected, M, the molar mass, is less than expected. Thus

Actual volume = Molar mass calculated from formula = $\frac{1 + \alpha}{1 + \alpha}$ Expected volume Measured molar mass

If the volume is kept constant, the pressure increases instead of the gas expanding and

Calculated molar mass = Measured pressure = $\frac{1 + \alpha}{1}$ Measured molar mass Calculated pressure

If one molecule dissociates into n particles, the expression becomes:

Calculated molar mass = Measured pressure = $\frac{1 + (n - 1)\alpha}{1}$ Measured molar mass Calculated pressure

EXAMPLE 1 The molar mass of phosphorus(V) chloride at 140 °C is 166. Calculate the degree of dissociation.

> The molar mass of PCL = $31.0 + (5 \times 31.5) = 208.5 \text{ g mol}^{-1}$ The dissociation which occurs is

> > $PCl_s(g) = PCl_s(g) + Cl_s(g)$ Calculated molar mass = 1 + a Measured molar mass

Thus, n = 2, and $\frac{\text{Calculated molar mass}}{\text{Measured molar mass}} = \frac{208.5}{166} = \frac{1 + \alpha}{1}$

Therefore $\alpha = 0.26$ (26%).

The degree of dissociation is 0.26. ANSWER

EXAMPLE 2 When 1.00 g of iodine is heated at 1200°C in a 500 cm³ vessel a pressure of 1.51 x 10³ kPa develops. Calculate the degree of dissociation.

$$PV = nRT$$
,

$$P = \frac{1.00}{254} \times \frac{8.314 \times 1473}{500 \times 10^{-6}}$$

$$= 9.64 \times 10^{4} P_{2}$$

Observed pressure Calculated pressure =
$$\frac{1.51 \times 10^5}{9.64 \times 10^4} = \frac{1 + (n-1)\alpha}{1}$$

Since the dissociation is

$$l_2(g)$$
 $2l(g)$
 $n = 2$ and $\frac{1.51 \times 10^5}{9.60 \times 10^4} = 1 + \alpha$

Solving this equation gives $\alpha = 0.58$ (or 58%).

ANSWER The degree of dissociation is 0.58.

A measurement of molar mass higher than the value calculated from the formula is a sign that molecules are associated. In 1 mole of A, if 2 molecules of A form a dimer, and if the degree of dimerisation is α ,

Species: 2A A₂

No. of moles:
$$(1 - \alpha)$$
 $\alpha/2$ Total = $(1 - \alpha/2)$

$$\frac{\text{Actual no. of moles}}{\text{Expected no. of moles}} = \frac{1 - \alpha/2}{1}$$

$$\frac{\text{Actual volume}}{\text{Calculated volume}} = 1 - \alpha/2$$

Calculated volume
$$\frac{\text{Calculated molar mass}}{\text{Measured molar mass}} = 1 - \alpha/2$$

In general, if n molecules associate.

$$\frac{\text{Calculated molar mass}}{\text{Measured molar mass}} = 1 - \frac{(n-1)\alpha}{n}$$

EXAMPLE 3 A value of 200 is obtained for the molar mass of aluminium chloride. Calculate the degree of dimerisation of aluminium chloride at the temperature at which the measurement was made. METHOD

Calculated molar mass =
$$133.5 \,\mathrm{g}\,\mathrm{mol}^{-1}$$

Calculated molar mass = $1 - \frac{\alpha}{2}$

Measured molar mass 2

$$133.5/200 = 1 - \frac{\alpha}{2}$$

$$\alpha = 0.67$$

The degree of association is 0.67.

EXERCISE 32 Problems on Molar Masses of Volatile Substances

The gas constant,
$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
.
 $1 \text{ arm} = 1.01 \times 10^5 \text{ N m}^{-2} = 1.01 \times 10^5 \text{ Pa} = 101 \text{ kPa}$.

- 1. Calculate the molar mass of a liquid B, given that 0.850 g of B produced 55.5 cm3 of vapour (corrected to s.t.n).
- 2. A compound of phosphorus and fluorine contains 24.6% by mass of phosphorus, 1,000 g of this compound has a volume of 178 cm3 at s.t.p. Deduce the molecular formula of the compound.
- 3. 0.110 g of a liquid produced 42.0 cm3 of vapour, measured at 147 °C and 1.01 × 105 N m⁻². What is the molar mass of the liquid?
- 4. 0.228 g of liquid was injected into a gas syringe. The volume of vapour formed was 84.0 cm3 at 17 °C and 1.01 × 105 N m-2. Calculate the molar mass of the substance.
- 5. 0.452 g of a volatile solid displaced 82.0 cm3 of air, collected at 20 °C and 1.023 × 105 N m⁻². If the saturated vapour pressure of water at 20 °C is 2.39 × 103 N m -2, calculate the molar mass of the solid.
- 6. Fig. 11.1 shows the results of gas syringe measurements on ethanol (0), propanone (a) and ethoxyethane (a), all at 80 °C and 1 atm. For each liquid, several measurements of the volume of vapour formed after the injection of a known mass of liquid were made.

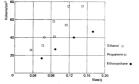


Fig. 11.1 Results of gas syringe measurements

Trace the results on to a piece of paper, and plot the best straight line through the points for each vapour. Find the slope of each line.

The reciprocal of the slope, mass/volume, is the density of the vapour, ρ . From the equation

$$PV = \frac{m}{M}RT$$

$$\left(\text{since } \frac{m}{V} = \rho\right)$$

$$M = \rho \frac{RT}{R}$$

 a) Insert the value you have obtained for the density of ethanol vapour into the equation, and find the molar mass of ethanol. Do the same for b) propanone, and c) ethoxyethane.

EXERCISE 33 Problems on Association and Dissociation

- 20.85 g of phosphorus(V) chloride are allowed to vaporise in a 5.00 dm³ vessel at 175 °C. A pressure of 1.04 × 10⁶N m⁻² develops. Calculate the degree of dissociation of PCl₃ into PCl₃ and Cl₂.
- 10.32 g of aluminium chloride are allowed to vaporise in a 1.00 dm³ vessel at 80 °C. A pressure of 1.70 × 10⁵ N m⁻² develops. What is the degree of association of AlCl₃ into Al₂Cl₆ molecules?
- Nitrogen dioxide exists in an equilibrium mixture: N₂O₄(g) = 2NO₂(g)

The relative molar mass of nitrogen dioxide at 25 °C is 80.0. What percentage of the molecules in the mixture is N₂O₄?

- A sample of iodine of mass 25.4 g is vaporised in a 2.00 dm³ vessel at 800 K. A pressure of 4.32 × 10⁵ N m⁻² develops. Calculate the degree of dissociation of iodine molecules into atoms.
- The molar mass of iron(III) chloride measured at 900 K is 246 g mol⁻¹. Calculate the degree of dimerisation of FeCl₃ molecules.

VAPOUR PRESSURE

In a liquid, the molecules are in constant motion. Some molecules, those with energy considerably above average, will have enough energy to escape from the liquid into the vapour state. If a liquid is introduced into a closed container, some of the liquid will export at the received in the vapour state will exert a pressure. When equilibrium is reached between the liquid state and the vapour state, the pressure exerted by the vapour is called the vapour pressure of the liquid. To equilibrium supour pressure related the vapour pressure are called the vapour pressure are expected to the vapour pressure depends on the identity of the liquid and on the temperature: it does not depend on the amount of liquid present.

EXAMPLE The saturated vapour pressure of water at 65 °C is 25.05 kN m⁻².

What mass of water will be present in the vapour phase if 10.0 cm³ of

water are injected into a 1.000 dm³ vessel?

METHOD Use the ideal gas equation, PV = nRT, and substitute

 $P = 25.05 \times 10^{3} \,\mathrm{N \, m^{-2}}$ $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ $T = 338 \,\mathrm{K}$ $V = 1.000 \,\mathrm{dm^{3}} = 1.000 \times 10^{-3} \,\mathrm{m^{3}}$

ng $25.05 \times 10^3 \times 1.000 \times 10^{-3} = n \times 8.314 \times 338$

Amount (mol) of water, $n = 8.92 \times 10^{-3}$ mol

Mass of water = $18.0 \times 8.92 \times 10^{-3} = 0.161g$

INSWER The mass of water that evaporates is 0.161 g.

EXERCISE 34 Problems on Vapour Pressures of Liquids

- 1.0.0 cm³ of ethyl ethanoate are introduced into an executed 10.0 dm³ vessel at 25°C. What mass of ethyl ethanoate will vaporise? The saturated vapour pressure of ethyl ethanoate at 25°C is 9.55 × 10°N m⁻³.
 2.4 x 95°C, the saturated vapour pressure of bromobenzene is 1.54 ×
- 10° Nm⁻². What mass of bromobenzene will vaporise when a small amount of liquid bromobenzene is introduced into a 2.50 dm³ flask at 95°C?

 3. At 0°C, the saturated vapour pressure of water is 6.10 × 10² Nm⁻².
- How many molecules of water vapour will be present in each cm³ of air in a vessel containing ice at 0 °C?
- 4. If analysis shows that 0.0230g of water are present in 1.00 dm³ of air at 25 °C, what is the saturated vapour pressure of water at 25 °C?

SOLUTIONS OF SOLIDS IN LIQUIDS: OSMOTIC PRESSURE

A semipermeable membrane is a film of material which can be pentrated by a sohern but not by a solute. When two solutions are separated by a semipermeable membrane, solvent passes from the more dilute to the more concentrated. This phenomenon is called outnoise. The pressure which must be applied to a solution to prevent the solvent from diffusing in is called the osmotic pressure of the solution. There is an analogy with gas pressure. One mole of a solid, A, when vaporied, occupies a volume of 224 dm² at 0°C and 1.01 x 10°N m⁻². One mole of A dissolved in 224 dm² of solvent at 0°C exerts an osmotior pressure of 1.01 x 10°N m⁻². 1 mole of solute in 22.4 dm3 of solvent at 0 °C has an osmotic pressure of 1.01 × 10⁵ N m⁻² (1 atmosphere).

The expression which relates osmotic pressure to concentration and temperature is similar to the Ideal Gas Equation,

$$\pi V = nRT$$

where π is the osmotic pressure, V is the volume, T is the temperature (Kelvin), n is the amount (in mol) of solute, and R is a constant which has the same value as the gas constant, 8,314 [K-1 mol-1. This equation is obeyed by ideal solutions.

The osmotic pressure of a solution depends on the concentration of solute present: it is a colligative property. Measurements of osmotic pressure can be used to give the molar masses of solutes.

Calculate the molar mass of a solute, given that 35.0 g of the solute EXAMPLE. in 1.00 dm3 water have an osmotic pressure of 5.15 × 105 N m-2 at 20°C $\pi V = nRT$

where
$$\pi\,=\,5.15\times10^5\,N\,m^{-2},\,\mathcal{V}\,=\,1.00\times10^{-3}\,m^3,$$

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
, and $T = 293 \text{ K}$.
 $5.15 \times 10^5 \times 1.00 \times 10^3 = n \times 8.314 \times 293$

$$n = 0.211$$

$$n = \frac{35.0}{16}$$

$$M = 166 \,\mathrm{g \ mol^{-1}}.$$

The solute has a molar mass of 166 g mol-1.

EXERCISE 35 Problems on Osmotic Pressure

- Find the osmotic pressure of the following aqueous solutions at 25 °C: a) a sucrose solution of concentration 0.213 mol dm⁻³
 - b) a solution containing 144 g dm⁻³ of glucose
 - a solution containing 12.0 g of urea in 200 cm³ of solution.
- 2. Find the molar masses of the following solutes:
 - a) 1.50 g of A in 200 cm3 of aqueous solution, having an osmotic pressure of 2.66 × 105 N m -2 at 20 °C

- 134
- b) 20.0 g of B in 100 cm3 of aqueous solution, having an osmotic pressure of 3.00 × 106 N m⁻² at 27 °C
- c) 5.00g of C in 200 cm3 of solution, having an osmotic pressure of 2.39 × 105 N m-2 at 25 °C.
- A polysaccharide has the formula (C₁₂H₂₂O₁₁)_n. A solution containing 5.00 g dm⁻³ of the sugar has an osmotic pressure of 7.12 × 10² N m⁻² at 20 °C. Find n in the formula.
- 4. A solution of PVC (CH2CHCl)_n, in dioxan has a concentration of 4.00 g dm⁻³ and an osmotic pressure of 65 N m⁻² at 20 °C. Calculate the value of n.
- 5. Calculate the osmotic pressure of an aqueous solution containing 25.0 g dm⁻³ of a protein of relative molecular mass 5.00 × 10⁴ at 27°C.
- 6. A solution of 2.00 g of a polymer in 1 dm3 of water has an osmotic pressure of 300 N m-2 at 20 °C. Calculate the molar mass of the polymer.
- 7. The osmotic pressure of blood is 7 atm at 37°C. What is the concentration of the sodium chloride solution which has the same osmotic pressure as that of blood at normal body temperature (37°C)?
- 8. At 20°C the osmotic pressure of an aqueous solution containing 3.221×10^{-3} g cm⁻³ of an enzyme was found to be 5.637×10^{2} N m⁻² What is the relative molecular mass of the enzyme?

SOLUTIONS OF LIQUIDS IN LIQUIDS

How do you express the composition of a liquid-liquid mixture? One way is by stating the mole fraction of each constituent: No. of moles of A

Mole fraction of A in A-B mixture =
$$\frac{NO.01 \text{ moles of A}}{\text{Total no. of moles}}$$

$$n_A + n_B$$

The vapour above a mixture of the liquids A and B will contain both

A and R Raoult's law states that the saturated vapour pressure of each component in the mixture is equal to the product of the mole fraction of that component and the saturated vapour pressure of that component when pure, at the same temperature.

If
$$p_A = \text{vapour pressure of A}$$
,

$$p_A^0$$
 = saturated vapour pressure of pure A,

and
$$x_A$$
 = mole fraction of A, then

$$x_A$$
 = mole fraction of A, then
 $p_A = x_A \times p_A^0$ $p_B = x_B \times p_B^0$

Raoult's law is obeyed by mixtures of similar compounds. They are said to form ideal solutions. In evapour above a mixture of liquid does not have the same composition as the mixture. It is richer in the more volatile component. The node fractions of A and B in the vapour phase are in the ratio of their mole fractions in the liquid phase multiplied by the ratio of the saturated vapour pressures of the two liquids. If $x_{\rm A}$ and $x_{\rm B}$ are the mole fractions of A and B in the vapour phase,

$$\frac{x_{\mathbf{A}}'}{x_{\mathbf{B}}'} = \frac{x_{\mathbf{A}}}{x_{\mathbf{B}}} \times \frac{p_{\mathbf{A}}^{\mathbf{0}}}{p_{\mathbf{B}}^{\mathbf{0}}}$$

EXAMPLE 1 Calculate the vapour pressure of a solution containing 50.0 g heptane and 38.0 g octane at 20°C. The vapour pressures of the pure liquids at 20°C are heptane 473 Pa; octane 140 Pa.

METHOD Amount (mol) of heptane = 50/100 = 0.50 mol

Amount (mol) of octane = 38/114 = 0.33 mol

Mole fraction of heptane = 0.50/0.83

Mole fraction of octane = 0.33/0.83

$$p$$
 (heptane) = p^0 (heptane) × x (heptane)

$$p(\text{octane}) = p^0(\text{octane}) \times x(\text{octane})$$
$$= 140 \times 0.33/0.83 = 55.9$$

ANSWER Total vapour pressure = 284.0 + 55.9 = 340 Pa.

EXAMPLE 2 Two pure liquids A and B have vapour pressures 1.50 × 10⁴N m⁻² and 3.50 × 10⁴N m⁻² at 20 °C. If a mixture of A and B obeys Raoult's law, calculate the mole fraction of A in a mixture of A and B which has a total vapour pressure of 2.90 × 10⁴N m⁻² at 20 °C.

METHOD If n_A is the mole fraction of A, $(1 - n_A)$ is the mole fraction of B. Then, $(n_A \times 1.50 \times 10^4) + (1 - n_A)(3.50 \times 10^4) = 2.90 \times 10^4$

$$1.50n_A + 3.50 - 3.50n_A = 2.90$$

 $2.00n_A = 0.60$

$$n_{\rm A} = 0.30$$

ANSWER The mole fraction of A is 0.30.

EXERCISE 36 Problems on Vapour Pressures of Solutions of Two Liquids

- Two pure liquids A and B have vapour pressures of respectively 17000 and 35000 N m⁻² at 25 °C. An equimolar mixture of A and B has a vapour pressure of 26 000 N m⁻² at 25 °C. Calculate the vapour pressure of a mixture containing four moles of A and one mole of B at 25 °C.
- Hexane and heptane are totally miscible and form an ideal two component system. If the vapour pressures of the pure liquids are 56 000 and 24000 N m⁻² at 50 °C calculate:
 - a) the total vapour pressure, and
- the mole fraction of heptane in the vapour above an equimolar mixture of hexane and heptane.
- The vapour pressure of water at 298 K is 3.19 × 10³ Pa. What are the partial vapour pressures of water in mixtures of:
 - a) 27 g water and 69 g ethanol
 - b) 9.0 g of water and 92 g of ethanol
 - at this temperature?
- 4. A and B are two miscible liquids which form an ideal solution. The vapour pressures at 20 °C are: A, 40 kPa, B, 32 kPa. Calculate the total pressure of the vapour in equilibrium with mixtures of:
 - a) 3 moles of A and 1 mole of B at 20 °C
 b) 1 mole of A and 4 moles of B at 20 °C.
 - b) 1 mole of A and 4 moles of B at 20 °C.

IMMISCIBLE LIQUIDS: SUM OF VAPOUR PRESSURES

Steam distillation

In a system of immiscible liquids, each liquid exerts its own vapour pressure independently of the other. The vapour pressure of the system is equal to the sum of the vapour pressures of the pure components. This is the basis for steam ditilitation. Phenylamine will distill over in steam at 98°C, although its boiling point is 184°C. At 98°C, the sum of the vapour pressures of phenylamine and water is equal to atmospheric pressure. The ratio of the amounts of the two liquids in the distillate is equal to the ratio of their vapour pressures:

$$\frac{n_A}{n_W} = \frac{P_A}{p_V}$$

where n_A and n_W are the amounts of phenylamine and water in the distillate, and p_A and p_W are the vapour pressures of phenylamine and water at 98 °C.

Since n = m/M (where m = mass, M = molar mass)

$$\frac{m_A}{M_A} \times \frac{M_W}{m_W} = \frac{p_A}{p_W}$$

This equation can be used to find m_A/m_W , the ratio of masses of amine and water in the distillate. Steam distillation has been used as a method of determining molar masses. In this case, the masses of the liquid and water in the distillate must be measured and inserted into the equation to give the unknown molar mass.

EXAMPLE Bromobenzene distils in steam at 95 °C. The vapour pressures of bromobenzene and water at 95 °C are 1.59 × 10⁴ N m⁻² and 8.50 × 10⁴ N m⁻². Calculate the percentage by mass of bromobenzene in the distillate.

METHOD Let the percentage of bromobenzene = y.

In the equation $\frac{n_{C_iH_iBr}}{n_{H_iO}} = \frac{\rho_{C_iH_iBr}}{\rho_{H_iO}}$ $\frac{y/157}{(100-y)/18} = \frac{1.59 \times 10^4}{8.50 \times 10^4}$ y = 62.0

NSWER The distillate contains 62.0% by mass of bromobenzene.

EXERCISE 37 Problems on Steam Distillation

- The liquid A distils in steam. At the boiling point, the partial pressures of the two liquids are A = 6.59 × 10³ N m⁻²; H₂O = 9.44 × 10⁴ N m⁻². If the molar mass of A is 95 g mol⁻¹, what is the percentage by mass of A in the distillate?
- Phenylamine, C₆H₅NH₂, distils in steam at 98 °C and 1.01 × 10⁵ N m⁻².
 If the saturation vapour pressure of water is 9.40 × 10⁴ N m⁻², what is the percentage by mass of phenylamine in the distillate?
- 3. Naphthalene, $C_{10}H_{5}$, distils in steam at $98\,^{\circ}C$ and $1.01\times10^{5}\,N\,m^{-2}$. If the vapour pressure of water is $9.50\times10^{4}\,N\,m^{-2}$, calculate the mass of distillate that contains $10.0\,g$ of naphthalene.

139

 $\frac{m_2}{50.0} / \frac{(10.0 - m_2)}{1.000} = 25.0$ giving $m_2 = 5.55 g$. If 5.55 g of X are extracted by ether, 4.45 g remain in the aqueous

solution

ANSWER

$$\frac{m_3}{50} / \frac{(4.45 - m_3)}{1000} = 25.0$$

giving $m_3 = 2.47 g$.

Total mass of X extracted by ether in two portions = 5.55 g + 2.47 g= 8.02 g.

(Note that this is greater than the value of 7.14 g calculated for the mass of X extracted by using all the ether at once.) Partition can be used to investigate an equilibrium in aqueous solution

between a covalent species and an ionic species, for example, the equilibrium

Only the covalent I, molecules will dissolve in an organic solvent. If an aqueous solution of iodine in iodide ions is shaken with an organic solvent, the concentration of iodine in the solvent can be measured and divided by the partition coefficient to give the concentration of iodine molecules in the aqueous laver. The concentration of iodine combined as I3- ions is obtained by subtracting the free iodine from the total iodine concentration. The concentration of I" ions is obtained by subtracting [I37] from the original concentration of I7 ions.

EXAMPLE 3 Iodine is dissolved in water containing 0.160 mol dm⁻³ of potassium iodide, and the solution is shaken with tetrachloromethane. The concentration of iodine in the aqueous layer was found to be 0.080 mol dm⁻³; that in the organic layer 0.100 mol dm⁻³. The partition coefficient for iodine between tetrachloromethane and water is 85. Calculate the equilibrium constant for the reaction:

$$I_2(aq) + I^-(aq) = I_3^-(aq).$$

METHOD

Since

$$[I_2]$$
 in CCl₄ = 0.100 mol dm⁻³

$$[I_2]$$
 free in water = 0.100/85 = 0.00118 mol dm⁻³

$$[I_2]$$
 total = 0.080 mol dm⁻³

$$[I_2]$$
 combined as $I_3^- = 0.080 - 0.00118 = 0.0788 \text{ mol dm}^{-3}$

$$[1^-]$$
 total = 0.160 mol dm⁻³

$$[I^{-}]$$
 free = $0.160 - 0.0788 = 0.0812 \, \text{mol dm}^{-3}$

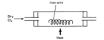
- a) i) On a copy of the graph, plot accurately, on the same axes, a line showing the variation of total vapour pressure with composition for these two liquids. Label this line X.
- ii) Draw a line on the same axes to show the variation in total vapour pressure with composition if mixtures of propan-2-ol and benzene obeyed Raoult's Law. Label this line V.
- b) What would be the vapour pressure of benzene above a mixture containing a mole fraction of 0.6 of propan-2-ol?
- c) A mixture contains 7.20g of propan-2-ol and 2.34g of benzene. What would be the observed vapour pressure above this mixture? (Relative atomic masses: H = 1, C = 12, O = 16.)
- d) i) Would a mixture of propan-2-ol and benzene show a positive or a negative deviation from Raoult's Law?
 - Explain clearly, in terms of the intermolecular forces involved, how this deviation from Raoult's Law arises.
 - iii) Does this deviation lead to a minimum or a maximum boiling point?
 - iv) Name one liquid likely to form a mixture with benzene which obeys Raoult's Law and explain briefly why it would do so. (L92)
- State Raoult's Law as it applies to mixtures of methanol (b.pt. 64°C) and ethanol (b.pt. 78°C) which behave ideally, and explain the reasons for this ideal behaviour.
 - Give a fully labelled diagram showing the relationship between boiling temperature and composition for mixtures of methanol and ethanol. Give full practical details for the fractional distillation in the laboratory of a mixture of methanol and ethanol in which the mole fraction of methanol is 0.2 and by reference to your temperature-composition
 - diagram, explain the principles of the process.

 At a particular temperature, the vapour pressures of pure methanol and pure ethanol are 81 mmHg and 45 mmHg, respectively. Calculate the partial pressure of each component above a mixture of 64g of methanol and 46g of ethanol at this temperature.
 - Mixtures of benzene (b.pt. 80 °C) and ethanol show a negative deviation from Raoult's Law. Give a fully labelled temperature-composition diagram for such mixtures and state and explain what happens when benzene is added to ethanol.

(Relative atomic masses: H = 1, C = 12, O = 16.) (L90)

10. This question is concerned with the extraction of caffeine from tea leaves. Tea leaves contain between 3% and 5% by mass of caffeine. The caffeine can be extracted initially with hot water, in which it fairly soluble (18/g100g water at 80°C; 22/g100g water at 20°C). Colouted impurities such as tamite acids can be removed as calcium for the contraction of the contra

dichloromethane to produce a caffeine solution in dichloromethane. Most of the solvent is distilled off to produce a concentrated solution of caffeine in the organic solvent, and this solution is then evaporated over a water bath to yield the crude product.


The product is purified by dissolving it in hot methylbenzene (10 cm³ is correct for about 30 g of tea as starting material), adding 15-20 cm3 of hexane, filtering hot and allowing the filtrate to cool. The crystals are often greenish in colour.

- a) Using the basic description set out above, describe the extraction of caffeine from tea leaves in sufficient detail to allow an A-level student to carry out the experiment. Begin with 30 g or so of tea leaves. Safety considerations should be stressed where appropriate.
- b) What name is given to the process where methylbenzene and hexane are used? Explain briefly how this process removes both soluble and insoluble impurities.
- When a substance X, dissolved in a particular solvent, is shaken up with another solvent which is immiscible with the first, an equilibrium of the form

is established. Use the equilibrium law to derive a relationship between the concentrations of X in solvent 1 and solvent 2 when equilibrium is attained.

Starting with 100 cm3 of an aqueous solution containing 10 g of X, and given that the equilibrium constant is 1, show that it is more efficient to extract the caffeine, X, with two portions of dichloromethane of volume 50 cm3 rather than with one nortion of volume 100 cm3. (Note that one 100 cm3 portion will distribute the 10 g as 5 g into each solvent.)

- d) i) Tea leaves contain many other organic compounds, Explain why this method is suitable for the isolation of one specific compound.
 - ii) Explain how the calcium carbonate allows the removal of tannic acids. (L91)
- 11. Anhydrous iron(III) chloride sublimes at 315 °C. It is obtained as dark green crystals by passing dry chlorine over heated iron wire. The figure shows an incomplete diagram of the apparatus used for this preparation

- a) Write an equation for the reaction.
- b) Copy and complete the diagram by showing how the iron(III) chloride may be collected. Include a means of keeping the whole of the apparatus dry.
- c) At 400 °C and 1.00 atmosphere pressure, 3.00 g of anhydrous iron(III) chloride occupies a volume of 510 cm3. Work out the apparent relative molecular mass of iron(III) chloride at this temperature and hence suggest a formula for the molecular species
 - (1 mole of any gas under these conditions occupies a volume of 55.2 dm³.)
- d) A solution of iron(III) chloride may be reduced to iron(II) chloride by passing hydrogen sulphide through it.
- $2FeCl_s(aq) + H_sS(g) \longrightarrow 2FeCl_s(aq) + 2HCl(aq) + S(s)$ For this reaction write:
 - i) a half-equation for the reduction process
 - ii) a half-equation for the oxidation process.
- e) State two characteristics of a transition metal, such as iron.
- (O90 AS) 12. a) Name the best method for:

- i) the separation of ammonium chloride from a mixture of this salt with potassium chloride.
 - ii) the separation of argon from liquid air on a commercial scale.
- b) i) State the partition law for a solute X between two immiscible solvents P and O.
 - ii) A solute X is soluble without change in water and ethoxyethane, being 4 times more soluble in the latter. Calculate the quantity of X extracted from 1 dm3 of an aqueous solution of X, concentration 5 mol dm⁻³, when the aqueous solution is shaken with 1) 500 cm3 of ethoxyethane, 2) two successive 250 cm3 portions of ethoxyethane, and comment on the results
- c) Give a qualitative account of: i) gas-liquid chromatography
 - paper chromatography.
 - In each case outline the experimental procedure and indicate the underlying principles. (090)

12 Electrochemistry

ELECTROLYSIS

Electrovalent compounds, when molten or in solution, conduct electricity. The conductors which connect the melt or solution with the applied voltage are called the electrodes. The positive electrode is called the anode; the negative electrode is the cathode. Chemical reactions occur at the electrodes, and elements are deposited as solids or evolved as guese. These reactions are called electrolysis.

If the compound is a salt of a metal low in the electrochemical series, the metal ions are discharged, and a layer of metal is deposited on the cathode.

The electrolysis of a solution of a silver salt to deposit a layer of silver on the cathode is carried out as shown in Fig. 12.1.

Fig. 12.1 Electrolysis of silver nitrate solution

The cathode process is $Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$

By weighing the cathode before and after the passage of the current, the mass of silver deposited can be found. By measuring the current with a milliammeter and timing the electrolysis, one can work out the quantity of electric charge which has passed. Electric charge is measured in coulombs (i.e., and in coulombs (i.e.

One coulomb of charge One ampere of current flowing for one second

Charge in coulombs (C) = Current in amperes (A)

× Time in seconds (s)

метноо 2 Another method of tackling the problem is to construct an enthalpy diagram:

According to Heas's law, the change in standard enthalpy when carbon and hydrogen burn to form carbon dioxide and water is the same as the sum of the standard enthalpy changes when carbon and hydrogen combine to form ethylen and then ethyne burns to form earbon dioxide and water. Thus, in the above diagram.

$$\Delta H_1^{\bullet} = \Delta H_F^{\bullet} + \Delta H_2^{\bullet}$$

Putting

 $\Delta H_1^+ = 2(\Delta H^+ \text{ for combustion of C}) + (\Delta H^+ \text{ for combustion of } H_2)$ gives

$$\Delta H_1^+ = 2(-394) + (-286) = -1074$$

$$\Delta H_{\rm F}^{+} = \Delta H_{\rm I}^{+} - \Delta H_{\rm 2}^{+} = -1074 - (-1300)$$

ANSWER
$$\Delta H_F^{\bullet} = +226 \text{ kJ mol}^{-1}$$
 (as before)

EXAMPLE 2 Calculate the standard enthalpy of formation of propan-1-ol, given the standard enthalpies of combustion, in kJ mol ⁷¹: C₂H₂OH(1), -2010; C(s), -394; H₂(g), -286.

METHOD 1 Again. as the equation for combustion is the basis for the calculation,

it must be carefully balanced: $G_3H_2OH(l) + 4\frac{1}{2}O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l); \Delta H^+ = -2010 \text{ kJ mol}^{-1}$

$$C_3H_2OH(l) + 4l_2O_2(g)$$
 \longrightarrow $3CO_2(g) + 4H_2O(l)$; $\Delta H^2 = -2010 \text{ kJ mol}^2$.
Putting the standard enthalpies of formation of $CO_2(g)$ and $H_2O(l)$

into the equation, as in Example 1, gives $C_2H_2OH(l) + 4_2^{\dagger}O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l); \Delta H^{+} = -2010 \text{ kJ mol}^{-1}$ $\Delta H^{\pm}(C_2H_2OH) = 0 \qquad 3(-394) \cdot 4(-286)$

Since

 $\begin{pmatrix}
\text{Standard} \\
\text{enthalpy change} \\
\text{for reaction}
\end{pmatrix} = \begin{pmatrix}
\text{Standard} \\
\text{enthalpy content} \\
\text{of products}
\end{pmatrix} - \begin{pmatrix}
\text{Standard} \\
\text{enthalpy content} \\
\text{of reactions}
\end{pmatrix} - \begin{pmatrix}
\text{Standard} \\
\text{enthalpy content} \\
\text{of reactions}
\end{pmatrix}$

$$-2010 = 3(-394) + 4(-286) - \Delta H_F^{-1}(C_3H_2OH(1))$$

 $\Delta H_c^{-2}(C_3H_2OH(1)) = -316 \text{ kg mol}^{-1}$

Answer The standard enthalpy of formation of liquid propan-1-ol is $-316\,\mathrm{kJ}\,\mathrm{mol}^{-1}.$

: 196

ANSWER

METHOD 2 The enthalpy diagram for the formation of propanol is

 $\Delta H_1^{\circ} = 3(\Delta H^{\circ} \text{ for combustion of C}) + 4(\Delta H^{\circ} \text{ for combustion of } H_2)$ = 3(-394) + 4(-286) = -2326

According to Hess's law.

$$\Delta H_1^{\bullet} = \Delta H_F^{\bullet} + \Delta H_2^{\bullet}$$

$$\Delta H_{\rm F}^{\bullet} = \Delta H_1^{\bullet} - \Delta H_2^{\bullet}$$

$$\Delta H_{\rm F}^{\circ} = -2326 - (-2010)$$

 $\Delta H_{\rm F}^{\omega} = -316 \,\text{kJ mol}^{-1}$ (as before)

Standard enthalpy of reaction reactants (Standard enthalpies of combustion of products of products of products)

STANDARD ENTHALPY OF REACTION FROM STANDARD ENTHALPIES OF FORMATION

You will have noticed in both Examples 1 and 2 that

The standard enthalpies of formation of the reactants and products can be used to give the standard enthalpy of a reaction.

EXAMPLE 1 Calculate the standard enthalpy of the reaction

$$CH_2 = CH_2(g) + H_2(g) \longrightarrow CH_3CH_3(g)$$

given that the standard enthalpies of formation are: ethene, +52, ethane, -85 kJ mol⁻¹.

Put the standard enthalpy content of each species into the equation (units kI mol⁻¹):

$$\begin{array}{ccc} CH_3 = CH_3(g) & H_3(g) & \longrightarrow & CH_3(CH_3(g)) \\ +52 & 0 & -85 \end{array}$$

$$\left(\begin{array}{c} \text{Standard enthalpy} \\ \text{of reaction} \end{array} \right) = \left(\begin{array}{c} \text{Standard enthalpy} \\ \text{of product} \end{array} \right) - \left(\begin{array}{c} \text{Standard enthalpy} \\ \text{of reactants} \end{array} \right) = -85 - (52 + 0) = -137 \end{array}$$

energy required to break the first C—H bond in methane is not the same as that required to remove a hydrogen atom from a methyl radical. In the dissociation,

$$CH_4(g) \longrightarrow C(g) + 4H(g); \Delta H^+ = +1662 \text{ kJ mol}^{-1}$$

Dividing the standard enthalpy change between the four bonds gives an average value for the C—H bond of 416kJ mol⁻¹. This value is called the average standard bond enthalpy for the C—H bond.

Tables of average standard bond enthalpies make the assumption that the standard enthalpy of a bond is independent of the molecule in which it exists. This is only roughly true. Since standard bond enthalpies vary from one compound to another, the use of average standard bond enthalpies gives only approximate values for standard enthalpies of reaction actualted from them. Experimental methods are used to obtain standard enthalpies of reaction whenever possible. Calculations based on average standard bond enthalpies are used only for reactions which cannot be studied experimentally—for costangle, the excetons of a substance which has not been isolated in a pure

Average standard bond enthalpy is often called the bond energy term. One can say that the bond energy term for the C—H bond is 416 kJ mol⁻¹. The sum of all the bond energy term for the compound is the standard enthalpy change showbed in atomissing that compound in the standard enthalpy change showbed in atomissing that compound in the gaseous state. The standard enthalpy of formation of a compound enthalpy of atomisation of the content of the compound enthalpy of atomisation of the cythogen stoms.

EXAMPLE Calculate the standard enthalpy of formation of methane. C—H bond energy term = 416 kJ mol⁻¹; standard enthalpies of atomistion are C(s) = 716 kJ mol⁻¹; §14.00 = 121.5 kJ (mol H atoms)⁻¹.

METHOD 1 The sum of the bond energy terms in methane = 1662 kJ mol⁻¹.

Putting this information into the form of an equation, and writing the standard enthalpy content of each species underneath its formula, we see

$$C(g) + 4H(g) \longrightarrow CH_4(g);$$
 $\Delta H^+ = -1662 \text{ kJ mol}^{-1}$
(716) $4(217.5)$ ΔH_2^+

The values 716 and 217.5 are the standard enthalpies of formation of gaseous carbon and hydrogen atoms from the elements in their standard states.

ANSWER

метноо 2 The information can also be represented in the form of an enthalpy diagram:

 $\Delta H_1^+ = \Delta H^+$ of atomisation of C + $4\Delta H^+$ of atomisation of H $\Delta H_2^+ = -(\text{Sum of bond energy terms for CH}_4)$

According to Hess's law.

$$\Delta H_F^o = \Delta H_1^o + \Delta H_2^o$$

= 716 + 4(217.5) - 1662

$$= 716 + 4(217.5) - 1662$$

 $\Delta H_F^+ = -76 \text{ kJ mol}^{-1} \text{ (as before)}$

STANDARD ENTHALPY OF REACTION FROM AVERAGE STANDARD BOND ENTHALPIES

Mean standard bond enthalpies can be used to give an approximate estimate of the standard enhalpy change which occurs in a reaction. During a reaction, energy is supplied to break the bonds in the reactants, and energy is given outwhen the bonds in the products form. The difference between the sum of the standard bond enthalpies of the products and the standard bond enthalpies of the preducts and the standard bond enthalpies of the reactants is the standard enthalpy of the reaction. The value obtained is less reliable than an experimental measurement.

EXAMPLE 1 Calculate the standard enthalpy of the reaction

$$CH_2 = CH_2(g) + H_2(g) \longrightarrow CH_3CH_3(g)$$

Mean standard bond enthalpies are (in kJ mol⁻¹): C—H, 416; C=C, 612; C—C, 348; H—H, 436.

b) Ionisation of sodium

Na(g)
$$\longrightarrow$$
 Na*(g) + e⁻; ΔH_1^+ = ionisation energy of sodium

e) Dissociation of chlorine molecules

$$\frac{1}{2}Cl_2(g)$$
 \longrightarrow $Cl(g);$ $\Delta H_D^{\omega} = \frac{1}{2}$ standard bond dissociation enthalpy of chlorine

d) Ionisation of chlorine atoms

$$Cl(g) + e^- \longrightarrow Cl^-(g); \Delta H_E^+ = electron affinity of chlorine$$

e) Reaction between ions

$$Na^*(g) + Cl^-(g) \longrightarrow NaCl(s); \Delta H_L^+ = standard lattice enthalpy$$

Definitions of the standard enthalpies used above are:

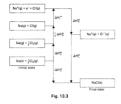
The standard enthalpy of sublimation is the heat absorbed when one mole of sodium atoms are vaporised.

The ionisation energy of sodium is the energy required to remove a mole of electrons from a mole of sodium atoms in the gas phase.

The standard enthalpy of bond dissociation of chlorine is the enthalpy required to dissociate one mole of chlorine molecules into atoms.

The electron affinity of chlorine is the energy absorbed when a mole of chlorine atoms form chloride ions. It has a negative value, showing that this reaction is exothermic.

The standard lattice enthalpy is the energy absorbed when one mole of gaseous sodium ions and one mole of gaseous chloride ions form one mole of crystalline sodium chloride. It has a negative value.


The steps in the Born-Haber cycle are represented as going upwards if they absorb energy and downwards if they give out energy (see Fig. 13.3).

According to Hess's law, the standard enthalpy of formation of sodium chloride is equal to the sum of the enthalpy changes in the various steps:

$$\Delta H_{E}^{+} = \Delta H_{S}^{+} + \frac{1}{2}\Delta H_{D}^{+} + \Delta H_{L}^{+} + \Delta H_{E}^{+} + \Delta H_{L}^{+}$$

= +109 + 121 + 494 - 380 - 755 = -411 kJ mol⁻¹

In practice, it is easier to measure standard enthalpies of formation than to measure some of the other steps. The electron affinity is the

hardest term to measure experimentally, and the Born-Haber cycle is often used to calculate electron affinities.

EXERCISE 48 Problems on Standard Enthaloy of Reaction and Average Standard Bond Enthalpies

1. The following are standard enthalpies of combustion at 298 K, in kI mol⁻¹:

C(graphite) $C_2H_6(g)$ -1561C.H..(I) -3510-394 CH,=CH,(g) -1393 CH=CH(g) - 1299 $H_{r}(g)$ -286CH-CO-H(I) -876C-H-OH(I) -1400 CH₂OH(l) -715 CH3OCH3(g) -1455 C3H4OH(g) -1444 $C_4H_4(g)$ -2542

-2220 CH_{*}(g) -891C₃H₄(g) CH2CO2C2He(1) -2246 C4H12(1) -3924

a) Calculate the standard enthalpy change for the reaction: 2C(graphite) + 2H₂(g) + O₂(g) - CH₂CO₂H(l)

b) Calculate the standard enthalpy change of formation of buta-1, 3-diene, C.H.(g).

c) Calculate the standard enthalpy of formation of methane, CH_a(g) and of ethene, $CH_2 = CH_2(g)$.

d) Calculate the standard enthalpy change in the hydrogenation of ethene(g) to ethane(g). e) Calculate the standard enthalpy change for the theoretical reaction:

 $CH_3OCH_3(g)$ \longrightarrow $C_2H_4OH(g)$

- f) Calculate the standard enthalpy of formation of propane(g) and of butane(l).
- g) Calculate the standard enthalpy of formation of methanol(l), ethanol(l), ethylethanoate(l) and cyclohexane(l).
- 2. Calculate the standard enthalpy change of the reaction
 - Anhydrous copper(II) sulphate + Water Copper(II) sulphate-5-water Use the values for the standard enthalpy of solution: a) anhydrous copper(II) sulphate, -66.5 kJ mol⁻¹
 - b) copper(II) sulphate-5-water, 11.7 kI mol⁻¹.
- 3. Calculate the standard enthalpies of formation of: a) sulphur dioxide, b) carbon dioxide, and c) steam. On burning in excess oxygen under standard conditions (1 atm. 298 K): 1,00 g of sulphur evolves 9.28 kJ; 1.00 g of carbon evolves 32.8 kJ; and 1.00 dm3 (at 1 atm, 298 K) of hydrogen evolves 12.76 kJ of heat.
- 4. Calculate the standard enthalpy change in the reaction

$$PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$$

The standard enthalpies of formation of lead(II) oxide, carbon

monoxide and carbon dioxide are -219, -111, and -394 kJ mol-1, respectively.

5. Calculate the standard enthalpy change for the reaction Fe₂O₂(s) + 2Al(s) - Al₂O₂(s) + 2Fe(s)

oxide are -822 and -1669 kJ mol-1. State whether the reaction is exothermic or endothermic

- 6. The standard enthalpy of combustion of rhombic sulphur is - 296.9 kJ mol-1 and the standard enthalpy of combustion of monoclinic sulphur is - 297.2 kl mol-1. Calculate the standard enthalpy of conversion of monoclinic sulphur to rhombic sulphur.
- 7. The standard enthalpies of formation of CO2(g) and H2O(g) are -394 and -242 k] mol-1. The standard enthalpy of combustion of ethane is - 1560 kJ mol-1. The standard enthalpy of reduction of ethene to ethane by gaseous hydrogen is -138 kl mol-1. Calculate the standard enthalpy of formation of ethene.
- 8. Given the standard enthalpy change of formation of MgO = -602 kI mol-1 and of Al-O₂ = - 1700 kI mol-1, calculate the standard enthalpy change for the reaction

oxide?

- The following are standard enthalpies of formation. ΔH²_e, in kI mol⁻¹
 - CH₄(g); -76; CO₂(g), -394; H₂O(l), -286; H₂O(g), -242; NH₃(g), -46.2; HNO₃(l), -176; C₃H₄OH(l), -278; C₄H₁₃(l), -210.
 - a) Calculate the standard enthalpy change at 298 K for the reaction
 - CH_d(g) + 2O₂(g) → CO₂(g) + 2H₂O(l) b) Calculate the standard enthalpy change for the reaction
 - b) Calculate the standard enthalpy change for the reaction

 ¹/₂N₂(g) + ³/₂H₂O(g) → NH₂(g) + ³/₂O₂(g)
 - c) Calculate the standard enthalpy change for the reaction ¹/₂N₂(g) + ¹/₂H₂O(g) + ⁵/₂O₂(g) HNO₃(l)
- d) Calculate the enthalpy change which occurs when each of the following is burned completely under standard conditions: i) 1.00 kg hydrogen, ii) 1.00 kg ethanol(1), iii) 1.00 kg octane(1).
- 10. What is meant by the terms standard bond dissociation enthalpy and bond energy term?

The standard bond dissociation enthalpies for the first, second, third and fourth C—H bonds in methane are 423, 480, 425 and 335 kJ mol⁻¹ respectively. Calculate the C—H bond energy term for methane.

 Consult the average standard bond enthalpies and standard enthalpies of atomisation (in kJ mol⁻¹) listed below:

c-c	348	c=0	743	C(graphite)	718	
c=c	612	H-Cl	432	1H2(g)	218	
c = c	837	C-Cl	338	${}_{2}^{1}O_{2}(g)$	248	
C-H	412	C-Br	276	$\frac{1}{2}Br_2(g)$	96.5	
c-o	360	H-Br	366	$\frac{1}{2}Cl_2(g)$	121	
н-о	463					

- a) Calculate the standard enthalpy of formation of ethane and of ethene.
- Find the standard enthalpy change for the reaction,
 CH₂=CH—CH₃(g) + Br₂(g) ← CH₂BrCHBrCH₃(g)
- Find the standard enthalpy of formation of methoxymethane, CH₃OCH₃(g).
- d) Calculate the standard enthalpy of formation of gaseous ethyl ethanoate, CH₂CO₂C₂H₂(g).

 e) Calculate the standard enthalpy of formation of benzene, assuming its structure is

Explain the difference between the value you have calculated and the value of 83 kJ mol⁻¹ obtained from measurements of the standard enthalpy of combustion.

- f) Find the standard enthalpy of formation of gaseous buta-1,3-diene, CH,=-CH-CH=CH₂(g). How does this value compare with the value you obtained in Question 1(b) from the standard enthalpy of combustion? How do you explain the difference?
- g) Estimate the standard enthalpy changes for the reactions:

Which of the two reactions will occur more readily?

Use the data below to draw an energy diagram for the formation of potassium chloride. Calculate the electron affinity of chlorine.

Standard enthalpy of sublimation of potassium = 90 kJ mol⁻¹
Standard enthalpy of ionisation of potassium = 420 kJ mol⁻¹
Standard enthalpy of dissociation of chlorine = 244 kJ mol⁻¹

Standard lattice enthalpy of potassium chloride = $-706 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ Standard enthalpy of formation of potassium chloride = $-436 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

13. Using the following data, which is a set of standard enthalpy changes.

calculate the standard enthalpy of formation of potassium chloride, KCl(s): $\Delta H^+/kJ \text{ mol}^{-1}$

 $KOH(aq) + HCl(aq) \longrightarrow KCl(aq) + H₂O(l)$ -57.3 $H₂(g) + \frac{1}{2}O₂(g) \longrightarrow H₂O(l)$ -286 $\frac{1}{2}H₂(g) + \frac{1}{2}Cl₂(g) + aq \longrightarrow HCl(aq)$ -164

 $K(s) + \frac{1}{2}O_2(g) + \frac{1}{2}H_2(g) + aq$ KOH(aq) -487 KCl(s) + aq KOl(aq) +18

For a physical or a chemical change to occur, ΔG for that change must be negative. The change is therefore assisted by a decrease in enthalpy (ΔH negative) and by an increase in entropy (ΔS positive).

If the change takes place under standard conditions, i.e. with each reactant and product at unit concentration (or pressure), then the free energy change is equal to the standard free energy change is equal to the standard free energy change, ΔG^{**} . When reaction takes place under non-standard conditions, ΔG , the free energy change differs from ΔG^{**} as ΔG depends on the concentrations (or pressures) of the reactants and products. It is easy to obtain ΔG^{**} from tables of standard enthalpies and standard entropies, and the standard entropies are the constitution of the control of the control

CALCULATION OF CHANGE IN STANDARD ENTROPY

The standard entropy change of a process is given by:

EXAMPLE 1 Calculate the standard entropy change for the reaction of chlorine and ethene, given the values (in J K⁻¹ mol⁻¹):

 $S^{\circ}(Cl_2(g)) = 223; S^{\circ}(CH_2 = CH_2(g)) = 219; S^{\circ}(CH_2ClCH_2Cl(l)) = 208.$

METHOD The equation for the reaction is

CH₂=CH₂(g) + Cl₂(g)
$$\longrightarrow$$
 CH₂ClCH₂Cl(l)
 S^{+} (product) = 208 J K⁻¹ mol⁻¹
 S^{+} (reactants) = 219 + 223 = 442 J K⁻¹ mol⁻¹
 ΔS^{+} = 208 - 442 = -234 J K⁻¹ mol⁻¹

AMSWER

The standard entropy change for the reaction is -234 J K⁻¹ mol⁻¹.

The negative sign means a decrease in disorder. Since two moles of gas have formed one mole of liquid, this is what one would expect.

CALCULATION OF CHANGE IN STANDARD FREE ENERGY

The change in standard enthalpy, the change in standard entropy and the temperature must be known and inserted into the equation

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

c) H₂(g) +
$$\frac{1}{2}$$
O₂(g) - H₂O(l)

2. Predict whether the following reactions will have a positive or negative value of ΔS^{\bullet} :

HgS(s) (black)

3. Use the following values of standard entropy content and standard enthalpy of formation to calculate standard free energy changes:

Substance	$\Delta H_F^{\bullet}/kJ \text{ mol}^{-1}$	S*/J K-1 mol-1	
HgO(s) (red)	-90.7	72.0	
HgO(s) (yellow)	-90.2	73.0	
HgS(s) (red)	-58.2	77.8	
HgS(s) (black)	-54.0	83.3	

a) Calculate the value of ΔG* for the change

HgO(s) (red) → HgO(s) (vellow) at 25 °C and at 100 °C. At what temperature will the change take place?

b) Calculate the value of ΔG^+ for the change

HgS(s) (red) - HgS(s) (black) at 25 °C. At what temperature will the change occur?

4. Cis-but-2-ene has $\Delta H_E^{-0} = -5.7 \text{ kJ mol}^{-1}$ and $S^{-0} = 301 \text{ J K}^{-1} \text{ mol}^{-1}$: trans-but-2-ene has $\Delta H_F^{+} \simeq -10.1 \text{ kJ mol}^{-1}$ and $S^{+} = 296 \text{ J K}^{-1} \text{ mol}^{-1}$. Calculate

b) for the transition trans-but-2-ene cis-but-2-ene Which is the more stable isomer?

EXERCISE 50 Questions from A-level Papers

- 1. a) State Hess's law.
 - b) i) Define bond dissociation enthalpy for a diatomic molecule,
 - ii) Write the equation for the reaction for which the enthalpy change is equal to that of the bond dissociation enthalpy of
 - iodine (+151.1 kJ mol⁻¹).

 iii) Write the equation for the sublimation of iodine and calculate the value of ΔH for this process, given that

$$\frac{1}{2}I_2(s)$$
 \longrightarrow $I(g)$ $\Delta H = +106.8 \text{ kJ mol}^{-1}$. (JMB91)

- *2. a) The carbon-carbon bond lengths in ethane, ethene and benzene are 154 pm, 133 pm and 140 pm respectively. Discuss the bonding in these three compounds, and show how it accounts for the observed bond lengths.
 - b) The enthalpy change for the combustion of hydrocarbons in excess oxygen in the vapour phase at 298 K can be estimated by assuming the following contributions for each type of bond.

Type of bond Contribution to
$$\Delta H_{\text{cumbustion}}/\text{kJ mol}^{-1}$$

C-H -226

C-C -205

C=C -205 C=C -489

The measured value of $\Delta H_{\rm combation}$ for benzene in the vapour phase at 298 K is -3298 kJ mol⁻¹. Estimate the enthalpy change for the combustion of benzene, and

- comment on any difference in relation to the structure of benzenc.

 c) i) How may benzene be converted into phenylethanone,
 - C₆H₅COCH₅, and what is the mechanism of the reaction?
 Why is a substitution rather than an addition product formed?
- ii) Excess phenylethanone reacts with hydrazine, NH₂-NH₂, to give a compound C₁₆H₁₆N₂. Give a structural formula for this compound. (O90,S)
- a) State and explain the similarities and differences between the crystal structures of sodium chloride and caesium chloride, using diagrams where appropriate.
 - b) Some energy data are tabulated below.

Process	$\Delta H^{\odot}(298 \text{ K})/\text{kJ mol}^{-1}$
Na(s) Na(g)	+108
¹ / ₂ Cl ₂ (g) → Cl(g)	+121
Na(g) → Na ⁺ (g) + e ⁻	+496
Cl(g) + e ⁻ Cl ⁻ (g)	-349
Ca(g) - Ca ²⁺ (g) + 2e ⁻	+1736
Ca ^{2*} (g) - ► C a ^{3*} (g) + e ⁻	+4941
$C_2^{2+}(\sigma) + 2CU(\sigma) - C_2CU(\sigma)$	-2220

$$Ca^{3+}(g) + 3Cl^{-}(g) \longrightarrow CaCl_{3}(s) -4800 (est)$$

 $NaCl(s) \longrightarrow Na^{+}(g) + Cl^{-}(g) +787$
 $NaCl(s) + water \longrightarrow Na^{+}(aq) + Cl^{-}(aq) +4$

Using this information.

i) calculate the standard molar enthalpy change for the process

$$Na(s) + \frac{1}{2}Cl_2(g) \longrightarrow Na^+(g) + Cl^-(g)$$

ii) explain why CaCl₃(s) does not exist but CaCl₂(s) does iii) comment on the difference between the values of the enthalpy

change of lattice breaking of NaCl(s) and the enthalpy of solution of NaCl(s) in water and define a term which is useful in this context

- iv) discuss the processes occurring at the molecular level when solid sodium chloride dissolves in water.
- c) State and discuss the general principles which govern the extent to which compounds are soluble in water. (WJEC90)
- a) i) Define the term lattice enthalpy.
 - State and explain the effect of ionic charge and ionic radius on the magnitude of the lattice enthalpy of a salt.
 - Explain briefly why the entropy change (ΔS) is positive for the dissolution of an ionic solid in water.
 - c) Calculate the temperature at which a reaction for which the enthalpy change (ΔH) is +100 kJ mol⁻¹ and the entropy change (ΔS) is +0.04 kJ K⁻¹ mol⁻¹ would become energetically feasible. Explain the reasoning behind your calculation. (AEB90)
- The industrial preparation of the polymer, poly(tetrafluoroethene) or PTFE, is based on the synthesis of the monomer tetrafluoroethene, CF₂=CF₂, which is produced by thermal cracking of chlorodifluoromethane. CHGIF-, according to reaction (1) below.

$$2CHCIF_2(g)$$
 $CF_2=CF_2(g) + 2HCI(g)$ (1)

Here the CHCIF₂ is diluted by superheated steam, which also acts as the heat source.

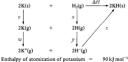
The monomer CF2=CF2 is also obtained via reaction (2).

$$2CHF_3(g)$$
 $CF_3=CF_3(g) + 2HF(g)$

 $\Delta H^{\Theta} = +198.1 \,\mathrm{kJ \, mol^{-1}}$ (2) Consider this information, together with the data in the table below, and answer the following questions.

Compound	ΔH [⊕] _F /kJ mol ⁻¹	Compound	ΔH _F [⊕] /kJ mol ⁻¹	Molecule X - X	D(X - X) /kJ mol ⁻¹
HCl(g) CHClF ₂ (g) CF ₂ =CF ₂ (g)	-92.3 -485.2 -658.3	CF ₄ (g) CCl ₄ (g)	-679.6 -106.6	F-F(g) Cl-Cl(g)	154.7 246.7

- a) i) Calculate the value of the enthalpy change, ΔP^R, for reaction (1). Stare, giving your reasons, how you would expect they did of the tetrafluoroethene monomer to be affected by: 1. increase of temperature and 2. increase of pressure. In the latter sees explain how your conclusion is compatible with the experimental conditions described.
 - Indicate and explain whether there are any drawbacks to the use of reaction (2) which would make reaction (1) preferable.
- b) i) Use the expressions


$$CX_4(g)$$
 \longrightarrow $C(s) + 2X_2(g)$ $\Delta H^{\oplus} = -\Delta H^{\oplus}_F$
 $C(s)$ \longrightarrow $C(g)$ $\Delta H^{\oplus} = +718.0 \text{ kJ mol}^{-1}$
and
 $2X_2(g)$ \longrightarrow $4X(g)$ $\Delta H^{\oplus} = 2D(X - X)$

where X = F. Cl. to calculate ΔH^{Φ} for the two processes

$$CX_4(g)$$
 \longrightarrow $C(g) + 4X(g)$.

Hence find the average C-X bond energies for the species $CX_d(g)$ (where X=F and X=CI). Given that the average C-H bond energy is 416.1 kJ mol⁻¹, explain the implications of your results for the relative chemical reactivities of C-H, C-F and C-CI bonds.

- ii) Chlorofluorocarbons (CFCs) are widely used as propellent gases for aerosols. In the upper atmosphere, photochemically induced homolytic fission of one of the carbon-halogen bonds of CFCs. produces halogen radicals which then attack the ozone layer. Use your results from b) i) above to suggest which halogen is likely to be the dominant cause of such damage. (WIECGP2)
- The Born-Haber cycle below represents the energy changes occurring at 298 K when potassium hydride, KH, is formed from its elements.

Bond enthalpy of hydrogen = 78 kJ mol⁻¹

First initization energy of potassium = 418 kJ mol⁻¹

Bond enthalpy of hydrogen = 436 kJ mol⁻¹

First electron affinity of hydrogen = -78 kJ mol⁻¹

Lattice enthalpy of potassium hydride = -710 kJ mol⁻¹

- d) Given that the enthalpy of solution of the hydrated copper(II) sulphate is +11.3 kJ mol-1, calculate the enthalpy of hydration of the anhydrous solid. e) Comment on the following statements, which may be either true
- or false:
 - i) 'If the enthalpy change for a reaction is negative then that reaction will take place very quickly.'
 - ii) 'The C-Cl bond energy is very high, making that bond very difficult to break and so compounds containing the C-Cl bond are generally unreactive.'
 - iii) 'A catalyst speeds up a chemical reaction by making the enthalpy change for the reaction, ΔH , more negative.
 - (Specific heat capacity of water = 4.18 J g⁻¹ K⁻¹.) (O&C90,AS)
- 10. Chemical companies manufacture containers filled with liquid butane for use by campers. The enthalpy change of combustion of butane is -3000 kJ mol-1.
- a) Write an equation for the complete combustion of butane.

A camper estimates that the liquid butane left in a container would give 1.2 dm3 of butane gas (measured at ordinary temperature and pressure).

b) Calculate the mass of water at 20°C that could be brought to the boiling point by burning this butane: use the following information.

Assume that

80% of the heat from the butane is absorbed by the water. the specific heat capacity of water is 4.2 J g-1 K-1,

1 mol of a gas occupies 24 dm³ at ordinary temperatures and pressures.

- c) Suggest how the camper might have estimated how much butane was left in the container.
- d) When burnt in a limited supply of air, butane forms carbon and

i) Construct a balanced equation for this reaction.

The enthalpy change of this reaction is -1400 kJ mol-1.

ii) Explain why the enthalpy changes of these two combustion reactions are different.

iii) What additional quantitative information can be calculated from this difference? (C91)

- 11. a) State the first law of thermodynamics and discuss the relationship between this law and Hess's law.
 - b) Describe how you could measure the molar enthalpy of combustion (ΔH_c) of ethanol by a simple laboratory experiment. Discuss the practical precautions which would be necessary to minimise

lated from the experimental results.

c) Methanol can be produced from methane by a two-step process.

 Use the following enthalpies of combustion to calculate the enthalpy change, ΔH, for each of the two steps.

experimental error. Explain how a value for ΔH_{*} could be calcu-

	CH ₄ (g)	CO(g)	H ₂ (g)	CH ₃ OH(g)
$\Delta H_c/kJ \text{ mol}^{-1}$	-808	-283	-245	-671

(Note Where water is a product of combustion the figures refer to the formation of H₂O(g).)

ii) Discuss how changes in temperature and pressure will affect

- the yield of products in each step.

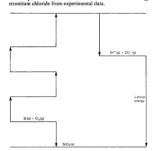
 ii) Discuss two economic advantages of operating these two steps
 - in reaction vessels close to each other in an industrial plant.

 (JMB92)
- The ionisation energy of hydrogen atoms is +1310 kJ mol⁻¹.
 Write the equation which defines the ionisation process.
 - ii) Given that the electron affinity of chlorine is -364 kJ mol⁻¹ and the following additional information:

$$H(g) + Cl(g) \longrightarrow HCl(g) \Delta H_{298}^{\circ} = -432 \text{ kJ mol}^{-1}$$

 $HCl(g) \longrightarrow H^{+}(aq) + Cl^{-}(aq) \Delta H_{298}^{\circ} = -75 \text{ kJ mol}^{-1}$
calculate the standard enthalpy change for the process
 $H^{+}(g) + Cl^{-}(g) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$

 The table below gives the standard enthalpy changes of hydration of some gaseous ions.


Ion	Cl-	Br-	I-	Li*	Na*	K+
Enthalpy of hydration/kJ mol ⁻¹	-380	-350	-310	-520	-400	-320

- Using the result from a) ii) calculate the enthalpy of hydration of the proton.
- Suggest a reason why your answer is quite different from any of the values in the table.

 Ethyne, C₂H₂, can be converted into ethene, C₂H₄, by the following reaction:

$$H-C \equiv C-H(g) + H_2(g) \longrightarrow H C = C H (g)$$

- i) Why is it difficult to determine experimentally an accurate value for the standard enthalpy of this reaction?
- ii) How can mean bond enthalpies be used to estimate a value for this standard enthalpy change? (L91)
- 13. a) The diagram below shows an outline, not to scale, of the Born-Haber cycle used for the calculation of the lattice energy of

- i) On each of the four empty lines in a copy of the Born-Haber cycle diagram above, write in the formulae for the species present at that stage in the cycle. The diagram is based on the ionisation of strontium being a two-stage process,
- From the table below, select the data required for the calculation of the lattice energy of strontium chloride, and write these in the correct spaces on the Born-Haber cycle diagram.

- ΔH^O_{0,298} [SrCl₂(s)] = −828.9 kJ mol⁻¹
 iii) Using your completed Born-Haber cycle, calculate a value for the lattice energy of strontium chloride.
- Theoretical values have been obtained for the standard enthalpy changes of formation of the two hypothetical compounds SrCl(s) and SrCl₃(s):

$$\Delta H_{f, 298}^{\ominus}[SrCl(s)] = -198 \text{ kJ mol}^{-1}$$

 $\Delta H_{f, 298}^{\ominus}[SrCl_3(s)] = +571 \text{ kJ mol}^{-1}$

- i) Comment on the likely energetic stability of these compounds in relation to:
 - 1) the elements strontium and chlorine
 - SrCl₂(s).
- ii) Theoretical values for the lattice energies for these two compounds have been calculated:

- 1) the large difference in the values of the lattice energies
- between SrCl₂(s) and SrCl(s)
- the large difference in the values of the standard enthalpy changes of formation between SrCl₂(s) and SrCl₃(s).
- c) When 1 mole of rubidium chloride is dissolved in water at 298 K to form a solution of concentration 1 mol dm⁻³, the enthalpy change is +19 kJ mol⁻¹:

RbCl(s) + aq
$$\longrightarrow$$
 Rb*(aq) + Cl⁻(aq)
 $\Delta H_{298}^{\oplus} = +19 \text{ kJ mol}^{-1}$

- Calculate the entropy change in the surroundings when this process takes place.
- Calculate the entropy change in the system for this process from the data:

$$S^{\oplus}[RbCl(s)] = +95.9 \text{ J mol}^{-1} \text{ K}^{-1}$$

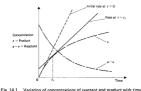
 $S^{\oplus}[Rb^{\dagger}(aq)] = +121.5 \text{ J mol}^{-1} \text{ K}^{-1}$
 $S^{\oplus}[Cl^{\dagger}(aq)] = +56.5 \text{ J mol}^{-1} \text{ K}^{-1}$

- iii) Use the results of your calculations to explain why rubidium chloride dissolves readily in water in spite of this being an endothermic process. (L91,N)
- 14. a) The cyclic unsaturated hydrocarbon, naphthalene (C10H8), which

may be written as , absorbs 5 mol of hydrogen per mole of hydrocarbon on complete hydrogenation, the accompanying enthalpy change (ΔH°(298 K) being -284 kJ per mole of naph-thalene.

The average enthalpy of hydrogenation of a C=C double bond in a ring is $-120\,\mathrm{kJ}$ mol $^{-1}$.

Use this information to calculate the delocalisation or resonance energy in naphthalene and explain the basis of your calculation.


- b) Bearing in mind your result in d) i) above and your answers in a) and b) above, state what you would expect to be the characteristic chemical behaviour of naphthalene. Give a reason.
- A simple substituted naphthalene is used in the manufacture of a range of useful chemical compounds. Name this naphthalene derivative and state the way in which it is used. (WJEC91,p)
- 15. Ellingham diagrams, showing the variation of standard free energy change, ΔC^o, with temperature, have proved useful in deciding the best conditions for the extraction of metals from their ores. An Ellingham diagram for the oxides of aluminium, carbon, hydrogen and zine is shown opposite.
 - Discuss the advantages and disadvantages of using aluminium, hydrogen and carbon as reducing agents in the extraction of metals.
 - b) Write the equation for the reaction between zinc oxide and carbon to form zinc and carbon monoxide. Use the Ellingham diagram above to obtain a value for ΔG^{Φ} for this reaction at 1100 K. Would aluminium or hydrogen reduce zinc oxide at this temperature.
 - e) By considering both ΔH^o and ΔS^o explain why ΔG^o varies with temperature for the reactions between
 - temperature for the reactions between
 i) zinc and oxygen
 ii) carbon and oxygen forming carbon monoxide. (L91,N)

14 Reaction Kinetics

Reaction Kinetics is the study of the factors which affect the rates of chemical reactions.

REACTION RATE

The rate of a chemical reaction is the rate of change of concentration. Consider a reaction of the type A — B, where one molecule of the reactant forms one molecule of the product, Fig. 14.1 shows how the concentration of product, x, increases as the time t, which has passed since the start of the reaction increases. The initial concentration of reactant (the concentration at the start of the reaction) is a, and at any time after the start of the reaction, the concentration of reactant is (a — x).

You can see that the rate of reaction is decreasing as the reaction

proceeds and the reactant is being used up. One can only state the rate of reaction between certain times.

One can calculate the average rate of reaction over a certain interval

of time in this way.

To 1 dm³ of solution containing 0.300 mol methyl ethanoate is added a small amount of mineral acid. This catalyses the hydrolysis reaction CH₃CO₂CH₄(aq) + H₂O(1) CH₃CO₂H(aq) + CH₃OH(aq) After 100 seconds, the concentration has decreased to $0.292 \,\mathrm{mol}\,\mathrm{dm}^{-3}$. This means that $0.008 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ of methyl ethanoate has reacted, and $0.008 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ of methanol and ethanoic acid have been formed.

Since the rate of reaction varies with time, it is usual to quote the initial rate of the reaction. This is the rate at the start of the reaction when an infinitesimally small amount of the reactant has been used up. In Fig. 10.1, the gradient of the tangent to the curve at t=0 gives the initial rate of the reaction.

THE EFFECT OF CONCENTRATION ON RATE OF REACTION

Consider a reaction between A and B to form C:

The rate of formation of C depends on the concentrations of A and B, but one cannot simply say that the rate of formation of C is proportional to the concentration of A and proportional to the concentration of B. The relationship is

Rate of formation of
$$C \propto \{A\}^m \{B\}^n$$

where m and m are usually integers, often 0, 1 or 2, and are characteristic of the reaction. One says that the reaction is of order m with respect to A and of order m with respect to B. The order of reaction is (m+m). One cannot tell the order simply by looking at the chemical equation for the reaction. For example, the reaction between bromate(Y) ions and bromide ions and sciol to give bromine

$$\frac{-d[BrO_3^-]}{dt} \propto [BrO_3^-][Br^-][H^+]^2$$

It is first order with respect to bromate(V), first order with respect to bromide, second order with respect to hydrogen ion and fourth order overall. The negative sign means that [BrO₂] decreases with time.

If Reaction rate
$$\propto [A]^m [B]^n$$
 it follows that
Reaction rate $= k [A]^m [B]^n$

The proportionality constant k is called the rate constant for the reaction or the rate coefficient for the reaction.

As a reaction proceeds, the concentrations of the reactants decrease, and the rate of reaction decreases, as shown in Fig. 14.1. The shape of the curve depends on the order of the reaction (see Fig. 14.2).

Fig. 14.2 Graphs of rate against concentration

FIRST-ORDER REACTIONS

If the reaction

is a first-order reaction, the rate equation will be
Rate =
$$k[A]$$
 i.e. $\frac{-d[A]}{dt} = k[A]$

If $[A]_0$ = initial concentration of A, the integrated form of this equation is

$$kt = \ln \frac{[A]_0}{[A]} = 2.303 \lg \frac{[A]_0}{[A]}$$

The units of k, the first-order rate constant, are s^{-1} .

HALF-LIFE

Let $t_{1/2}$ be the time taken for half the amount of A to react. $t_{1/2}$ is called the balf-life of the reaction.

METHOD

ANSWER

After
$$t_{1/2}$$
 seconds, [A] = [A]₀/2
· $t_{1/2}$ = $\ln 2$ =

$$kt_{1/2} = \ln 2 = 2.303 \lg 2$$

$$t_{1/2} = 0.693/k$$

The half-life of a first-order reaction is independent of the initial concentration of the reactant. Radioactive decay is an example of first-order kinetics.

PSEUDO-FIRST-ORDER REACTIONS

The acid-catalysed hydrolysis of an ester, e.g. ethyl ethanoate,

 $CH_3CO_2C_2H_4(aq) + H_2O(l) \longrightarrow CH_3CO_2H(aq) + C_2H_4OH(aq)$ is first order with respect to ester and first order with respect to water.

If water is present in excess, so that the fraction of the water which is used up in the reaction is small, the concentration of water is practically constant, and, since the acid catalyst is not used up, the rate depends only on the concentration of ester:

$$\frac{-d[CH_3CO_2C_2H_5]}{dt} = k'[CH_3CO_2C_2H_5]$$

k' is constant for a certain concentration of acid, and the reaction obeys a first-order rate equation.

EXAMPLE 1 The rate constant of a first-order reaction is $2.0 \times 10^{-6} \, \text{s}^{-1}$. The initial concentration of the reactant is 0.10 mol dm-3. What is the

value of the initial rate in mol dm -3 s -1?

Rate =
$$k[A]$$

Putting the values of [A] and k into this equation gives

$$Rate \ = \ 2.0 \times 10^{-6} \times 0.10 \ = \ 2.0 \times 10^{-7} \, mol \, dm^{-3} \, s^{-1}.$$

EXAMPLE 2 The half-life for the radioactive decay of thorium-234 is 24 days. a) Calculate the rate constant for the decay. b) What time will elapse before 3/4 of the thorium has decayed?

a) Radioactive decay follows the first-order law: METHOD

The rate equation has the form

$$kt_{1/2} = 2.303 \lg 2$$

ANSWER
$$k = \frac{2.303 \text{ Ig 2}}{24 \times 24 \times 60 \times 60} = 3.34 \times 10^{-7} \text{s}^{-1}$$

ZERO-ORDER REACTIONS

In a zero-order reaction, the rate is independent of the concentration of the reactant. In the reaction between propanone and iodine

$$CH_3COCH_3(aq) + I_2(aq) \longrightarrow CH_3COCH_2I(aq) + HI(aq)$$

the reaction rate does not change if the concentration of iodine is changed. The rate of reaction is independent of the iodine concentration, and the reaction is said to be zero order with respect to iodine.

*THE EFFECT OF TEMPERATURE ON REACTION RATES

An increase in temperature increases the rate of a reaction by increasing the rate constant, A plot of the logarithm of the rate constant, k, against 1/T is a straight line, with a negative gradient (see Fig. 14.4).

Fig. 14.4 Dependence of rate constant on temperature

The variation of rate constant with temperature obeys the Arrhenius equation

$$k = Ae^{-E/RT}$$

A and E are constant for a given reaction, R is the gas constant. In order to react, two molecules must collide with a minimum amount of energy E, which is called the activation energy. The fraction of molecules possessing energy E is given by e^{-2kB^2} . The constant A, called the pre-exponential factor, represents the maximum rate which the reaction can reach when all the molecules have energy equal to or greater than E.

The Arrhenius equation can be written as

$$\lg k = \lg A - \frac{E}{2.303RT}$$

A can be found from the intercept or by substituting values of $\lg k$ and 1/T in the equation. At $1/T = 3.28 \times 10^{-3}$, $\lg k = -4.00$.

$$A = 1.45 \times 10^{14} \,\mathrm{s}^{-1}$$

ANSWER The activation energy is 106 kJ mol⁻¹; the pre-exponential factor is 1.45 × 10¹⁴ s⁻¹.

EXERCISE 51 Problems on Finding the Order of Reaction

- X and Y react together. For a three-fold increase in the concentration of X, there is a nine-fold increase in the rate of reaction. What is the order of reaction with respect to X?
- 2. A and B react to form C. In one run, the concentration of A is doubled, while B is kept constant, and the initial rate is doubled. In a second run, the concentration of B is doubled while that of A is kept constant, and the initial rate is quadrupled. What can you deduce about the order of the reaction?
- Fig. 14.6 shows that the rate of reaction is:
 - a proportional to [1,]
 - b proportional to [1₂]²
 c proportional to 1/[1₂]
 d independent of [1₂]

 X decomposes to form Y + Z. The following results were obtained in a study of the reaction:

What is the rate expression? What is the order of the reaction?

The reaction A + B → C is first order with respect to A and to B. When the initial concentrations are [A] = 1.5 × 10⁻² mol dm⁻³ and [B] = 2.5 × 10⁻² mol dm⁻³, the initial rate of reaction is found to be 3.75 × 10⁻² mol dm⁻³ s⁻³. Calculate the rate constant for the reaction.

6. In the reaction

the following results were obtained for the initial rates of reaction for different initial concentrations:

[A]/moldm ⁻³	[B]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1.0	1.0	2.0 × 10 ⁻³
2.0	1.0	4.0×10^{-3}
4.0	2.0	16×10^{-3}

Deduce the rate equation and calculate the rate constant.

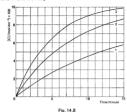
for runs at the same temperature.

7. The rate of a reaction depends on the concentrations of the reactants.

Initial concentration of X/mol dm ⁻³	Initial concentration of Y/mol dm ⁻³	Initial rate/ mol dm ⁻³ h ⁻¹		
2 × 10 ⁻³	3 × 10 ⁻³	3.0 × 10 ⁻³		
2 × 10 ⁻³	6 × 10 ⁻³	1.2×10^{-2}		
4 × 10 ⁻³	6 × 10 ⁻³	2.4 × 10 ⁻²		

In the reaction between X and Y, the following results were obtained

Deduce the order of the reaction with respect to: a) X, b) Y. Calculate the rate constant for the reaction.


 The following results were obtained for the decomposition of nitrogen(V) oxide

2N ₂ O ₅ (g)	$O_2(g) + O_2(g)$
Concentration of N2O6/mol dm-3	Initial rate/mol dm ⁻³ s
1.6 × 10 ⁻³	0.12
2.4×10^{-3}	0.18
3.2×10^{-3}	0.24

What is the rate expression for the reaction? What is the order of reaction? What is the initial rate of reaction when the concentration of N_*O_* is:

EXERCISE 52 Problems on First-order Reactions

 A isomerises to form B. The reaction is first order. If 75% of A is converted to B in 2.5 hours, what is the value of the rate constant for the isomerisation?

a) Find the initial rates of curves 1, 2 and 3.

- b) What is the order of reaction with respect to B?
- c) Inspect curve 3. What is the time required for completion of § reaction, and of § reaction? What is the order with respect to A?
- d) Write an overall rate equation for the reaction.
- e) Find the rate constant for the reaction.

EXERCISE 53 Problems on Second-order Reactions

 The following results were obtained from a study of the reaction between P and Q.

Concentratio [P]	ons/mol dm ⁻³ [Q]	Initial rate/mol dm ⁻³ s ⁻¹
2.00 × 10 ⁻³	2.00 × 10 ⁻³	2.00 × 10 ⁻⁴
1.80×10^{-3}	1.80×10^{-3}	1.62×10^{-4}
1.40×10^{-3}	1.40 × 10 ⁻³	9.80 × 10 ⁻⁵
1.10×10^{-3}	1.10×10^{-3}	6.05 × 10 ⁻⁵
0.80 x 10 ⁻³	0.80×10^{-3}	3.20 × 10 ⁻⁵

Prove that the reaction is second order. Calculate the rate constant.

2. The following results were obtained for a reaction between A and B.

Concentration [A]	ns/mol dm ⁻³ [B]	Initial rate/mol dm ⁻³ s ⁻¹
0.5	1.0	2
0.5	2.0	8
0.5	3.0	18
1.0	3.0	36
2.0	3.0	72

What is the order of reaction with respect to A and with respect to B?
What is the rate equation for the reaction? Calculate the rate constant.
State the units in which it is expressed,

EXERCISE 54 Problems on Radioactive Decay

 Plot a graph, using the following figures, to show the radioactive decay of krypton. From the graph, find the half-life.

	Time/minute	0	20	40	60	80	100	120	
	Activity/count per second	100	92	85	78	72	66	61	
2.	A sample of gold was irradiated	l in a	nuc	elear	react	or. It	gav	e the	

following results when its radioactivity was measured at various intervals. Plot the results, and deduce the half-life of the radioactive isotope of gold formed.

Time/hour	0	1	5	10	25	50	75	100
Radioactivity/count per minute	300	296	285	270	228	175	133	103

A sample of bromine was irradiated in a nuclear reactor. The following results were obtained when the radioactivity was measured after various time intervals. Plot the results, and deduce what you can about the deeay of radioactive bromine.

Time/hour	0	0.1	0.2	0.5	1	2	5	10	25	50	75	100
Radio- activity/count per minute	500	442	399	320	268	242	225	204	154	95	55	35

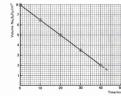
- 4. A radioactive source, after storing for 42 days, is found to have 1/8th of its original activity. What is the half-life of the radioactive isotope present in the source?
- Actinium B has a half-life of 36.0 min. What fraction of the original quantity of actinium remains after: a) 180.0 min, b) 1080 min?
- 6. The half-life of carbon-14 is 5580 years. A 10g sample of carbon prepared from newly cut timber gave a count rate of 2.04 s⁻¹, A 10g sample of carbon from an ancient relic gave a count rate of 1.84 s⁻¹. Calculate the age of the relic.

- A dose of 1.00×10⁻⁴g of a statine-211 is given to a patient for treatment of cancer of the thyroid gland. How much of this radio-active isotope (t_{1/2} = 7.21 h) will remain in the body 24 hours later?
- *8. Tritium has a half-life of 12.3 years. When tritiated water is used in tracer experiments, what percentage of the original activity will remain after: a) 5 years, b) 50 years?
- *9. The half-life of carbon-14 is 5600 years. A piece of wood from an ancient ship gives a count of 10 counts per minute, while carbon obtained from new wood gives 15 counts per minute. What is the age of the ship?

EXERCISE 55 Problems on Rates of Reaction

- A first-order reaction is 50% complete at the end of 30 minutes. What is the value of the rate constant? In how many minutes is reaction 80% complete?
- The half-life for the disintegration of bismuth-214 is 19.7 minutes. Calculate the rate constant for the decay in s⁻¹.
- The half-life for the radioactive disintegration of bismuth-210 is 5.0 days. Calculate: a) the rate constant in s⁻¹, b) the time needed for 0.016 mg of bismuth-210 to decay to 0.001 mg.
- 4. Hydrogen and iodine combine to form hydrogen iodide. The reaction is first order with respect to hydrogen and first order with respect to iodine. The rate constant is 2.78 × 10⁻² mol dm⁻³ s⁻¹. If the concentrations are [H₂] = 0.85 × 10⁻² mol dm⁻³, and [I₂] = 1.25 × 10⁻² mol dm⁻³, what is the initial rate of reaction).
- The reaction 2NO(g) + Cl₂(g) 2NOCl(g) is third order. The rate constant is 1.7 × 10⁻⁵ dm⁶ mol⁻² s⁻¹. If the concentrations of the reactants are each 0.20 mol dm⁻³, what is the initial rate of reaction?
- 6. A and B react in the gas phase. In experiment 1, a glass vessel was used. In experiment 2, the glass was coated with another material. The results of the two experiments are shown below. Deduce the rate equations for the two experiments. Can you explain how they come to differ?

	[A]/moldm ⁻³	$[B]/moldm^{-3}$	Initial rate/mol dm ⁻³ s ⁻¹
Experiment 1	0.20	0.12	2 × 10 ⁻³
	0.40	0.12	8×10^{-3}
	0.20	0.24	4×10^{-3}
Experiment 2	0.20	0.12	2 × 10 ⁻³
	0.40	0.24	8×10^{-3}
	0.80	0.24	32 X 10 ⁻³


- b) Use the photochemical reaction of chlorine with methane to illustrate and explain the following processes in a chain reaction:

 i) initiation;
 ii) propagation;
 iii) termination.
- Iodine reacts rapidly with propanone (CH₃COCH₃) in acidic or alkaline solution but only very slowly when neutral.
 The reaction in acidic solution is

The reaction rate was studied in the following experiment.

 $0.1\,\text{mol}$ of propanone and $0.01\,\text{mol}$ of hydrochloric acid in a total volume of $90\,\text{cm}^3$ of water were placed in a flask at constant temperature. $0.0004\,\text{mol}$ of iodine (12) in $10\,\text{cm}^3$ of water was added and timing was begun.

 $10\,\mathrm{cm}^3$ samples were periodically withdrawn at 10 minute intervals and were neutralised by adding to excess aqueous sodium hydrogen-carbonate. These were then titrated with sodium thiosulphate solution containing 0.01 mol dm 3 Na₂S₂O₃. The results are shown in the graph below.

- a) What is the order of the reaction with respect to iodine? Explain your answer.
- b) Why are the initial concentrations of propanone and acid chosen to be so much greater than that of the iodine?
 - e) i) Why is the mixture neutralised (before titration)?
 - ii) Why would sodium hydroxide be unsuitable for this purpose?
 d) What would be the effect on the gradient of the graph of doubling
- the initial concentration of hydrochloric acid is doubled, the

- 240
- rate of the reaction is also doubled. What is the order of reaction with respect to hydrochloric acid?
- f) Indicate, without giving experimental detail, how you would show that the species responsible for doubling the rate in e) is the hydrogen ion and not the chloride ion. (O91,AS)
- The following data refer to the hydrolysis of 2-bromo-2-methylpropane, CH₃−C(CH₃)Br−CH₃, by aqueous sodium hydroxide at 25 ⁵C.
 The equation is

CH₂-C(CH₂)Br-CH₂ + OH - CH₂-C(CH₂)(OH)-CH₂ + Br

Concentration of 2-bromo-2-methylpropane /mol dm ⁻³	Concentration of OH ⁻ ions/mol dm ⁻³	Initial rate of hydrolysis /mol dm ⁻³ s ⁻¹
0.100	0.500	0.0020
0.100	0.250	0.0020
0.075	0.250	0.0015
0.050	0.250	0.0010
0.025	0.250	0.0005

- a) What is the order of the reaction with respect to
 - i) 2-bromo-2-methylpropane
 ii) hydroxide ion?
 - iii) Explain how you arrived at your answers to i) and ii).
- b) Write down the rate expression for the reaction.
- c) Give the units of the rate constant.
- d) Write down a mechanism for the reaction.
- Suggest a method by which the rate of this hydrolysis might be followed in the laboratory. (AEB90)
- a) Explain how ion-exchange may be used for the purification of water on a domestic scale.
 - i) Explain the phenomenon of osmosis and define osmotic pressure.
 ii) How may sea water be desalinated using osmosis?
 - c) Calculate the age of an ancient papyrus scroll found in Egypt which gave a count rate of 110 min⁻¹g⁻¹ compared with 150 min⁻¹g⁻¹ from new papyrus. The half-life of the nuclide ¹gC is 5600 years. Explain the assumptions made in this dating procedure. (O91)

- c) What is meant by the term balf-life?
- d) A patient receives a dose of sodium chloride containing ²⁴Na, giving a reading of 1200 counts s⁻¹ in a blood sample. How many hours must pass for the reading of this sample to fall to 75 counts s⁻¹? (1,92.n)
- *10. a) Explain the meaning of each of the following terms:
- i) order of a reaction
 - ii) rate constant
 - iii) mechanism
 - iv) half-life
 - v) activation energy.
 - b) A first-order gas phase decomposition reaction was carried out in a sealed vessel at constant temperature and the rate of the reaction was monitored by measuring the total pressure in the vessel.

The following results were obtained at 326 K.

Time/minutes	Total pressure/kPa
0	10
10	16
20	20
40	25
60	27.5
80	28.75
300	30
500	30

- i) Suggest a schematic equation for the decomposition.
- Calculate the rate constant and the half-life of the reaction at 326 K. (AEB91,S)
- 11. a) For a chemical reaction, state what is meant by the terms rate of reaction, rate constant and transition state. Distinguish carefully between the first two terms.
 - b) The following data were obtained with respect to the alkaline hydrolysis of two different halogenoalkanes at 20°C.

Experiment	Initial concentration		Initial rate /mol dm ⁻³ s ⁻¹
A	0.2	0.2	6.0×10 ⁻⁶
B	0.4	0.2	12×10 ⁻⁶

1	(CH ₃) ₃ CCl	OH-	
D	0.1	0.1	3.0×10 ⁻⁵
E	0.2	0.1	6.0 × 10 ⁻⁵
F	0.1	0.3	3.0×10 ⁻⁵

- Deduce the order of reaction with respect to concentration of
 halogenoalkane
 - hydroxide ion for the hydrolysis of both halogenoalkanes, and explain your deductions.
- ii) Write the rate equations for both reactions and give the unit of the rate constant in each case.
- iii) State the mechanism of hydrolysis of 1-chlorobutane (which is the same as that of 1-bromobutane) and explain how the results
- above support this mechanism.

 iv) State, giving a reason, whether the mechanism of hydrolysis of (CH₃)₃CCl is likely to be the same as that in b) iii) above and, if not, suggest a possible mechanism.
- c) i) The relative rate constants for the alkaline hydrolysis of l-chlorobutane, (chloromethyl)benzene and chlorobenzene are in the ratio of

1:200:0.001

respectively. Discuss the reasons for the differences.

ii) Suggest one method of measuring the rate of the reactions in

- c) i) experimentally.

 d) Here are two statements relevant to the problem of obtaining
 - maximum yields in industrial processes as quickly as possible.

 'The equilibrium yields of exothermic reactions decrease as the
 - temperature increases.'
 "The rates of all chemical reactions increase with increasing temperature.'
 - Explain why these statements are correct, discuss the apparent conflict between them, and state how the industrialist deals with this. (WJEC92)
- 12. The reaction between manganate(VII) ions and ethanedioate ions in acid solution is described by the equation:

2MnO₄ + 16H* + 5C₂O₂* → 2Mn2* + 8H₂O + 10CO₂ If potassium manganate(VII) is reacted with ethanedioic acid in the presence of sulphuric acid the product is a mixture of manganese(II) sulphate and potassium sulphate solutions. The extent of the reaction may be followed by measuring the concentration of the manganted(VII) ions using a colorimeter. In Experiment 1, 100 cm² of penasium manganted(VII), of concentration a OD mol and m², were nixed with 100 cm² of ethanedroic acid, 0.10 mol dum², and 50 cm² of sulphuric acid, 11 mol dum², and a sumple was placed in the colorimeter. In Experiment 2, the same mixture was made but this time a little solid manganese(II) sulphate was loo added. Both experiments were conducted under the same conditions of temperature and pressure. The following results were noted:

E	xperiment 1	Experiment 2		
Time/s	Concentration of manganate(VII) /10 ⁻³ mol dm ⁻³	Time/s	Concentration of manganate(VII) /10 ⁻³ mol dm ⁻³	
0	8.0	0	8.0	
400	7.9	400	5.8	
800	7.7	800	4.0	
1200	6.8	1200	2.8	
1600	4.0	1600	2.0	
2000	2.0	2000	1.4	
2400	1.0	2400	1.0	

- a) Consider first Experiment 2.
 i) On graph paper plot 2.
 - i) On graph paper plot a graph of concentration of manganate against time and label it appropriately.
 ii) On lined paper sketch a graph of rate against time and indicate
 - how you arrived at that conclusion.
 - From either of the two graphs, or by any other method, determine the order of the reactions with respect to the manganate(VII) ion, clearly showing your reasoning.
- b) Consider Experiment 1.
 - On the graph produced in a) i) sketch a graph of concentration of manganate(VII) against time.
 - ii) On lined paper sketch a graph of rate against time.
 iii) How do the two graphs of rate against time differ?
 - i) How do the two graphs of rate against time differ
 - iv) What can you deduce about the role of manganese(II) sulphate in this reaction? (O&C91,AS)
- *13. a) Discuss three different ways in which the rates of simple chemical reactions can be altered. Relate your discussion to a generalised rate equation and sketch graphs, as appropriate, to illustrate your answer.
 - b) Consider a reaction between two species P and Q which is first order with respect to each of these two components. When the concentrations of P and Q are of the same order of magnitude, overall second-order kinetics will be observed experimentally. But if either P or Q is present in considerable excess, the reaction will show an apparent overall order of one, called the pseudo order.

15 Equilibria

CHEMICAL EQUILIBRIUM

An example of a reversible reaction between gases is the reaction between hydrogen and iodine to form hydrogen iodide:

$$H_2(g) + I_2(g) = 2HI(g)$$
If the reaction takes place in a closed vessel, the combination of

hydrogen and iodine gradually slows down as the concentrations of these gases decrease. At first, there is very little decomposition of hydrogen iodide into hydrogen and iodine, but, as the concentration of hydrogen iodide interases, the atex of decomposition of hydrogen iodide into hydrogen and iodine increases until he rates of the forward and reverse reactions are equal, and the concentration of each species is constant.

An example of a reversible reaction which takes place in solution is the reaction between ethanoic acid and ethanoit to form ethyl ethanoate:

$$CH_3CO_2H(I) + C_2H_5OH(I)$$
 \longrightarrow $CH_3CO_2C_2H_5(I) + H_2O(I)$

As the concentrations of ester and water increase, the reverse reaction — hydrolysis of the ester to form the acid and alcohol — speeds up. At equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction. Esterification is catalysed by inorganic acids. The presence of a catalyst speeds up the rate at which equilibrium is established.

THE FOULLIBRIUM LAW

If a reversible reaction is allowed to reach equilibrium, it is found that the product of the concentrations of the products divided by the product of the concentrations of the reactants has a constant value at a particular temperature. In the esterification reaction,

$$CH_3CO_2H(I) + C_2H_4OH(I)$$
 \longrightarrow $CH_3CO_2C_2H_4(I) + H_2O(I)$

it is found that

$$\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_4CO_3H][C_3H_4OH]} = K_c$$

where K_e is the equilibrium constant for the reaction in terms of concentration. In the reaction between hydrogen and iodine,

$$H_2(g) + I_2(g) = 2HI(g)$$

 $\frac{[HI]^2}{(H_1)(I_c)} = K_c$

and

Since this is a reaction between gases, the concentration of each gas can be expressed as a partial pressure. Then,

$$\frac{p_{HI}^2}{p_{H_1} \times p_{I_1}} = K_p$$

 K_p is the equilibrium constant in terms of partial pressures. In the reaction between iron and steam,

$$3Fe(s) + 4H_2O(g)$$
 Fe₃O₄(s) + $4H_2(g)$

The equilibrium constant is given by

$$\frac{p_{H_1}}{p_{H_1}o^4} = K_p$$

The solids do not appear in the expression. Their vapour pressures are constant (at a constant temperature) as long as there is some of each solid present. These constant vapour pressures are incorporated into the value of the constant $K_{\rm p}$.

Another type of reaction which reaches an equilibrium position is thermal dissociation. For example, when phosphorus(V) chloride is heated, it dissociates partially to form phosphorus(III) chloride and chlorine:

$$PCl_5(g)$$
 \longrightarrow $PCl_3(g) + Cl_2(g)$

As explained in Chapter 9 (pp. 104–14) the dissociation increases the number of moles of substance present and causes an increase in volume, α , if the volume is kept constant, an increase in pressure. The result is that the experimental determinations of molar mass give an unexpectedly low value. The degree of dissociation, α , can be obtained from the ratio.

 $\frac{\text{Molar mass calculated in the absence of dissociation}}{\text{Experimentally determined molar mass}} = 1 + \alpha$

Inserting the value for α into the expression for the equilibrium constant, and putting c = initial concentration of PCl_s, we get

$$K_c = \frac{[\text{Cl}_2] \{\text{PCl}_3\}}{[\text{PCl}_5]}$$

$$K_c = \frac{\alpha c \times \alpha c}{(1 - \alpha)c} = \frac{\alpha^2 c}{1 - \alpha}$$

If the total pressure = P, the partial pressures of PCl₃ and Cl₂ are $P\alpha/(1+\alpha)$, the partial pressure of PCl₅ is $P(1-\alpha)/(1+\alpha)$, and

$$K_p = \frac{P^2\alpha^2/(1+\alpha)^2}{P(1-\alpha)/(1+\alpha)} = \frac{\alpha^2P}{1-\alpha^2}$$

EXAMPLE 1 1.00 mole of ethanoic acid was allowed to react with: a) 0.50 mole, b) 1.00 mole, c) 2.00 mole, and d) 4.00 mole of ethanol. At equilibrium, the amount of acid remaining was a) 0.58 mole, b) 0.33 mole, e) 0.15 mole and d) 0.07 mole. Calculate the equilibrium constant for the esterification reaction.

METHOD If the original amounts of acid and ethanol are a mol and b mol, then, at equilibrium, the amount of ester formed is x mol, and the amounts of acid and ethanol remaining are (a-x) and (b-x) mol.

$$CH_3CO_2H(l) + C_2H_3OH(l)$$
 $CH_3CO_2C_2H_3(l) + H_2O(l)$
 $(a-x)$ $(b-x)$ x

Since the equilibrium constant is given by

$$\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3CO_2H][C_2H_5OH]} = h$$

 $\frac{[CH_2CO_2C_2H_3] [H_2O]}{[CH_2CO_2H] [C_2H_2OH]} = K_c$ $\frac{(x/V)(x/V)}{[(a-x)/V] [(b-x)/V]} = K_c \text{ or } \frac{x^2}{(a-x)(b-x)} = K_c$ then

In reaction a)

$$(a-x) = 0.58; x = 0.42; (b-x) = 0.08$$

$$\frac{(0.42)^2}{0.58 \times 0.08} = K_c = 3.8$$

Substituting the other values of a, b and x in the equation gives the following values of K:

а	ь	a-x	x	b-x	K_c	
1.00	0.50	0.58	0.42	0.08	3.8	
1.00	1.00	0.33	0.67	0.33	4.1	
1.00	2.00	0.15	0.85	1.15	4.4	
1.00	4.00	0.07	0.93	3.07	4.0	

The average value of the equilibrium constant is 4.1.

EXAMPLE 2 Calculate the amount of ethyl ethanoate formed when 1 mole of ethanoic acid and 3 moles of ethanol and 3 moles of water are allowed to come to equilibrium. The equilibrium constant for the reaction is 4.0

Let the amount of ethyl ethanoate = x molMETHOD

> Then Equilibrium amount of acid = (1-x) mol Equilibrium amount of ethanol = (3 - x) mol

> > Equilibrium amount of water = (3 + x) mol

$$\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3CO_2H][C_2H_3OH]} = K_e = 4.0$$

$$\frac{x(3+x)}{(1-x)(3-x)} = 4.0$$

$$3x^2 - 19x + 12 = 0$$

Solving this quadratic equation (see p. 13) gives

$$x = 5.6$$
 or 0.71

The value x = 5.6 can be excluded because it is higher than the number of moles of ethanoic acid present initially. The solution x = 0.71 must be the practical one.

ANSWER The amount of ethyl ethanoate formed is 0.71 mol.

EXAMPLE 3 A mixture of iron and steam is allowed to come to equilibrium at 600 °C. The equilibrium pressures of hydrogen and steam are 3.2 kPa and 2.4 kPa. Calculate the equilibrium constant K., for the reaction.

METHOD The reaction is

$$3Fe(s) + 4H2O(g)$$
 $4H2(g) + Fe3O4(s)$

The equilibrium constant is given by

$$K_p = \frac{p_{H_1}^4}{p_{H_2O^4}}$$

Substituting in this equation gives

$$K_p = \left(\frac{3.2}{2.4}\right)^4$$

 $K_n = 3.1$

ANSWER

EXAMPLE 4 A molar mass determination on dinitrogen tetraoxide, N2O4, gave a value of 60 g mol-1 at 50 °C and 1.01 × 105 Pa. Find the equilibrium constant for the dissociation

$$N_2O_4(g)$$
 \longrightarrow $2NO_2(g)$

METHOD

If the degree of dissociation is α , then a total of $1 + \alpha$ moles of particles are formed from 1 mole of N2O4. P is the total pressure.

$$\frac{Molar \ mass}{Experimentally \ determined \ molar \ mass} = \frac{92}{60} = 1 + \alpha$$

$$\alpha = 0.53$$

Since

$$K_p = \frac{p_{\text{NO}_1}^2}{p_{\text{N}_1\text{O}_4}}$$

14. Sulphur dioxide and oxygen in the ratio 2 mol: 1 mol are allowed to reach equilibrium in the presence of a catalyst, at a pressure of 5 atm. At equilibrium, ¹/₃ of the SO₂ was converted to SO₃. Calculate the equilibrium constant for the reaction

15. The equilibrium constant Kn for the reaction

$$CO_2(g) + H_2(g)$$
 \longrightarrow $CO(g) + H_2O(g)$

- is 0.72 at 1000 °C. Calculate the composition of the mixture which results when:
- a) 0.5 mole CO₂ and 0.5 mole H₂ are mixed at a pressure of 1 atm and 1000 °C.
- b) 5 moles CO_2 and 1 mole H_2 are mixed at a pressure of 1 atm and $1000\,^{\circ}\mathrm{C}.$
- 16. The oxidation of sulphur dioxide is a reversible process:

$$2SO_2(g) + O_2(g) = 2SO_3(g)$$
Calculate the value of the equilibrium constant, K_p , in terms of partial pressures from the following data, which were obtained at 1000 K:

EXERCISE 59 Questions from A-level Papers

1. For an industrial process represented by the equilibrium

- the following data were obtained for 1. the variation of the relative rate of the forward reaction, k_{rel} , with
- temperature
- the variation of the fractional conversion, f, to C, at equilibrium.

T/K	log ₁₀ k _{rel}	to C at equilibrium
600	10.16	0.997
650	10.90	0.988
700	11.59	0.967
750	12.14	0.930
800	12.66	0.875
850	13.11	0.798
900	13.50	0.708

- a) On graph paper plot
 - i) the variation of log₁₀ k_{rel} with T
 ii) the variation of f with T
 - iii) the variation of the product, (log 10 km × f), with T.
 - b) State and explain what conclusions may be drawn from the plots in a) above concerning the optimal conditions for the production
 - of C.
 c) i) State and briefly explain the effect on the position of equili
 - brium of

 1) increase in total pressure
 - increase in total pressure
 increase in temperature.
 - ii) Under industrial conditions a catalyst is used to facilitate the production of C. State what is the effect of the catalyst on 1) the value of K.
 - the value of E_A, the activation energy of the forward reaction.
 - d) Consider the data given for the fractional conversion to C at equilibrium as a function of temperature. State and explain what can be deduced about ΔH^o for the equilibrium. (WEC91)
- The following equilibrium is established when hydrogen and nitrogen are passed over heated iron

$N_2 + 3H_2 \longrightarrow 2NH_3$

- Express the equilibrium constant K_p, in terms of the equilibrium partial pressures, p_{N₂}, p_{H₂}, p_{NH₃}, of the three species.
- b) If the nitrogen and hydrogen were initially in the molar ratio 1:3 and the fraction of ammonia at equilibrium is x, obtain expressions for the equilibrium partial pressures, p_{N2}, p_{H2}, and p_{NH2}, in terms of x and the equilibrium total pressure P.
- c) Name and state the law used in b).
- d) At 400 °C, x=0.0385 and $P=10\,\mathrm{atm}$. Calculate K_p .
- e) If the total pressure P were increased to 50 atm and the temperature kept at 400°C, indicate, without calculation, the effect on i) x, ii) K_p. Give explanations for your answers.
- f) When the temperature is increased to 500 °C, K_p decreases. What can be deduced about the sign of the enthalpy of formation in NH₃ in this reaction? Give an explanation for your answer.

g) What is the role of iron in this reaction? (O90)

The following chemical equilibria occur in limestone areas subject to rainfall-

 qualitatively how rainwater passing through limestone rock and then dripping from the roof of a cave can produce pillars. stalagmites and stalactites of ever-increasing thickness.

b) Water saturated with pure carbon dioxide at atmospheric pressure contains 0.15% by mass of dissolved CO2.

Calculate the concentration, in mol dm-3, of dissolved CO2 in water, [CO₂(aq)], which is in equilibrium with air containing 1% of carbon dioxide.

c) Write an expression for the equilibrium constant for the second reaction given above. By using the value of this equilibrium constant (4.7 × 10⁻⁵ mol² dm⁻⁶) and the [CO₃(aq)] you calculated in b), estimate the maximum value of [Ca(HCO3)2(aq)] that could occur in water passing through limestone rock.

4. a) For the industrially important reaction

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

 $\Delta H(298 \text{ K}) = -94.5 \text{ kJ mol}^{-1}$

Describe, giving reasons, the effect on the position of equilibrium of:

- i) increase of temperature
- ii) decrease of pressure
- iii) a platinum catalyst
- iv) excess oxygen.
- At 1300 K and a total pressure of 1 atm, the partial pressures at equilibrium are 0.27 atm for SO2 and 0.41 atm for O2.
- Calculate the equilibrium constant K_n . Be careful to give the units of Kn.
- b) Discuss the application of the Equilibrium Law to the equilibrium $CaCO_s(s)$ \longrightarrow $CaO(s) + <math>CO_s(g)$

at 700 K, and explain what would happen if carbon dioxide were added to the system. (091)

5. The equilibrium between hydrogen, iodine and hydrogen iodide can be investigated by sealing hydrogen iodide in glass tubes and heating them at known temperatures until equilibrium is reached. The equation for the reaction is

$$2HI(g)$$
 \longrightarrow $H_2(g) + I_2(g)$

and the equilibrium constant $K_c = 0.019 \,\mathrm{K}$ at 698 K.

The tubes are rapidly cooled and then opened under potassium iodide solution when the iodine and hydrogen iodide dissolve.

- a) i) Why are the tubes rapidly cooled?
 - ii) Describe how the appearance of the contents of a tube would change as it was cooled.

- b) In a closed-vessel experiment on the Haber process, nitrogen at 50 atm pressure and hydrogen at 150 atm pressure were reacted together at constant temperature. After a certain time interval it was found that the ammonia formed had a pressure of 40 atm. Given that the equilibrium constant, K_p at the reaction temperature is 7.316×10° 2mm², calculate whether or not the system had reached equilibrium.
- c) State and discuss the factors which govern the rates at which chemical reactions occur. (WJEC91)
- At room temperature, gaseous dinitrogen tetraoxide and nitrogen dioxide are in dynamic equilibrium according to the following equation:

$$N_2O_4(g) \implies 2NO_2(g); \Delta H = +58 \text{ kJ mol}^{-1}.$$

- Explain what is meant by the term dynamic equilibrium, and write the expression for the equilibrium constant, K_n, for this reaction.
- b) At a temperature of 25°C (298 K), 1.00 g of a mixture of these two gases takes up a volume of 3.17 × 10⁻⁴ m³ at a pressure of 101 kPa (1.01 × 10⁵ N m⁻²). Calculate the average relative
- molecular mass of the mixture.
 c) State Le Chatelier's principle, and use it to deduce qualitatively the effect on the average relative molecular mass of this gaseous mixture of increasing
 - i) the pressure
 - ii) the temperature.
- d) Nitrogen dioxide (from car exhaust fumes) can react with sulphur dioxide (from the burning of fossil fuels) in the presence of water vapour in the atmosphere to produce sulphuric acid (acid rain) and nitrogen monoxide, NO. The nitrogen monoxide is rapidly reoxidised to nitrogen dioxide by oxygen.
 - Construct balanced equations for these two reactions and hence suggest the role played by nitrogen dioxide in the overall process. (C92)
- Hydrogen is manufactured nowadays from oil, but earlier this century a major method for the production of hydrogen was the Bosch process. This was a two-stage process starting from steam and coke (about 80% carbon):
 - Stage 1 at ~1500 °C: the production of 'water-gas', a mixture of carbon monoxide and hydrogen:

Stage 2 at ~500 °C: the mixture of carbon monoxide and hydrogen from Stage 1 is mixed with more steam before undergoing the 'water-gas shift' reaction, involving an iron catalyst:

$$CO(g) + H2O(g)$$
 \longrightarrow $CO2(g) + H2(g)$

The value of Kp for the water-gas shift reaction at 500 °C is 10. In the process the amount of carbon monoxide in the final gas mixture, after removal of excess steam, had to be kept below 2% by volume.

- a) Calculate the ratio by volume required for the steam/water-gas mixture (at 500 °C) to achieve this.
- b) Calculate the total mass of steam required for the whole process per tonne of coke used for the production of water-gas.
- c) Calculate the percentage of the total steam used which is converted to hydrogen.

16 Organic Chemistry

All the techniques you need to enable you to tackle problems in organic chemistry have been covered in Chapter 2 in the sections on empirical formulae, calculations based on chemical equations and reacting volumes of gases, and in Chapter 3 on volumetric analysis.

Numerical problems in organic chemistry give you some quantitative data and ask you to use it in conjunction with your knowledge of the reactions of organic compounds. There is no set pattern for tackling such problems. They are solved by a combination of calculation, familiarity with the reactions of the compounds involved and logic. The following examples and problems will show you what to expect.

EXAMPLE 1 When 0.2500 g of a hydrocarbon X burns in a stream of oxygen, it forms 0.7860g of carbon dioxide and 0.3210g of water. When 0.2500 g of X is vaporised, the volume which it occupies (corrected to s.t.p.) is 80.0 cm3. Deduce the molecular formula of X.

X burns to form carbon dioxide and water. METHOD

Mass of C in 0.7860 g of
$$CO_2 = \frac{12.0}{44.0} \times 0.7860 = 0.2143 g$$

Mass of H in 0.3210 g of
$$H_2O = \frac{2.02}{18.0} \times 0.3210 = 0.0360 g$$

Therefore 0.2500 g of X contains 0.2143 g of C and 0.0360 g of H These masses give the molar ratio for C: H of $\frac{0.2143}{12.0}$ to $\frac{0.0360}{1.01}$

Thus, the empirical formula is CH2.

Since
$$80.0 \text{ cm}^3$$
 is the volume occupied by 0.2500 g of X ,

22.4 dm³ is occupied by
$$\frac{22.4}{80.0 \times 10^{-3}} \times 0.2500 \text{ g of } X = 70.0 \text{ g of } X$$

The formula mass of CH2 is 14. To give a molar mass of 70.0 g mol-1, the empirical formula must be multiplied by 5. Therefore:

ANSWER The molecular formula is C₄H₁₀.

EXAMPLE 2 An organic liquid, P, contains 52.2% carbon, 13.0% hydrogen and 34.8% oxygen by mass. Mild oxidation converts P to Q, and, on further oxidation, R is formed. P and Q react together in the presence of anhydrous calcium chloride to form S, which has a molecular a) Find the molar mass of the alkene, and b) give its molecular

formula Give the names and structural formulae of two alkenes which have this molecular formula.

10. An organic acid has the percentage composition by mass: C, 41.4%; H, 3.4%; O, 55.2%. A solution containing 0.250g of the acid, which is dibasic, required 26.6 cm3 of 0.200 mol dm-3 sodium hydroxide

solution for neutralisation. Calculate: a) the empirical formula, and b) the molecular formula of the acid. c) Give its name and write its structural formula or formulae.

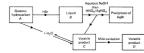
11. An organic liquid contains carbon, hydrogen and oxygen. On oxidation, 0.250 g of the liquid gave 0.595 g of carbon dioxide and 0.304 g

of water. When vaporised, 0.250 g of the liquid occupied 131 cm3 at 200 °C and 1 atm. Find: a) the empirical formula, and b) the molecular formula of the

liquid. c) Write the structural formulae of compounds with this molecular formula.

12. A is an organic compound with the percentage composition by mass C, 71.1%; N, 10.4%; O, 11.8%; H, 6.7%, and a molar mass of 135 g mol⁻¹. On hydrolysis by aqueous sodium hydroxide, A gives an oily liquid, B.

B has the percentage composition by mass: C. 77.1%: N. 15.1%: H. 7.5%, and a molar mass of 93 g mol-1. B is basic and gives a precipitate with bromine water.


Find the molecular formulae for A and B. From their reactions, deduce the identity of A and B.

EXERCISE 61 Questions from A-level Papers

1. Ripening tomatoes produce a gaseous hydrocarbon, A, which itself assists the ripening process. The gas A reacts in a 1:1 mole ratio with hydrogen bromide to give a liquid, B. Treatment of 1,0000 g of B with hot aqueous sodium hydroxide yields a volatile product, C. Acidification of the residual alkaline solution with dilute nitric acid and the addition of excess silver nitrate solution affords 1,7230g of silver bromide. Mild oxidation of C yields a volatile product, D, which on treatment with ammoniacal silver nitrate produces a silver mirror.

Compound A may be converted industrially into C by the reversible gas phase addition of one molecule of water. For the equilibrium $A(g) + H_2O(g) = C(g) \Delta H^{-1} = -46.0 \text{ kJ mol}^{-1}$

> $(A_{\bullet}(H) = 1.01, A_{\bullet}(C) = 12.01, A_{\bullet}(Br) = 79.91,$ $A_r(Ag) = 107.87$

- a) i) State the functional group present in each of A, B, C and D. ii) Give your reasoning for these conclusions.
 - iii) Calculate the number of moles of silver bromide produced.
 - iv) Hence calculate the relative molecular mass of B and deduce the identity of the gas A.
- i) Briefly describe a process for the direct conversion of A to C, giving the appropriate conditions.
 - ii) Describe and explain the effects of variation of temperature and pressure on the equilibrium yield of C obtained.
 - iii) Indicate how the use of excess water (as steam) might influence the equilibrium yield of C. (WJEC92)
- 2. Compound B, a diacid that occurs in apples and other fruit, has the following composition by mass:
 - C. 35.8% H, 4.5%
 - O. 59.7%

B reacts with ethanol in the presence of concentrated sulphuric acid under reflux to give C, C8H14O5. Compound C evolves hydrogen gas when treated with sodium metal and reacts with acidified potassium dichromate(VI) to give compound D. Compound D produces an orange precipitate with 2.4-dinitrophenylhydrazine but has no reaction with Fehling's or Tollens' reagent.

- a) Calculate the empirical formulae of B.
- b) Suggest structures for compounds B, C and D and explain the reactions described. (C92)
- 3. Hippuric acid, an organic substance, was first obtained from horse's urine (Greek, bippos = horse).

Historically, organic substances were believed to need a 'vital force' to be made. Today, hippuric acid is made in the laboratory by the following overall reaction:

pressure during each hydrogenation involving the reacting amounts shown.

Compound	Mass of compound taken/g	Mass of hydrogen used/g	Heat Q evolved/kJ
A	90.0	5.09	344
В	75.0	5.77	389
C	100.0	5.66	195
D	90.0	5.87	396
E	90.0	6.92	296
F	100.0	6.52	225

Draw up a table showing the mass of each compound A to F which reacts with one mole of hydrogen, and also the heat evolved per mole of hydrogen consumed. Use this information to deduce the relative molecular masses (which are integral to within = 0.1%) and hence the possible structural formulae of these compounds. Explain clearly why the heat evolved per mole of hydrogen consumed is not the same in each case. You will need to use the following data.

	Benzene(g)	Cyclohexene(g)	Cyclohexane(g)	
H ^o _F /kJ mol⁻¹	+83	+11	-124	

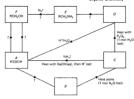
Identify one of the compounds A to F which has four isomeric forms. Draw a structure for each of the four isomers.

b) Compound G has ten carbon atoms per molecule. Full hydrogenation of 2.56g of G using exactly 0.200 g of hydrogen produces sufficient heat to raise the temperature of 500 g of water by 3.29 K. Deduce the molecular formula of G and draw its structural

(Specific heat capacity of water = 4.2 J K⁻¹ g⁻¹.) (JMB90,S)

a) Consider the reaction scheme shown opposite.

formula.


The compounds, A-F, each contain only one functional group; R represents an alkyl group.

Identify the functional groups present in compounds B, C and D respectively.
 Identify the reagents whereby the conversions A → B, D → E.

ii) Identify the reagents whereby the conversions A → b, D → E, E → F, F → A, and A → F may be brought about, giving brief reasoning in each case.

b) Use all the quantitative information given below to identify fully the compounds A-F above.

 When 0.2500g of A, a monobasic carboxylic acid, was titrated against 0.1000 mol dm⁻³ sodium hydroxide solution, 41.63 cm³ of the latter was required for complete reaction.

- ii) When C is heated, as shown, with sodium hydroxide solution, ammonia is evolved in a 1.1 mole ratio to C. When 0.3000 g of C was thus treated, and the ammonia released absorbed in water, the resulting solution required 2.5 pcm² of 0.2000 in 0.000 molecular or of the control of the c
- in a 1:1 mole ratio. When 0.2000 g of E was thus treated, 108.44 cm³ of nitrogen gas, measured at 298 K and 1.01×10⁴ Pa, was evolved. $(A_b(C) = 12.01, A_c(H) = 1.01, A_c(N) = 14.01, A_c(O) = 16.00;$
- $(A_r(C) = 12.01, A_r(H) = 1.01, A_r(N) = 14.01, A_r(O) = 16.00;$ 1 mol of a gas occupies 2.24×10^4 cm³ at 273 K and 1.01×10^5 Pa.) (WJEC91)
- This question concerns the organic compound, X, which contains carbon, hydrogen and oxygen.
 - a) X contains C = 66.67%; H = 11.11%; O = 22.22% by mass. Show that the empirical formula of X is C₄H₈O. (Relative atomic masses: H = 1, C = 12, O = 16.)
 - b) The relative molecular mass of X is 72. What is the molecular formula of X?
 - Give the structures of the non-cyclic isomers of X which do not react with bromine water.
 - d) Select an isomer of X which can be readily oxidised and describe its behaviour with a named oxidising agent. Give the reaction conditions and the structures of the organic product(s).
 - e) Outline the method you would use in order to identify X. (L91)

Answers to Exercises

The examination boards accept no responsibility whatsoever for the accuracy of the answers given.

CHAPTER 1

Practice 1

1. Density =
$$\frac{M_{BW}}{Volume}$$
 Volume = $\frac{M_{BS}}{Density}$
2. a) $I = \frac{V}{R}$ b) $R = \frac{V}{I}$
3. a) $R = \frac{V}{I}$ b) $I = \frac{V}{R}$

4. a) Mass of solute = Concentration × Volume of solution b) Volume of solution = Mass of solute
Concentration

5. a) $Q = \frac{P}{R}$ b) $R = \frac{P}{Q}$

Practice 2

1. s)
$$T = \frac{PV}{R}$$
 b) $V = \frac{RT}{P}$
2. s) $\rho = \frac{RA}{I}$ b) $A = \frac{\rho I}{R}$
3. s) $\rho = \frac{a \times b \times q \times r}{c}$ b) $q = \frac{\rho \times c}{a \times b \times r}$

9. a) x = 7 or -13

e) $x = -\frac{1}{4}$ or $-4\frac{1}{4}$

Practice 3

1. 24 dm ³	2. 11 g	3. 300 tonnes	
1. a) 2.3678 × 10 ⁴ e) 6.72891 × 10 ⁵	b) 4.376 × 10 ³	e) 1.69 × 10 ⁻³	d) 3.45 × 10 ⁻⁴
2. a) 5.85 × 10 ⁴ e) 1.34 × 10 ³	b) 2.66 × 10 ⁶	c) 6.35 × 10 ⁷	d) 1.21 × 10
3. a) 3.32 × 10 ⁴ e) 6.11 × 10 ⁻³	b) 2.72 × 10 ⁴	c) 1.86 × 10 ⁻⁴	d) 6.44 × 10 ⁻⁸
4. a) 2.001 × 10 ⁴ e) 6.252 × 10 ⁴	b) 5.648 × 10 ³	e) 1,29 × 10 ⁸	d) -1.12 × 10 ⁻⁹
5. a) 4 × 10 ¹⁰ e) 2 × 10 ¹⁰	b) 2 × 10 ⁸	c) 5 × 10 ⁸	d) 1 × 10 ⁵
6. a) 3.6753 c) -5.6356	b) 3.7052	c) -2,8771	d) 1,0033
7. a) 2.862 × 10 ³ e) 8.7680 × 10 ⁻³	b) 1.135	c) 6.969 × 10 ³	d) 3.3791 × 10 ⁻⁷
8. a) 4.264 × 10 ⁻³ e) 3.781 × 10 ⁴	b) 2.867 × 10 ⁻¹	e) 4.037 × 10 ²	d) 2,055 X 10 ⁻³⁶

Answers

4. 91.0%

```
Exercise 7
```

```
2. H<sub>2</sub>NSO<sub>3</sub> (aq) + OH (aq) --- NH<sub>4</sub>(g) + SO<sub>2</sub> (aq)
3. Na<sub>2</sub>S<sub>2</sub>O<sub>2</sub>(aq) + AgCl(s) - NaCl(sq) + NaAgS<sub>2</sub>O<sub>2</sub>(aq)
```

Exercise 8					
	1.92.9%	2. 90.5%	3, 89.0%		
	5, 99.2%				

Exercise 9

1. 436 tonnes 5. 93.5%	2.46 kg	3. 2.7 kg	4. 304 kg

CHAPTE

Exercise

ER 6			
10			
SECTION 1			
1. Mg ₃ N ₃	2. Fe ₃ O ₄	3. Al ₂ O ₂	4. BaCl ₂ · 2H ₂ O
5. PbO ₁			
6. a) P ₁ O ₃	b) NH _b	c) Pb ₂ O ₄	d) SiO,
e) MnO ₂	f) N ₁ O ₄	g) CrCl _a	
7. $A = C_2 V_4$	$B = C_4H_4O_1$		
$C = C_2H_6$	$D = C_4H_4$		
$E = C_aH_a$	$F = C_1H_1O_1$		
$G = C_2H_4Cl_2$	$H = C_4H_4N_4O_4$		
8. D	9. MO ₁		
SECTION 2			
1. a) MgO	b) CaCl	c) FeCl,	d) CuS
e) Lili			

3. 500 cm3 SO

1. a) MgO	b) CaCl _a	c) FeCl,	d) CuS
e) Lili(
2. a) FeO	b) Fe ₄ O ₄	c) Fe ₂ O ₄	d) K,CrO,
e) K ₁ Cr ₂ O ₄	f) CH	g) C _e H _e	
3. a) a = 5	b) b = 6	c) c = 2	dt d = 3
e) c = 6	f) $f = 12$		
4. a) C,H,,O	b) C ₄ H ₁₀ O	5. a) C,H,O	b) C,H,O
6. a) C,H10O1	b) C ₄ H ₁₀ O ₄	7. C.H.,O.	-, -1-4-

CHAPTER 7

Exercise 11

		ст	IOI

SECTION 1 1. a) 2C ₂ H ₄ (g) + b) 30 cm ³	70 ₂ (g)) + 6H ₂ O(g)
2. C 4. b) i) 579 cm ⁵	3. C ii) 308 cm ³	e) 44, CO ₂
SECTION 2 1, 20 cm ³ ethane 4	10 cm³ ethene	
2. a) 2 dm ³ e) 2 dm ³	b) 750 cm ³	c) 625 cm ²

5. d

4. 50%

d) 937.5 cm³

Exercise 12

```
\begin{array}{lll} 1. \ C_2H_g & 2. \ C_4H_d & 3. \ a=30 \ cm^3, \ b=40 \ cm^3 \\ 4. \ CH_a+2O_2 & \longrightarrow & CO_2+2H_2O; CH_a & \end{array}
```

Exercise 13

```
SECTION 1
  1, 25 g, 6.0 dm<sup>3</sup>
                            2. 3250 g. 1120 dm3 3. 560 cm3. 1120 cm3
 4. a) 2H<sub>2</sub>O on LHS
                              b) 1.33 g
 5. a) 2H.O on RHS
                               b) i) 16.0 g ii) 33.3 g
SECTION 2
 1. a) KO,
                             b) 4KO<sub>4</sub> + 2CO<sub>5</sub> ------ 3O<sub>2</sub> + 2K<sub>2</sub>CO<sub>5</sub> c) 237 dm<sup>3</sup>
 2. 3.5 g
                            3. £90 daily
                                                    4, 267 dm<sup>3</sup> 5, 3,50 dm<sup>3</sup>
                                                    8.3.646 g
 6. 1.107 g
                            7.2.388 g
                                                                            9. 11.5 dm<sup>3</sup>
10. 2460 dm<sup>3</sup>
```

```
1. b) CaFe<sub>2</sub>O<sub>4</sub> exidation no. of Fe = +3
2. a) S.Cl.
   b) B is S, N, C is H-S = N
   c) 5,N, + 2SnCl, + 4HCl -+ 4HSN + 2SnCl,
   d) A large volume of gas, SO, and NO, is formed when the solid is ignited
3. A is CrO<sub>2</sub> B is Cr<sub>2</sub>O<sub>3</sub> C is (NH<sub>4</sub>)<sub>3</sub>Cr<sub>2</sub>O<sub>3</sub> D is CrO<sub>3</sub>Cl<sub>2</sub>
   CrO, + H.O - H.CrO,
   H,CrO, + 2NaOH -- Na,CrO, + 2H,O
   4CrO<sub>2</sub> --- 2Cr<sub>2</sub>O<sub>4</sub> + 3O<sub>4</sub>
   2CrO<sub>2</sub> + 2NH<sub>2</sub> + H<sub>1</sub>O ---- (NH<sub>4</sub>)<sub>1</sub>Cr<sub>2</sub>O,
   (NH,),Cr,O, --- N, + 4H,O + Cr,O,
   CrO, + 2HCl - CrO,Cl, + H,O
4. c) i) 694 kg ii) 69 400 dm3
                                                    5. b) ii) 74.8% iii) C<sub>2</sub>H<sub>4</sub>I<sub>3</sub>
6. c) 1.63 tonne d) iv) 9380 litres 7. d) ii) 21.8%
8. A and B are pentaamminenitrocobalt(III) sulphate
          [Co<sup>III</sup>(NH.).NO.12*SO.2*
   (co-ordination through N of the -- NO, "group)
   and pentaamminenitritocobalt(III) sulphate
           ICoIIINH, ), ONO[2*SO,2-
   (co-ordination through O of the -O-N=O group)
   Another isomer is
         ICoIII(NH.), SO, I* NO,
9. a) CsICl.
                            b) ICI-I-CII c) linear
   e) ICl, (aq) + 50,(g) + 2H,0(1) - I'(aq) + 2Cl'(aq) + 50,2-(aq) + 4H*(aq)
   g) i) AgCl(s) + 2NH_s(sq) \longrightarrow Ag(NH_s)_sCl(sq)
     ii) 2Agl(s) + 2H, SO, (aq) --- 1,(s) + SO,(g) + Ag, SO,(s) + 2H,O(l)
```

```
2.0 a 5 is distilled from +2 to +4.176 is reduced from +8 to +2. 3 b) do its oxidized from +2 to +7.78 is reduced from +5 to +7. 8.1 is reduced from +5 to +7. 8.1 is reduced from +7 to +7. 9.1 is reduced from +7 to +7. 1 is reduced from +7 to +7 to
```

g) $4NH_1 + 5O_2 \longrightarrow 4NO + 6H_1O$ h) $Fe^{2\nu}C_2O_2^{2\nu} + 3Ce^{3\nu} \longrightarrow 2CO_1 + 3Ce^{3\nu} + Fe^{3\nu}$ 6. $Cr_2O_2^{3\nu} + 6I^{-\nu} + 14H^{-\nu} \longrightarrow 3I_1 + 2Cr^{3\nu} + 7H_2O$

Exercise 18

```
1. a) NO," + H,O ---- NO," + 2H" + 2e"
    b) AsO, 3- + H,O ---- AsO, 1- + 2H' + 2e-
    c) Hg.3* - 2Hg3* + 2e*
    d) H.O. - + 2H' + 2e' + O.
    e) V3" + H4O - VO3" + 2H" + e"
 2. a) NO<sub>3</sub>" + 2H" + e" ---- NO<sub>4</sub> + H<sub>4</sub>O
    b) NO," + 4H" + 3e" --- NO + 2H,O
    c) NO," + 10H" + 8e" --- NH," + 3H,O
    d) 2BeO." + 12H" + 10e" - Br. + 6H.O
    e) PbO, + 4H* + 2e* ---- Pb** + 2H,O
 3. a) 2MnO, (aq) + 5H,O,(aq) + 6H'(aq) - 5O,(g) + 2Mn<sup>1*</sup>(aq) + 8H,O(l)
    b) MnO_{r}(s) + 4H^{*}(sq) + 2Cl^{*}(sq) \longrightarrow Mn^{1*}(sq) + Cl_{r}(g) + 2H_{r}O(l)
    c) 2MnO, '(aq) + 5C,O,1'(aq) + 16H'(aq) - 2Mn1'(aq) + 10CO,(g) + 8H,O(l)
    d) Cr_1O_1^{3-}(aq) + 3C_1O_1^{3-}(aq) + 14H^*(aq) \longrightarrow 2Cr^{3+}(aq) + 6CO_1(q) + 7H_1O(1)
    e) Cr_1O_1^{3-}(aq) + 6I^{-}(aq) + 14H^{+}(aq) \longrightarrow 2Cr^{3+}(aq) + 3I_1(aq) + 7H_1O(1)
    f) H_1O_2(aq) + NO_1^-(aq) \longrightarrow NO_1^-(aq) + H_1O(1)
 4. a) 1.5 × 10<sup>-3</sup> mol
                               b) 7.5 × 10<sup>-3</sup> mol
                                                       c) 7.5 × 10<sup>-3</sup> mol
                                                                                   d) 7.5 × 10<sup>-3</sup> mol
    e) 1.5 × 10<sup>-2</sup> mol
 5. a) 6.0 × 10<sup>-4</sup> mol
                               b) 3.0 × 10<sup>-4</sup> mol
                                                        c) 6.0 × 10<sup>-4</sup> mol
                                                                                   d) 1.0 × 10<sup>-4</sup> mol
    e) 3.0 × 10 4 mol
 6. a) 4.0 × 10<sup>-3</sup> mol
                               b) 2.0 × 10 - mol
                                                         c) 2.0 × 10<sup>-3</sup> mol
                                                                                   d) 4.0 × 10<sup>-3</sup> mol
    e) 6.7 × 10<sup>-4</sup> mol
 7, a) 62.5 cm<sup>3</sup>
                               b) 250 cm<sup>3</sup>
                                                         c) 5.00 cm<sup>3</sup>
                                                                                   d) 12.5 cm<sup>3</sup>
    e) 8.3 cm<sup>5</sup>
 8, a) 45.0 cm<sup>3</sup>

 b) 12.0 cm<sup>3</sup>

                                                         e) 7.2 cm3
                                                                                    d) 4.50 cm3
    e) 9.0 cm<sup>3</sup>
 9. 0.090 mol.dm<sup>-3</sup> 10. 0.0195 mol.dm<sup>-3</sup> 11. 0.0894 mol.dm<sup>-3</sup> 12. 99.5%
13, 90.6%
                        14, 1.64 × 10<sup>-3</sup> mol dm<sup>-3</sup>
                                                                               15, 0.103 mol dm 13
16. a) [Fe2*] = 0.0600 mol dm-3
                                                         b) [Fe3*] = 0.0160 mol dm-3
                              b) 22.4 cm<sup>3</sup>
                                                    18, 7.63 × 10<sup>-2</sup> mol dm<sup>-3</sup>
17. a) 20.0 cm<sup>3</sup>
                          20, 2.7 × 10°1 mol dm-3
10 +4
21. s) 1NH<sub>2</sub>OH: 2Fe<sup>3+</sup>
                              b) -1
                                                        c) -1
                                                                                    d) + 1
                               D 2NH.OH + 4Fe3+ ---- 4Fe3+ + N.O + H.O + 4H+
    e) N.O
22. 82.3%
                          23, b) 0.74 mol dm<sup>-3</sup>
```

Exercise 19

1. 9.37 × 10⁻³ mol dm⁻³ 2. 78 ppm 3. 60.0% CaO 40.0% MgO 4. 18

277

1. 1.48 × 10⁻² mol dm⁻³ 3. 34.6% NaCl 65.4% NaBr 5. a) 1.58 × 10⁻² mol dm⁻³ 6. 55.3% 2. 49.7% 4. 2.77 × 10⁻² mol dm⁻³ b) 4.97 × 10⁻² mol dm⁻³

Exercise 21

```
1. c) 5.0 × 10<sup>-8</sup> mol l<sup>-1</sup>
                                              2, g) 1.0×10<sup>-2</sup>mol b) i) 14% ii) 34%
 3, b) j) MnO, (aq) + 8H*(aq) + 5e - + Mn1*(aq) + 4H,O(j)
       ii) Fe2*(aq) - Fe3*(aq) + e-
       3MnO<sub>4</sub> + 5Fe<sup>2+</sup> + 5C<sub>2</sub>O<sub>4</sub> + 24H* ----- 3Mn<sup>2+</sup> + 5Fe<sup>3+</sup> + 10CO<sub>4</sub> + 12H<sub>4</sub>O
          Volume = 41.7 cm<sup>3</sup>
 4. b) i) +5
       ii) 1) 210<sub>a</sub> + 12H + 10e - + I<sub>2</sub> + 6H<sub>2</sub>O
         2) 21° ----- 1, + 2e°
          10," + 51" + 6H" - 31, + 3H,O
       iii) 0.383 g
 5, c) Fe2*(ag) - Fe3*(ag) + e*
       MnO<sub>4</sub> (aq) + 8H*(aq) + 5e - Mn<sup>3*</sup>(aq) + 4H<sub>4</sub>O(l)
       MnO_a^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{2+}(aq) + 4H_{+}O(1)
    d) 4.67%
 6, b) ICl + KI --- I, + KCl
                                                 c) 4.0 × 10<sup>-3</sup> mol
    d) 2.0 × 10<sup>-3</sup> mol I<sub>s</sub>, 2.0 × 10<sup>-3</sup> mol ICl e) 0.5 × 10<sup>-3</sup> mol ICl
    f) 100
 7. b) 63.5%
 8. a) P is NaClO<sub>3</sub> 3NaClO<sub>3</sub> --- NaCl + 2NaClO<sub>3</sub>
    b) First: 2NO, (aq) + 4H (aq) + 2I (aq) - I<sub>2</sub>(aq) + 2NO(g) + 2H<sub>2</sub>O(l)
       Second: 2NO_{s}^{-}(aq) + 8H^{+}(aq) + 6I^{-}(aq) \longrightarrow 3L(aq) + 2NO(e) + 2H_{s}O(l)
       Air oxidises NO," to NO,", from +3 oxidation state to +5 oxidation state. Instead
      of changing from +3 in NO2" to +2 in NO, N changes from +5 in NO2" to +2 in NO,
       and can therefore oxidise three times the amount of iodide ion.
 9 40 142*
10. a) A is C10.
    b) In 2, chlorate(III), ClO, , is formed. In 5, ClO, disproportionates to form HCl and
      HCIO<sub>2</sub>, chloric(V) acid
    0,1 - 0, + 2e'
           (-1)
                       (0)
           Adding the two half-equations,
           2CIO, + 0,2 -- 2CIO, + O,
         3. CIO." + 4H" + 4e" ----- CI" + 2H.O.
           (+3)
                                         (-1)
            21" ---- 1, + 2e"
                     m
           Adding the two half-equations,
           4. 21" --- 1, + 2e"
           (-1) (0)
```

NO₃ + 2H* + e - NO₂ + H₁O (+5) (+4)

 $2I^{*}(aq) + 2NO_{1}(aq) + 2H^{*}(aq) \longrightarrow I_{2}(g) + 2NO_{2}(g) + 2H_{2}O(1)$

Adding the two half-equations,

ClO₂ + OH⁻ ClO₃⁻ + H* (+4) (+5) Adding the two equations,

6ClO₂ + 5OH⁻ Cl⁻ + 5ClO₃⁻ + H⁺ + 2H₂O b) ClO₃⁻ + 6H⁺ + 6e⁻ Cl⁻ + 3H₂O

b) ClO₃" + 6H* + 6e" — (+5)
2I" — I₃ + 2e"
(-1) (0)

Adding the two equations, $ClO_3^-(aq) + 6H^+(aq) + 6I^-(aq) \longrightarrow Cl^- + 3I_2(aq) + 3H_2O(l)$

11. b) ii) 95% 12. a) i) 2.5 mol ii) 6.0 × 10⁻⁴ mol iii) 1.5 × 10⁻³ mol iv) 190 ppm

13. c) MgBa(CO₂)₂ 14. a) i) 0.0129 mol ii) 0.0905 mol iii) 7

b) i) 65.9 mg ZnSO₄-7H₄O ii) 4.58 × 10⁻² mol dm⁻⁸

c) i) 1:1 ii) to ensure that edta is ionised iii) Sodium zincate would be formed
15. a) i) 2MmO_s + 16H⁴ + 5C_sO_s¹⁻¹ → 2Mn²⁺ + 8H_sO_s + 10CO_s ii) 2.59 g
b) i) Mn²⁺(aq) is precipitated as MnCO_s(s). When the carbonate is beated in air, it
dissociates to form CO_s and MnO_s which is immediately oxidised to MnO_s

(-1)

ii) 0.537 g c) K₄Mn(C₂O₄)₃ •2H₂O d) 0 +2

16. b) ii) 1) Loss in mass corresponds to PbCl₄(s) — PbCl₂(s) + Cl₂(g)
2) When PbCl₂(s) + H₂O(l) — A(s) + B(aq),

L = Ligand and stands fo

CHAPTER 9

Exercise 22

1. 85.6 u 2. 69.8 u 3. 24.3 4. 3 ³⁶Cl: 1 ³⁶Cl; 35.5 u 5. 6.93

4.3 "Cl.1" Cl.133.5 u 5.6.93 6.1, H 2, H 3, H H, H, H, HO'H 18, HO'H and H, HO 19, HH HO 20, H, HO

7. 39.1 u 8. 45Cu 45CuO 45CuO 45CuNO, 45CuNO, 45CuNO, 45Cu(NO,), 45Cu(NO,),

280 Calculations for A-level Chemistry

CHAPTER 10

Exercise 26				
	1. a) 185 cm ³	 b) 387 cm³ 	c) 6.23 dm ³	d) 132 cm ³
	e) 2.43 dm ³ 2. 1.75 × 10 ⁵ N m ⁻² 6. a) 185 cm ³ e) 436 cm ³	3. 0.943 dm ³ b) 36.7 cm ³	4, 484 K c) 6.46 dm ³	5. 586 cm ³ d) 3.83 dm ³

Exercise 27

27				
	1. a) 46	b) NO ₂	2. 59 cm	3. 160
	4.4	5. A = H ₃ B = O ₃	6. 48 s	
	7. 16.3 cm ³ min ⁻¹	8. 24.9 cm ³	9. CO, 25%	CO ₂ , 75%

Exercise :

	10. NO ₂ , 43.7%	N ₂ O ₄ , 56.3%		
28				
	1. 44.1 g mol 1	2. 39.8 g mol	3. 6.01 dm ³	4. 83.8 g mol ⁻¹ 8. 7.54 ¥ 10 ⁻³ mol

Exercise 29

5. 0.583 mot	6. 44.0 g moi	71 0.10 0.11	0.7.54 × 10	******
1. a) 176.5 cm ³	b) 207 cm ³	c) 26.3 dm ³ 4. 4.50 × 10 ⁵ N m ⁻¹		

5. a) $p(N_s) = 3.00 \times 10^4 \text{ N m}^{-3}$	$\rho(O_4) = 2.63 \times 10^4 \mathrm{N m^{-3}}$	$p(CO_1) = 1.88 \times 10^4 \text{ N m}^{-3}$
b) $p(N_s) = 3.00 \times 10^4 \text{ N m}^{-1}$	$\rho(O_1) = 2.63 \times 10^4 \text{ N m}^{-1}$	
6. a) p(NH _a) = 6.00 × 10 ⁴ N m	$p(H_3) = 3.75 \times 10^4 \text{ N m}^{-1}$	$\rho(N_3) = 5.25 \times 10^4 \mathrm{N m^{-3}}$

Exercise 30

1. 84.4 g mol 1	2. 1840 m s 1	3. 3410 J mol **	4. 413 ms
5. 44.1 g mol -1	6. 2.02	7. 242 ms ⁻¹	
8. a) 4.47	b) 5460 K		

Exercise 31

	ii) C ₂ H ₃ OH and	CH,OCH, 4CO, + 6H,O		
d) i) C ₂ H ₄ OH	ii) 2C,H,OH) + 2Na(s)	2C ₁ H ₂ ONa(s) +	$H_2(g)$
4. a) 2490 J mol-1	b) iii) 3	6.5		
5. a) CH ₂	b) 56, C	.H.		
c) i) H C=C	н н -ççн	H,C=C(H,	H _s C=C	сн, н

1. 4.52 × 10⁻¹g 2. b) i) 16 ii) 64 3. a) 24.9 dm³ b) 46

CHAPTER 11

1. 343 g mol ⁻¹	2. PF.	3.90 g mol ⁻¹	4. 64.6 g mol ⁻¹
5. 134 g mol ⁻¹ 6. a) 46 g mol ⁻¹	b) 58 g mol ⁻¹	c) 74 g mol ⁻¹	

Exercise 40

SECTION 1		
1. a)	2. a)	3. b)
5. b)		

4. d) SECTION 2 1. 0.265 g 2. 0.403 g a) doubled b) doubled

c) unchanged 3. 1.24gCa 2.21gCl, 4. 0.0560 # 5, a) 0.0672 A b) 23.1 cm3 c) 0.195 g 6, 268 minutes 7. 0.454 A 8. 1.77 mol dm-3 9. 2482 hours 11. 1.84 × 10°C 12. 1050 s 10. 2.14 dm3O, 4.28 dm3H,

Exercise 41

1. 1.75 × 10⁻⁸ mel dm ⁻³ 2, a) 0.0271 b) 6.78 × 10⁻⁴ mol dm⁻³ c) 1.89 × 10⁻⁵ mol dm.⁻³ b) 1.37 × 10⁻³ mol dm⁻³ 3. a) 0.230 4. 1.75 × 10⁻⁴ mol dm⁻³

HOe He

HOg Hg

5. a) 0.0256 b) 2.02 × 10⁻⁵ mol dm⁻⁵ HOg

1. pH

Exercise 42

a) 8 6	b) 4 10	c) 7 7	d) 2.2 11.8
e) 4.5 9.5	f) 1.5 12.5	g) 0.60 13.4	h) 8.3 5.7
i) 6.2 7.8	j) 1.0 13.0		
2, a) 12	b) 11	c) 6.0	d) 12.7
e) 11	0 12.9	g) 12	h) 9.7
i) 6.8	j) 4.6		
3. In mol dm 3, the	values are:		
a) 1.00	b) 5.01 × 10 ⁻⁵	c) 4.47 × 10 ⁻²	d) 0.0132
e) 7.08 × 10 ⁻⁶	f) 1.45 × 10 ⁻⁴	g) 6.17 × 10 ⁻¹⁰	h) 2,00 × 10 ⁻¹⁴
i) 3.16 × 10 ⁻¹	j) 2.34 × 10 ⁻³		
4. a) 0.784	b) 1.05	c) 13.3	d) 12.7
e) 13.4			
5, 2,52	6. a) 1.1	30 × 10 ⁻⁶ mol dm ⁻⁹	b) 6.00
7. 9.92			
8. a) 3.7 × 10 ⁻⁸	b) 1.74 × 10 ⁻³	c) 3.96 × 10 ⁻¹⁰	d) 1.3 × 10 ⁻⁸
(all in mol dm ⁻³)			
9. a) 1.81 × 10 ⁻⁵	b) 3.97 × 10⁻¹⁰	c) 1.43 × 10 ⁻⁸	d) 2.00 × 10 ⁻⁹
(all in mol dm ⁻²)			
10. a) 2.28 × 10 ⁻¹¹	b) 5.62 × 10 ⁻¹⁶	c) 1.86 × 10 ⁻¹¹	d) 4.24 X 10 ⁻¹⁶
(all in mol dm ⁻²)			
11. a) 4.46 × 10 ⁻⁴	b) 2.41 × 10 ⁻³	c) 1.89 × 10 ⁻¹	d) 7.93 × 10 ⁻²
(all in mol dm ⁻³)			
12. a) 2.00	b) 12.0	c) 2.30	13. 0.0110%
14. 11.1	15. a) 10-4	b) 6	

Exercise 43

	16. pH = 3.0	a) 9.0 cm²	b) 0.90 cm ³	
Exercise 43				
	1. a	2. 1.00 mole	3. a) 3.34	b) 3.94
	4. a) 4.73	b) 0.117 mol		

рН рОН

ii) Find the sum of the mean bond enthalpies of the bonds broken and the sum of the mean bond enthalpies of the bonds created. Then $\Delta H^{\odot} = +$ (sum of mean bond enthalpies of bonds broken) - (sum of mean bond enthalpies of bonds created)

13. a) iii) -2154 kl mol-1

b) i) SrCl, will not be formed as the energy required is high. Whereas the formation of SrCl is exothermic, the formation of SrCl, is more exothermic and therefore this

is the product that is formed ii) 1) Sr3+ is a much smaller ion than Sr4; therefore CI* approach more closely to Sr3+

and the lattice energy of SrCl, is much greater than that of SrCl 2) In forming Sr3+ from Sr, the two s-electrons are removed. To form Sr3+ a third electron must be removed from Sr; this is a d-electron and much more difficult

c) i) $\Delta S^{\Theta} = \Delta H^{\Theta}/T = +63.7 \text{ J K}^{-1} \text{ mol}^{-1}$ ii) $\Delta S^{\Theta} = +82.1 \text{ J K}^{-1} \text{ mol}^{-1}$ iii) $\Delta G^{\bullet} = \Delta H^{\bullet} - T\Delta S^{\bullet} = -5.46 \text{ kl mol}^{-1}$; since ΔG^{\bullet} is negative, the reaction is

14. a) -316 kJ moi-1

15. b) ZnO(s) + C(s) → Zn(s) + CO(g) ΔG⁻⁰ = +35 kJ mol⁻¹ at 1100 K Aluminium, ves. Hydrogen, no c) i) Since 1 volume of gas is converted into a solid, S decreases: \(\Delta S^{\text{in}}\) is negative. The

value of $-T\Delta S^{\Phi}$ becomes more positive as T increases; therefore ΔG^{Φ} becomes less negative as T increases ii) Since 1 volume of gas forms 2 volumes of gas, ΔS^{ω} is positive: therefore the value

of $-T\Delta S^{\Phi}$ becomes more negative as T increases and ΔG^{Φ} becomes more negative as T increases

16. d) i) 182 kJ mol⁻¹ ii) - 35 kJ mol⁻¹ iii) Reverse the second equation; then add the first equation and the reverse of the second equation to obtain:

L(g) + Cl.(g) - 21Cl(g) For this reaction, $\Delta H = \Delta H_1 - \Delta H_2$

CHAPTER 14 Exercise 51

1. 2 2. 1 w.s.t. A 2 w.s.t. B 3. d
4.
$$\frac{d|X|}{dt} = k|X|^4$$
 0 5. 10.0 mol⁻¹ dm³ s⁻¹
6. $\frac{d|P|}{dt} = k|A||B|$ 2.0 × 10 ⁻¹ dm³ mol⁻¹ s⁻¹

7, s) 1 b) 2 1.67 × 10⁴ mol⁻² dm⁴ h⁻¹ or 46.4 mol⁻² dm⁴ s⁻¹ 8. $\frac{d[N_2O_g]}{d[N_2O_g]} = k[N_2O_g]$ a) 0.150 mol dm⁻³ s⁻¹ b) 1.80 mol dm⁻³ s⁻¹

This popular and comprehensive guide gives thorough, expert explanations, worked examples and plenty of practice in chemistry calculations.

The Third Edition includes more foundation work on formulae, the mole, calculations based on chemical equations and volumetric analysis for students starting A/AS work from National Curriculum GCSE Science: Double Award.

The selection of questions from past papers has been updated and all numerical answers are included.

ISBN 0-7487-1594-0

STANLEY THORNES

Ellenborough House Wellington Street CHELTENHAM Glos. GI 50 1YW

